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Abstract

This document provides the user with a description of the algebraic programming
system REDUCE. The capabilities of this system include:

1. expansion and ordering of polynomials and rational functions,

2. substitutions and pattern matching in a wide variety of forms,

3. automatic and user controlled simplification of expressions,

4. calculations with symbolic matrices,

5. arbitrary precision integer and real arithmetic,

6. facilities for defining new functions and extending program syntax,

7. analytic differentiation and integration,

8. factorization of polynomials,

9. facilities for the solution of a variety of algebraic equations,

10. facilities for the output of expressions in a variety of formats,

11. facilities for generating numerical programs from symbolic input,

12. expansion of expressions into power series,

13. graphical display of functions and data,

14. Dirac matrix calculations of interest to high energy physicists.
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Chapter 1

Introductory Information

REDUCE is a system for carrying out algebraic operations accurately, no matter
how complicated the expressions become. It can manipulate polynomials in a va-
riety of forms, both expanding and factoring them, and extract various parts of
them as required. REDUCE can also do differentiation and integration, but we
shall only show trivial examples of this in this introduction. Other topics not con-
sidered include the use of arrays, the definition of procedures and operators, the
specific routines for high energy physics calculations, the use of files to eliminate
repetitious typing and for saving results, and the editing of the input text.

Also not considered in any detail in this introduction are the many options that
are available for varying computational procedures, output forms, number systems
used, and so on.

REDUCE is designed to be an interactive system, so that the user can input an al-
gebraic expression and see its value before moving on to the next calculation. For
those systems that do not support interactive use, or for those calculations, espe-
cially long ones, for which a standard script can be defined, REDUCE can also be
used in batch mode. In this case, a sequence of commands can be given to RE-
DUCE and results obtained without any user interaction during the computation.

In this introduction, we shall limit ourselves to the interactive use of REDUCE,
since this illustrates most completely the capabilities of the system. When RE-
DUCE is called, it begins by printing a banner message like:

Reduce (Free CSL version), 25-Oct-14 ...

where the version number and the system release date will change from time to
time. It proceeds to execute the commands in user’s startup (reducerc) file, if
such a file is present, then prompts the user for input by:

1:

33



34 CHAPTER 1. INTRODUCTORY INFORMATION

You can now type a REDUCE statement, terminated by a semicolon to indicate the
end of the expression, for example:

(x+y+z)^2;

This expression would normally be followed by another character (a Return on
an ASCII keyboard) to “wake up” the system, which would then input the expres-
sion, evaluate it, and return the result:

2 2 2
x + 2*x*y + 2*x*z + y + 2*y*z + z

Let us review this simple example to learn a little more about the way that RE-
DUCE works. First, we note that REDUCE deals with variables, and constants
like other computer languages, but that in evaluating the former, a variable can
stand for itself. Expression evaluation normally follows the rules of high school
algebra, so the only surprise in the above example might be that the expression was
expanded. REDUCE normally expands expressions where possible, collecting like
terms and ordering the variables in a specific manner. However, expansion, order-
ing of variables, format of output and so on is under control of the user, and various
declarations are available to manipulate these.

Another characteristic of the above example is the use of lower case on input and
upper case on output. In fact, input may be in either mode, but output is usually in
lower case. To make the difference between input and output more distinct in this
manual, all expressions intended for input will be shown in lower case and output
in upper case. However, for stylistic reasons, we represent all single identifiers in
the text in upper case.

Finally, the numerical prompt can be used to reference the result in a later compu-
tation.

As a further illustration of the system features, the user should try:

for i:= 1:40 product i;

The result in this case is the value of 40!,

815915283247897734345611269596115894272000000000

You can also get the same result by saying

factorial 40;

Since we want exact results in algebraic calculations, it is essential that integer
arithmetic be performed to arbitrary precision, as in the above example. Further-
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more, the FOR statement in the above is illustrative of a whole range of combining
forms that REDUCE supports for the convenience of the user.

Among the many options in REDUCE is the use of other number systems, such as
multiple precision floating point with any specified number of digits — of use if
roundoff in, say, the 100th digit is all that can be tolerated.

In many cases, it is necessary to use the results of one calculation in succeeding
calculations. One way to do this is via an assignment for a variable, such as

u := (x+y+z)^2;

If we now use u in later calculations, the value of the right-hand side of the above
will be used.

The results of a given calculation are also saved in the variable ws (for WorkSpace),
so this can be used in the next calculation for further processing.

