Truncated Power Series

Alan Barnes
Dept. of Computer Science and Applied Mathematics
Aston University, Aston Triangle,
Birmingham B4 7ET
GREAT BRITAIN
Email: barnesa@aston.ac.uk

and

Julian Padget
School of Mathematics, University of Bath
Claverton Down, Bath, BA2 7TAY

GREAT BRITAIN
Email: jap@maths.bath.ac.uk

1 Introduction

This package implements formal power series expansions in one variable
using the domain mechanism of REDUCE. This means that power series
objects can be added, multiplied, differentiated etc. like other first class
objects in the system. A lazy evaluation scheme is used in the package
and thus terms of the series are not evaluated until they are required for
printing or for use in calculating terms in other power series. The series
are extendible giving the user the impression that the full infinite series is
being manipulated. The errors that can sometimes occur using series that
are truncated at some fixed depth (for example when a term in the required
series depends on terms of an intermediate series beyond the truncation
depth) are thus avoided.

Below we give a brief description of the operators available in the power
series package together with some examples of their use.

1 INTRODUCTION 2

1.1 PS Operator

Syntax:
PS(EXPRN:algebraic, DEPVAR:kernel, ABOUT:algebraic):ps object

The PS operator returns a power series object (a tagged domain element)
representing the univariate formal power series expansion of EXPRN with
respect to the dependent variable DEPVAR about the expansion point
ABOUT. EXPRN may itself contain power series objects.

The algebraic expression ABOUT should simplify to an expression which
is independent of the dependent variable DEPVAR, otherwise an error will
result. If ABOUT is the identifier INFINITY then the power series expansion
about DEPVAR = oo is obtained in ascending powers of 1/DEPVAR.

If the command is terminated by a semi-colon, a power series object repre-
senting EXPRN is compiled and then a number of terms of the power series
expansion are evaluated and printed. The expansion is carried out as far as
the value specified by PSEXPLIM. If, subsequently, the value of PSEXPLIM is
increased, sufficient information is stored in the power series object to en-
able the additional terms to be calculated without recalculating the terms
already obtained.

If the command is terminated by a dollar symbol, a power series object is
compiled, but at most one term is calculated at this stage.

If the function has a pole at the expansion point then the correct Laurent
series expansion will be produced.

The following examples are valid uses of PS:
psexplim 6;
ps(log x,x,1);
ps(exx(sin x),x,0);

ps(x/(1+x) ,x,infinity);
ps(sin x/(1l-cos x),x,0);

New user-defined functions may be expanded provided the user provides
LET rules giving

1. the value of the function at the expansion point

2. a differentiation rule for the new function.

1 INTRODUCTION 3

For example

operator sech;

forall x let df(sech x,x)= - sech x * tanh x;
let sech 0 = 1;

ps(sech(x*%2),x,0);

The power series expansion of an integral may also be obtained (even if
REDUCE cannot evaluate the integral in closed form). An example of this
is

ps(int (ex*x/x,x) ,x,1);

Note that if the integration variable is the same as the expansion variable
then REDUCE’s integration package is not called; if on the other hand the
two variables are different then the integrator is called to integrate each of
the coefficients in the power series expansion of the integrand. The constant
of integration is zero by default.

1.2 PSEXPLIM Operator

Syntax:
PSEXPLIM(UPTO:integer):integer
or
PSEXPLIM():integer

Calling this operator sets an internal variable of the TPS package to the
value of UPTO (which should evaluate to an integer). The value returned
is the previous value of this variable. The default value is six.

If PSEXPLIM is called with no argument, the current value for the expansion
limit is returned.

1.3 PSORDLIM Operator

Syntax:
PSORDLIM(UPTO:integer):integer

or

1 INTRODUCTION 4

PSORDLIM():integer

An internal variable is set to the value of UPTO (which should evaluate to
an integer). The value returned is the previous value of the variable. The
default value is 15.

If PSORDLIM is called with no argument, the current value is returned.

The significance of this control is that the system attempts to find the order
of the power series required, that is the order is the degree of the first non-
zero term in the power series. If the order is greater than the value of
this variable an error message is given and the computation aborts. This
prevents infinite loops in examples such as

ps(l - (sin x)**2 - (cos x)**2,x,0);

where the expression being expanded is identically zero, but is not recognized
as such by REDUCE.

1.4 PSTERM Operator

Syntax:
PSTERM(TPS:power series object, NTH:integer):algebraic

The operator PSTERM returns the NTH term of the existing power series
object TPS. If NTH does not evaluate to an integer or TPS to a power
series object an error results. It should be noted that an integer is treated
as a power series.