For example, the expression

df(ws,x);

following the previous evaluation will calculate the derivative of (x+y+z)^2with
respect to x. Alternatively,

int(ws,y);

would calculate the integral of the same expression with respect to y.

REDUCE is also capable of handling symbolic matrices. For example,

matrix m(2,2);

declares m to be a two by two matrix, and

m := mat((a,b),(c,d));

gives its elements values. Expressions that include m and make algebraic sense
may now be evaluated, such as 1/m to give the inverse, 2*m - u*m^2 to give us
another matrix and det(m) to give us the determinant of m.

REDUCE has a wide range of substitution capabilities. The system knows about
elementary functions, but does not automatically invoke many of their well-known
properties. For example, products of trigonometrical functions are not converted
automatically into multiple angle expressions, but if the user wants this, he can say,
for example:

(sin(a+b)+cos(a+b))*(sin(a-b)-cos(a-b))
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where cos(~x)*cos(~y) = (cos(x+y)+cos(x-y))/2,
cos(~x)*sin(~y) = (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) = (cos(x-y)-cos(x+y))/2;

where the tilde in front of the variables x and y indicates that the rules apply for
all values of those variables. The result of this calculation is

-(cos(2*a) + sin(2*b))

See also the sections on ASSIST (chapter 20.2), CAMAL (chapter 20.8) and
TRIGSIMP (section 8.7).

Another very commonly used capability of the system, and an illustration of one of
the many output modes of REDUCE, is the ability to output results in a FORTRAN
compatible form. Such results can then be used in a FORTRAN based numerical
calculation. This is particularly useful as a way of generating algebraic formulas
to be used as the basis of extensive numerical calculations.

For example, the statements

on fort;
df(log(x)*(sin(x)+cos(x))/sqrt(x),x,2);

will result in the output

ANS=(-4.*LOG(X)*COS(X)*X**2-4.*LOG(X)*COS(X)*X+3.*
. LOG(X)*COS(X)-4.*LOG(X)*SIN(X)*X**2+4.*LOG(X)*
. SIN(X)*X+3.*LOG(X)*SIN(X)+8.*COS(X)*X-8.*COS(X)-8.
. *SIN(X)*X-8.*SIN(X))/(4.*SQRT(X)*X**2)

These algebraic manipulations illustrate the algebraic mode of REDUCE. RE-
DUCE is based on Standard Lisp. A symbolic mode is also available for executing
Lisp statements. These statements follow the syntax of Lisp, e.g.

symbolic car ’(a);

Communication between the two modes is possible.

With this simple introduction, you are now in a position to study the material in the
full REDUCE manual in order to learn just how extensive the range of facilities
really is. If further tutorial material is desired, the seven REDUCE Interactive
Lessons by David R. Stoutemyer are recommended. These are normally distributed
with the system.



Chapter 2

Structure of Programs

A REDUCE program consists of a set of functional commands which are evaluated
sequentially by the computer. These commands are built up from declarations,
statements and expressions. Such entities are composed of sequences of numbers,
variables, operators, strings, reserved words and delimiters (such as commas and
parentheses), which in turn are sequences of basic characters.

2.1 The REDUCE Standard Character Set

The basic characters which are used to build REDUCE symbols are the following:

1. The 26 letters a through z

2. The 10 decimal digits 0 through 9

3. The special characters _ ! " $ % ’ ( ) * + , - . / : ; <
> = { } 〈blank〉

With the exception of strings and characters preceded by an exclamation mark, the
case of characters is ignored: depending of the underlying LISP they will all be
converted internally into lower case or upper case: ALPHA, Alpha and alpha
represent the same symbol. Most implementations allow you to switch this con-
version off. The operating instructions for a particular implementation should be
consulted on this point. For portability, we shall limit ourselves to the standard
character set in this exposition.

37
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2.2 Numbers

There are several different types of numbers available in REDUCE. Integers consist
of a signed or unsigned sequence of decimal digits written without a decimal point,
for example:

-2, 5396, +32

In principle, there is no practical limit on the number of digits permitted as exact
arithmetic is used in most implementations. (You should however check the spe-
cific instructions for your particular system implementation to make sure that this
is true.) For example, if you ask for the value of 22000 you get it displayed as a
number of 603 decimal digits, taking up several lines of output on an interactive
display. It should be borne in mind of course that computations with such long
numbers can be quite slow.

Numbers that aren’t integers are usually represented as the quotient of two integers,
in lowest terms: that is, as rational numbers.

In essentially all versions of REDUCE it is also possible (but not always desirable!)
to ask REDUCE to work with floating point approximations to numbers again, to
any precision. Such numbers are called real. They can be input in two ways:

1. as a signed or unsigned sequence of any number of decimal digits with an
embedded or trailing decimal point;

2. as in 1. followed by a decimal exponent which is written as the letter e
followed by a signed or unsigned integer.

E.g. 32., +32.0, 0.32e2 and 320.e-1 are all representations of 32.

The declaration scientific_notation controls the output format of float-
ing point numbers. At the default settings, any number with five or less dig-
its before the decimal point is printed in a fixed-point notation, e.g., 12345.6.
Numbers with more than five digits are printed in scientific notation, e.g.,
1.234567e+5. Similarly, by default, any number with eleven or more zeros
after the decimal point is printed in scientific notation. To change these defaults,
scientific_notation can be used in one of two ways.

SCIENTIFIC_NOTATION m,

with m a positive integer, sets the printing format so that a number with more than
m digits before the decimal point, or m or more zeros after the decimal point, is
printed in scientific notation.

SCIENTIFIC_NOTATION{m,n},

with m and n both positive integers, sets the format so that a number with more
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than m digits before the decimal point, or n or more zeros after the decimal point
is printed in scientific notation.

CAUTION: The unsigned part of any number may not begin with a decimal point,
as this causes confusion with the CONS (.) operator, i.e., NOT ALLOWED ARE:
.5, -.23, +.12; use 0.5, -0.23, +0.12 instead.

2.3 Identifiers

Identifiers in REDUCE consist of one or more alphanumeric characters (i.e. alpha-
betic letters or decimal digits) the first of which must be alphabetic. The maximum
number of characters allowed is implementation dependent, although twenty-four
is permitted in most implementations. In addition, the underscore character (_) is
considered a letter if it is within an identifier. For example,

a az p1 q23p a_very_long_variable

are all identifiers, whereas

_a

is not.

A sequence of alphanumeric characters in which the first is a digit is interpreted as
a product. For example, 2ab3c is interpreted as 2× ab3c. There is one exception
to this: If the first letter after a digit is e, the system will try to interpret that part of
the sequence as a real number, which may fail in some cases. For example, 2e12
is the real number 2.0× 1012 and 2e3c is 2000.0× c. If the e is not followed by
a number, 0 is assumed as the decimal exponent, thus 2e is interpreted as 2 and
2ebc as 2× bc.

Special characters, such as -, *, and blank, may be used in identifiers too, even as
the first character, but each must be preceded by an exclamation mark in input. For
example:

light!-years d!*!*n good! morning
!$sign !5goldrings

CAUTION: Many system identifiers have such special characters in their names
(especially * and =). If the user accidentally picks the name of one of them for his
own purposes it may have catastrophic consequences for his REDUCE run. Users
are therefore advised to avoid such names.

Identifiers are used as variables, labels and to name arrays, operators and proce-
dures.
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In graphical environments with typeset mathematics enabled, the (shared) vari-
able fancy_lower_digits can be set to one of the values t, nil or all to
control the display of digits within identifiers. The default value is t. Digits in
an identifier are typeset as subscripts if fancy_lower_digits = all or if
fancy_lower_digits = t and the digits are all at the end of the identifier.
For example, with the following values assigned to fancy_lower_digits, the
identifiers ab12cd34 and abcd34 are displayed as follows:

fancy_lower_digits ab12cd34 abcd34
t ab12cd34 abcd34

all ab12cd34 abcd34
nil ab12cd34 abcd34

Restrictions

The reserved words listed in Appendix A may not be used as identifiers. No spaces
may appear within an identifier, and an identifier may not extend over a line of text.

2.4 Variables

Every variable is named by an identifier, and is given a specific type. The type is
of no concern to the ordinary user. Most variables are allowed to have the default
type, called scalar. These can receive, as values, the representation of any ordinary
algebraic expression. In the absence of such a value, they stand for themselves.

Reserved Variables

Several variables in REDUCE have particular properties which should not be
changed by the user. These variables include:

Catalan Catalan’s constant, defined as
∞∑
n=0

(−1)n

(2n+ 1)2
.

e Intended to represent the base of the natural logarithms. log(e),
if it occurs in an expression, is automatically replaced by 1. If
rounded is on, e is replaced by the value of e to the current degree
of floating point precision.