1.5 PSORDER Operator

Syntax:
PSORDER(TPS:power series object):integer

The operator PSORDER returns the order, that is the degree of the first non-
zero term, of the power series object TPS. TPS should evaluate to a power
series object or an error results. If TPS is zero, the identifier UNDEFINED is
returned.

1 INTRODUCTION 5

1.6 PSSETORDER Operator

Syntax:

PSSETORDER(TPS:power series object, ORD:integer):integer
The operator PSSETORDER sets the order of the power series TPS to the
value ORD, which should evaluate to an integer. If TPS does not evaluate
to a power series object, then an error occurs. The value returned by this
operator is the previous order of TPS, or 0 if the order of TPS was undefined.
This operator is useful for setting the order of the power series of a function

defined by a differential equation in cases where the power series package is
inadequate to determine the order automatically.

1.7 PSDEPVAR Operator

Syntax:
PSDEPVAR(TPS:power series object) :identifier

The operator PSDEPVAR returns the expansion variable of the power series
object TPS. TPS should evaluate to a power series object or an integer,
otherwise an error results. If TPS is an integer, the identifier UNDEFINED is
returned.

1.8 PSEXPANSIONPT operator

Syntax:
PSEXPANSIONPT(TPS:power series object):algebraic

The operator PSEXPANSIONPT returns the expansion point of the power se-
ries object TPS. TPS should evaluate to a power series object or an integer,
otherwise an error results. If TPS is integer, the identifier UNDEFINED is
returned. If the expansion is about infinity, the identifier INFINITY is re-
turned.

1.9 PSFUNCTION Operator

Syntax:

1 INTRODUCTION 6

PSFUNCTION(TPS:power series object):algebraic

The operator PSFUNCTION returns the function whose expansion gave rise to
the power series object TPS. TPS should evaluate to a power series object
or an integer, otherwise an error results.

1.10 PSCHANGEVAR Operator

Syntax:
PSCHANGEVAR(TPS:power series object, X:kernel):power series object

The operator PSCHANGEVAR changes the dependent variable of the power
series object TPS to the variable X. TPS should evaluate to a power series
object and X to a kernel, otherwise an error results. Also X should not
appear as a parameter in TPS. The power series with the new dependent
variable is returned.

1.11 PSREVERSE Operator

Syntax:
PSREVERSE(TPS:power series object):power series

Power series reversion. The power series TPS is functionally inverted. Four
cases arise:

1. If the order of the series is 1, then the expansion point of the inverted
series is 0.

2. If the order is 0 and if the first order term in TPS is non-zero, then
the expansion point of the inverted series is taken to be the coefficient
of the zeroth order term in TPS.

3. If the order is -1 the expansion point of the inverted series is the point
at infinity. In all other cases a REDUCE error is reported because the
series cannot be inverted as a power series. Puiseux expansion would
be required to handle these cases.

4. If the expansion point of TPS is finite it becomes the zeroth order term
in the inverted series. For expansion about 0 or the point at infinity
the order of the inverted series is one.

If TPS is not a power series object after evaluation an error results.

1 INTRODUCTION 7

Here are some examples:

ps(sin x,x,0);

psreverse(ws); % produces series for asin x about x=0.
ps(exp x,x,0);

psreverse ws; /% produces series for log x about x=1.
ps(sin(1/x),x,infinity);

psreverse(ws); % series for 1/asin(x) about x=0.

1.12 PSCOMPOSE Operator

Syntax:
PSCOMPOSE(TPS1:power series, TPS2:power series):power series

PSCOMPOSE performs power series composition. The power series TPS1 and
TPS2 are functionally composed. That is to say that TPS2 is substituted for
the expansion variable in TPS1 and the result expressed as a power series.
The dependent variable and expansion point of the result coincide with those
of TPS2. The following conditions apply to power series composition:

1. If the expansion point of TPS1 is 0 then the order of the TPS2 must
be at least 1.

2. If the expansion point of TPS1 is finite, it should coincide with the
coefficient of the zeroth order term in TPS2. The order of TPS2 should
also be non-negative in this case.

3. If the expansion point of TPS1 is the point at infinity then the order
of TPS2 must be less than or equal to -1.

If these conditions do not hold the series cannot be composed (with the
current algorithm terms of the inverted series would involve infinite sums)
and a REDUCE error occurs.

Examples of power series composition include the following.

a:=ps(exp y,y,0); b:=ps(sin x,x,0);

pscompose (a,b) ;

% Produces the power series expansion of exp(sin x)
% about x=0.

a:=ps(exp z,z,1); b:=ps(cos x,x,0);

1 INTRODUCTION 8

pscompose(a,b) ;
% Produces the power series expansion of exp(cos x)
% about x=0.

a:=ps(cos(1/x),x,infinity); b:=ps(1/sin x,x,0);
pscompose (a,b) ;

% Produces the power series expansion of cos(sin x)
% about x=0.