Euler_Gamma Euler’s constant, also available as −ψ(1).
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Golden_Ratio The number 1+
√
5

2 .

i Intended to represent the square root of −1. i^2 is replaced by
−1, and appropriately for higher powers of i. This applies only to
the symbol i used on the top level, not as a formal parameter in a
procedure, a local variable, nor in the context for i:= ....

infinity Intended to represent ∞ in limit and power series calculations for
example, as well as in definite integration. Note however that the
current system does not do proper arithmetic on ∞. For example,
infinity + infinity is 2*infinity.

Khinchin Khinchin’s constant, defined as

∞∏
n=1

(
1 +

1

n(n+ 2)

)log2 n

.

negative Used in the ROOTS package.

nil In REDUCE (algebraic mode only) taken as a synonym for zero.
Therefore nil cannot be used as a variable.

pi Intended to represent the circular constant. With rounded on, it
is replaced by the value of π to the current degree of floating point
precision.

positive Used in the ROOTS package.

t Must not be used as a formal parameter or local variable in proce-
dures, since conflict arises with the symbolic mode meaning of t as
true.

Other reserved variables, such as low_pow, described in other sections, are listed
in Appendix A. Using these reserved variables inappropriately will lead to errors.

There are also internal variables used by REDUCE that have similar restrictions.
These usually have an asterisk in their names, so it is unlikely a casual user would
use one. An example of such a variable is k!* used in the asymptotic command
package.

Certain words are reserved in REDUCE. They may only be used in the manner
intended. A list of these is given in Appendix A. There are, of course, an impossibly
large number of such names to keep in mind. The reader may therefore want to
make himself a copy of the list, deleting the names he doesn’t think he is likely to
use by mistake.
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2.5 Strings

Strings are used in write statements, in other output statements (such as error
messages), and to name files. A string consists of any number of characters en-
closed in double quotes. For example:

"A String"

Lower case characters within a string are not converted to upper case.

The string "" represents the empty string. A double quote may be included in a
string by preceding it by another double quote. Thus "a""b" is the string a"b,
and """" is the string consisting of the single character ".

2.6 Comments

Text can be included in program listings for the convenience of human readers, in
such a way that REDUCE pays no attention to it. There are three ways to do this:

1. Everything from the word comment to the next statement terminator, nor-
mally ; or $, is ignored. Such comments can be placed anywhere a blank
could properly appear. (Note that end and >> are not treated as comment
delimiters!)

2. Everything from the symbol % to the end of the line on which it appears is
ignored. Such comments can be placed as the last part of any line. Statement
terminators have no special meaning in such comments. Remember to put
a semicolon before the % if the earlier part of the line is intended to be so
terminated. Remember also to begin each line of a multi-line % comment
with a % sign.

3. C-style inline comments: everything from /* to */ is ignored.

2.7 Operators

Operators in REDUCE are specified by name and type. There are two types, in-
fix and prefix. Operators can be purely abstract, just symbols with no properties;
they can have values assigned (using := or simple let declarations) for specific
arguments; they can have properties declared for some collection of arguments
(using more general let declarations); or they can be fully defined (usually by a
procedure declaration).
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Infix operators have a definite precedence with respect to one another, and normally
occur between their arguments. For example:

a + b - c (spaces optional)
x<y and y=z (spaces required where shown)

Spaces can be freely inserted between operators and variables or operators and
operators. They are required only where operator names are spelled out with let-
ters (such as the and in the example) and must be unambiguously separated from
another such or from a variable (like y). Wherever one space can be used, so can
any larger number.

Prefix operators occur to the left of their arguments, which are written as a list
enclosed in parentheses and separated by commas, as with normal mathematical
functions, e.g.,

cos(u)
df(x^2,x)
q(v+w)

Unmatched parentheses, incorrect groupings of infix operators and the like, natu-
rally lead to syntax errors. The parentheses can be omitted (replaced by a space
following the operator name) if the operator is unary and the argument is a single
symbol or begins with a prefix operator name:

cos y means cos(y)
cos (-y) – parentheses necessary
log cos y means log(cos(y))
log cos (a+b) means log(cos(a+b))

but

cos a*b means (cos a)*b
cos -y is erroneous (treated as a variable

“cos” minus the variable y)

A unary prefix operator has a precedence higher than any infix operator, including
unary infix operators. In other words, REDUCE will always interpret cos y +
3 as (cos y) + 3 rather than as cos(y + 3).

Infix operators may also be used in a prefix format on input, e.g., +(a,b,c). On
output, however, such expressions will always be printed in infix form (i.e., a +
b + c for this example).

A number of prefix operators are built into the system with predefined properties.
Users may also add new operators and define their rules for simplification. The
built in operators are described in another section.
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Built-In Infix Operators

The following infix operators are built into the system. They are all defined inter-
nally as procedures.

〈infix operator〉 −→ where | := | or | and | member | memq |
= | neq | eq | >= | > | <= | < |
+ | - | * | / | ^ | ** | .

These operators may be further divided into the following subclasses:

〈assignment operator〉 −→ :=
〈logical operator〉 −→ or | and | member | memq
〈relational operator〉 −→ = | neq | eq | >= | > | <= | <
〈substitution operator〉 −→ where
〈arithmetic operator〉 −→ + | - | * | / | ^ | **
〈construction operator〉 −→ .

memq and eq are not used in the algebraic mode of REDUCE. They are explained
in the section on symbolic mode. where is described in the section on substitu-
tions.

In previous versions of REDUCE, not was also defined as an infix operator. In
the present version it is a regular prefix operator, and interchangeable with null.

For compatibility with the intermediate language used by REDUCE, each special
character infix operator has an alternative alphanumeric identifier associated with
it. These identifiers may be used interchangeably with the corresponding special
character names on input. This correspondence is as follows:

:= setq (the assignment operator)
= equal
>= geq
> greaterp
<= leq
< lessp
+ plus
- difference (if unary, minus)
* times
/ quotient (if unary, recip)
^ or ** expt (raising to a power)
. cons

Note: neq is used to mean not equal. There is no special symbol provided for it.
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The above operators are binary, except not which is unary and + and * which are
nary (i.e., taking an arbitrary number of arguments). In addition, - and / may be
used as unary operators, e.g., /2 means the same as 1/2. Any other operator is
parsed as a binary operator using a left association rule. Thus a/b/c is interpreted
as (a/b)/c. There are two exceptions to this rule: := and . are right associa-
tive. Example: a:=b:=c is interpreted as a:=(b:=c). Unlike ALGOL and
PASCAL, ^ is left associative. In other words, a^b^c is interpreted as (a^b)^c.

The operators <, <=, >, >= can only be used for making comparisons between
numbers. No meaning is currently assigned to this kind of comparison between
general expressions.

Parentheses may be used to specify the order of combination. If parentheses are
omitted then this order is by the ordering of the precedence list defined by the
right-hand side of the 〈infix operator〉 table at the beginning of this section, from
lowest to highest. In other words, where has the lowest precedence, and . (the
dot operator) the highest.
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Chapter 3

Expressions

REDUCE expressions may be of several types and consist of sequences of num-
bers, variables, operators, left and right parentheses and commas. The most com-
mon types are as follows:

3.1 Scalar Expressions

Using the arithmetic operations + - * / ^ (power) and parentheses, scalar ex-
pressions are composed from numbers, ordinary “scalar” variables (identifiers), ar-
ray names with subscripts, operator or procedure names with arguments and state-
ment expressions.

Examples:

x
x^3 - 2*y/(2*z^2 - df(x,z))
(p^2 + m^2)^(1/2)*log (y/m)
a(5) + b(i,q)

The symbol ** may be used as an alternative to the caret symbol (^) for forming
powers, particularly in those systems that do not support a caret symbol. For details
of operator precedence and associativity, see section 2.7.

Statement expressions, usually in parentheses, can also form part of a scalar ex-
pression, as in the example

w + (c:=x+y) + z

When the algebraic value of an expression is needed, REDUCE determines it, start-
ing with the algebraic values of the parts, roughly as follows:

47
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Variables and operator symbols with an argument list have the algebraic values
they were last assigned, or if never assigned stand for themselves. However, array
elements have the algebraic values they were last assigned, or, if never assigned,
are taken to be 0.

Procedures are evaluated with the values of their actual parameters.

In evaluating expressions, the standard rules of algebra are applied. Unfortunately,
this algebraic evaluation of an expression is not as unambiguous as is numerical
evaluation. This process is generally referred to as “simplification” in the sense that
the evaluation usually but not always produces a simplified form for the expression.