1.13 PSSUM Operator

Syntax:

PSSUM(J:kernel = LOWLIM:integer, COEFF:algebraic, X:kernel,
ABOUT:algebraic, POWER:algebraic):power series

The formal power series sum for J from LOWLIM to INFINITY of
COEFF* (X-ABOUT) **xPOWER

or if ABOUT is given as INFINITY
COEFF* (1/X) **POWER

is constructed and returned. This enables power series whose general term
is known to be constructed and manipulated using the other procedures of
the power series package.

J and X should be distinct simple kernels. The algebraics ABOUT, COEFF
and POWER should not depend on the expansion variable X, similarly the
algebraic ABOUT should not depend on the summation variable J. The
algebraic POWER should be a strictly increasing integer valued function of
J for J in the range LOWLIM to INFINITY.

pssum(n=0,1,x,0,n*n) ;
% Produces the power series summation for n=0 to
% infinity of x**(n*n).

pssum(m=1, (-1)**(m-1)/(2m-1) ,y,1,2m-1);
% Produces the power series expansion of atan(y-1)
% about y=1.

1 INTRODUCTION 9

pssum(j=1,-1/j,x,infinity, j);
% Produces the power series expansion of log(1l-1/x)
% about the point at infinity.

pssum(n=0,1,x,0,2n**2+3n) + pssum(n=1,1,x%,0,2n**2-3n);
% Produces the power series summation for n=-infinity
% to +infinity of x*x(2n**2+3n).

1.14 PSCOPY Operator

Syntax:
PSCOPY(TPS:power series):power series

This procedure returns a copy of the power series TPS. The copy has no
shared sub-structures in common with the original series. This enables sub-
stitutions to be performed on the series without side-effects on previously
computed objects. For example:

clear a;
b := ps(sin(a*x)), x, 0);
b where a => 1;

will result in a being set to 1 in each of the terms of the power series and
the resulting expressions being simplified. Owing to the way power series
objects are implemented using Lisp vectors, this has the side-effect that
the value of b is changed. This may be avoided by copying the series with
PSCOPY before applying the substitution, thus:

b := ps(sin(a*x)), x, 0);
pscopy b where a => 1;

1.15 PSTRUNCATE Operator

Syntax:
PSTRUNCATE(TPS:power series POWER: integer) :algebraic

This procedure truncates the power series TPS discarding terms of order
higher than POWER. The series is extended automtically if the value of POWER
is greater than the order of last term calculated to date.

2 RESTRICTIONS AND KNOWN BUGS 10

b := ps(sin x, x, 0);
a := pstruncate(b, 11);

will result in a being set to the eleventh order polynomial resulting in trun-

cating the series for sinz after the term involving 2.

If POWER is less than the order of the series then 0 is returned. If POWER does
not simplify to an integer or if TPS is not a power series object then Reduce
errors result.

1.16 Arithmetic Operations

As power series objects are domain elements they may be combined together
in algebraic expressions in algebraic mode of REDUCE in the normal way.

For example if A and B are power series objects then the commands such
as:

axb;
a/b;
a*x2+b*x*2;

will produce power series objects representing the product,quotient and the
sum of the squares of the power series objects A and B respectively.

1.17 Differentiation

If A is a power series object depending on X then the input df (a, x); will
produce the power series expansion of the derivative of A with respect to X.

Note however that currently the input int(a, x); will not work as intended;
instead one must input ps(int(a, x),x,0); in order to obtain the power
series expansion of the integral of a.

2 Restrictions and Known Bugs

If A is a power series object and X is a variable which evaluates to itself then
currently expressions such as a*x do not evaluate to a single power series
object (although the result is formally valid). Instead use ps(a*x,x,0) etc..

2 RESTRICTIONS AND KNOWN BUGS 11

Similarly expressions such as sin(A) where A is a PS object currently will
not be expanded. For example:

a:=ps(1/(1+x) ,x,0);
b:=sin a;

will not expand sin(1/(1+x)) as a power series. In fact
SIN(1 - X + X*xx2 — X**3 +)
will be returned. However,
b:=ps(sin(a),x,0);
or
b:=ps(sin(1/(1+x)),x,0);
should work as intended.

The handling of functions with essential singularities is currently erratic:
usually an error message

**x*xx*x Egssential Singularity
or
**xkxk Logarithmic Singularity

occurs but occasionally a division by zero error or some drastic error like
(for PSL) binding stack overflow may occur.

There is no simple way to write the results of power series calculation to a
file and read them back into REDUCE at a later stage.