There are many options available to the user for carrying out such simplification.
If the user doesn’t specify any method, the default method is used. The default
evaluation of an expression involves expansion of the expression and collection
of like terms, ordering of the terms, evaluation of derivatives and other functions
and substitution for any expressions which have values assigned or declared (see
assignments and let statements). In many cases, this is all that the user needs.

The declarations by which the user can exercise some control over the way in which
the evaluation is performed are explained in other sections. For example, if a real
(floating point) number is encountered during evaluation, the system will normally
convert it into a ratio of two integers. If the user wants to use real arithmetic,
he can effect this by the command on rounded;. Other modes for coefficient
arithmetic are described elsewhere.

If an illegal action occurs during evaluation (such as division by zero) or functions
are called with the wrong number of arguments, and so on, an appropriate error
message is generated.

3.2 Integer Expressions

These are expressions which, because of the values of the constants and variables
in them, evaluate to whole numbers.

Examples:

2, 37 * 999, (x + 3)^2 - x^2 - 6*x

are obviously integer expressions.

j + k - 2 * j^2

is an integer expression when j and k have values that are integers, or if not integers
are such that “the variables and fractions cancel out”, as in
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k - 7/3 - j + 2/3 + 2*j^2.

3.3 Boolean Expressions

A boolean expression returns a truth value. In the algebraic mode of REDUCE,
boolean expressions have the syntactical form:

〈expression〉 〈relational operator〉 〈expression〉

or

〈boolean operator〉(〈arguments〉)

or

〈boolean expression〉 〈logical operator〉 〈boolean expression〉.

Parentheses can also be used to control the precedence of expressions.

In addition to the logical and relational operators defined earlier as infix operators,
the following boolean operators are also defined:

evenp(u) determines if the number u is even or not;

fixp(u) determines if the expression u is integer or not;

freeof(u,v) determines if the expression u does not contain the kernel
v anywhere in its structure;

numberp(u) determines if u is a number or not;

ordp(u,v) determines if u is ordered ahead of v by some canonical
ordering (based on the expression structure and an internal
ordering of identifiers);

primep(u) true if u is a prime object, i.e., any object other than 0 and
plus or minus 1 which is only exactly divisible by itself or
a unit.

Examples:

j<1
x>0 or x=-2
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numberp x
fixp x and evenp x
numberp x and x neq 0

Boolean expressions can only appear directly within if, for, while, and until
statements, as described in other sections. Such expressions cannot be used in place
of ordinary algebraic expressions, or assigned to a variable.

NB: For those familiar with symbolic mode, the meaning of some of these oper-
ators is different in that mode. For example, numberp is true only for integers and
reals in symbolic mode.

When two or more boolean expressions are combined with and, they are evaluated
one by one until a false expression is found. The rest are not evaluated. Thus

numberp x and numberp y and x>y

does not attempt to make the x>y comparison unless x and y are both verified to
be numbers.

Similarly, evaluation of a sequence of boolean expressions connected by or stops
as soon as a true expression is found.

NB: In a boolean expression, and in a place where a boolean expression is expected,
the algebraic value 0 is interpreted as false, while all other algebraic values are
converted to true. So in algebraic mode a procedure can be written for direct usage
in boolean expressions, returning say 1 or 0 as its value as in

procedure polynomialp(u,x);
if den(u)=1 and deg(u,x)>=1 then 1 else 0;

One can then use this in a boolean construct, such as

if polynomialp(q,z) and not polynomialp(q,y) then ...

In addition, any procedure that does not have a defined return value (for example,
a block without a return statement in it) has the boolean value false.

3.4 Equations

Equations are a particular type of expression with the syntax

〈expression〉 = 〈expression〉.

In addition to their role as boolean expressions, they can also be used as arguments



3.5. PROPER STATEMENTS AS EXPRESSIONS 51

to several operators (e.g., solve), and can be returned as values.

Under normal circumstances, the right-hand-side of the equation is evaluated but
not the left-hand-side. This also applies to any substitutions made by the sub
operator. If both sides are to be evaluated, the switch evallhseqp should be
turned on.

To facilitate the handling of equations, two selectors, lhs and rhs, which re-
turn the left- and right-hand sides of an equation respectively, are provided. For
example,

lhs(a+b=c) -> a+b
and

rhs(a+b=c) -> c.

3.5 Proper Statements as Expressions

Several kinds of proper statements deliver an algebraic or numerical result of some
kind, which can in turn be used as an expression or part of an expression. For
example, an assignment statement itself has a value, namely the value assigned. So

2 * (x := a+b)

is equal to 2*(a+b), as well as having the “side-effect” of assigning the value
a+b to x. In context,

y := 2 * (x := a+b);

sets x to a+b and y to 2*(a+b).

The sections on the various proper statement types indicate which of these state-
ments are also useful as expressions.
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Chapter 4

Lists

A list is an object consisting of a sequence of other objects (including lists them-
selves), separated by commas and surrounded by braces. Examples of lists are:

{a,b,c}

{1,a-b,c=d}

{{a},{{b,c},d},e}.

The empty list is represented as

{}.

4.1 Operations on Lists

Several operators in the system return their results as lists, and a user can create
new lists using braces and commas. Alternatively, one can use the operator list
to construct a list. An important class of operations on lists are map and select
operations. For details, please refer to the chapters on map, select and the for
command. See also the documentation on the ASSIST (chapter 20.2) package.

To facilitate the use of lists, a number of operators are also available for manip-
ulating them. part(〈list〉,n) for example will return the nth element of a
list. length will return the length of a list. Several operators are also defined
uniquely for lists. For those familiar with them, these operators in fact mirror the
operations defined for Lisp lists. These operators are as follows:
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4.1.1 list

The operator list is an alternative to the usage of curly brackets. list accepts
an arbitrary number of arguments and returns a list of its arguments. This operator
is useful in cases where operators have to be passed as arguments. E.g.,

list(a,list(list(b,c),d),e); -> {{a},{{b,c},d},e}

4.1.2 FIRST

This operator returns the first member of a list. An error occurs if the argument is
not a list, or the list is empty.

4.1.3 SECOND

second returns the second member of a list. An error occurs if the argument is
not a list or has no second element.

4.1.4 THIRD

This operator returns the third member of a list. An error occurs if the argument is
not a list or has no third element.

4.1.5 REST

rest returns its argument with the first element removed. An error occurs if the
argument is not a list, or is empty.

4.1.6 . (Cons) Operator

This operator adds (“conses”) an expression to the front of a list. For example:

a . {b,c} -> {a,b,c}.

4.1.7 APPEND

This operator appends its first argument to its second to form a new list. Examples:

append({a,b},{c,d}) -> {a,b,c,d}
append({{a,b}},{c,d}) -> {{a,b},c,d}.
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4.1.8 REVERSE

The operator reverse returns its argument with the elements in the reverse or-
der. It only applies to the top level list, not any lower level lists that may occur.
Examples are:

reverse({a,b,c}) -> {c,b,a}
reverse({{a,b,c},d}) -> {d,{a,b,c}}.

4.1.9 List Arguments of Other Operators

If an operator other than those specifically defined for lists is given a single argu-
ment that is a list, then the result of this operation will be a list in which that
operator is applied to each element of the list. For example, the result of evaluating
log{a,b,c} is the expression {log(a),log(b),log(c)}.

There are two ways to inhibit this operator distribution. Firstly, the switch
listargs, if on, will globally inhibit such distribution. Secondly, one can in-
hibit this distribution for a specific operator by the declaration listargp. For
example, with the declaration listargp log, log{a,b,c} would evaluate to
log({a,b,c}).

If an operator has more than one argument, no such distribution occurs.

4.1.10 Caveats and Examples

Some of the natural list operations such as member or delete are available only
after loading the package ASSIST (chapter 20.2).

Please note that a non-list as second argument to CONS (a "dotted pair" in LISP
terms) is not allowed and causes an "invalid as list" error.

a := 17 . 4;

***** 17 4 invalid as list

Also, the initialization of a scalar variable is not the empty list – one has to set list
type variables explicitly, as in the following example:

load_package assist;

procedure lotto (n,m);
begin scalar list_1_n, luckies, hit;

list_1_n := {};
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luckies := {};
for k:=1:n do list_1_n := k . list_1_n;
for k:=1:m do

<< hit := part(list_1_n,random(n-k+1) + 1);
list_1_n := delete(hit,list_1_n);
luckies := hit . luckies >>;

return luckies;
end;

% In Germany, try lotto (49,6);

Another example: Find all coefficients of a multivariate polynomial with respect to
a list of variables:

procedure allcoeffs(q,lis);
% q : polynomial, lis: list of vars
allcoeffs1 (list q,lis);

procedure allcoeffs1(q,lis);
if lis={} then q else

allcoeffs1(foreach qq in q join coeff(qq,first lis),
rest lis);
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Statements

A statement is any combination of reserved words and expressions, and has the
syntax

〈statement〉 −→ 〈expression〉 | 〈proper statement〉

A REDUCE program consists of a series of commands which are statements fol-
lowed by a terminator:

〈terminator〉 −→ ; | $

The division of the program into lines is arbitrary. Several statements can be on
one line, or one statement can be freely broken onto several lines. If the program
is run interactively, statements ending with ; or $ are not processed until an end-of-
line character is encountered. This character can vary from system to system, but
is normally the Return key on an ASCII terminal. Specific systems may also use
additional keys as statement terminators.

If a statement is a proper statement, the appropriate action takes place.

Depending on the nature of the proper statement some result or response may or
may not be printed out, and the response may or may not depend on the terminator
used.

If a statement is an expression, it is evaluated. If the terminator is a semicolon, the
result is printed. If the terminator is a dollar sign, the result is not printed. Because
it is not usually possible to know in advance how large an expression will be, no
explicit format statements are offered to the user. However, a variety of output
declarations are available so that the output can be produced in different forms.
These output declarations are explained in Section 8.3.3.

The following sub-sections describe the types of proper statements in REDUCE.
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5.1 Assignment Statements

These statements have the syntax

〈assignment statement〉 −→ 〈expression〉 := 〈expression〉

The 〈expression〉 on the left side is normally the name of a variable, an operator
symbol with its list of arguments filled in, or an array name with the proper number
of integer subscript values within the array bounds. For example:

a1 := b + c
h(l,m) := x-2*y (where h is an operator)
k(3,5) := x-2*y (where k is a 2-dim. array)

More general assignments such as a+b := c are also allowed. The effect of these
is explained in Section 11.2.5.

An assignment statement causes the expression on the right-hand-side to be evalu-
ated. If the left-hand-side is a variable, the value of the right-hand-side is assigned
to that unevaluated variable. If the left-hand-side is an operator or array expression,
the arguments of that operator or array are evaluated, but no other simplification
done. The evaluated right-hand-side is then assigned to the resulting expression.
For example, if a is a single-dimensional array, a(1+1) := b assigns the value
b to the array element a(2).

If a semicolon is used as the terminator when an assignment is issued as a command
(i.e. not as a part of a group statement or procedure or other similar construct), the
left-hand side symbol of the assignment statement is printed out, followed by a
“:=”, followed by the value of the expression on the right.

It is also possible to write a multiple assignment statement:

〈expression〉 := . . . := 〈expression〉 := 〈expression〉

In this form, each 〈expression〉 but the last is set to the value of the last 〈expression〉.
If a semicolon is used as a terminator, each expression except the last is printed
followed by a “:=” ending with the value of the last expression.

5.1.1 Set and Unset Statements

In some cases, it is desirable to perform an assignment in which both the left- and
right-hand sides of an assignment are evaluated. In this case, the set statement
can be used with the syntax:

set(〈expression〉, 〈expression〉);

For example, the statements
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j := 23;
set(mkid(a,j),x);

assigns the value x to a23. (See also mkid.)

To remove a value from such a variable, the unset statement can be used with the
syntax:

unset(〈expression〉);

For example, the statement

j := 23;
unset(mkid(a,j));

clears the value of a23.

The command unset also acts like an indirect version of clear for operator
values; for each operator value it clears the value assigned to the operator value,
rather than the operator value itself. For example

operator a, b;
a(1) := x; b(1) := 4;
a(2) := y; b(2) := 3;
set(a(1), b(1)); % performs x := 4
set(a(2), b(2)); % performs y := 3
x*y; % returns 12
unset a(1), a(2); % performs clear x, y
x*y; % returns x*y
{a(1),b(1),a(2),b(2)}; % returns {x,4,y,3}

Note that the unset command clears the values of x and y, but leaves a(1),
b(1), a(2), b(2) assigned.

5.2 Group Statements

The group statement is a construct used where REDUCE expects a single state-
ment, but a series of actions needs to be performed. It is formed by enclosing one
or more statements (of any kind) between the symbols << and >>, separated by
semicolons or dollar signs – it doesn’t matter which. The statements are executed
one after another.

Examples will be given in the sections on if and other types of statements in which
the << . . .>> construct is useful.
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If the last statement in the enclosed group has a value, then that is also the value
of the group statement. Care must be taken not to have a semicolon or dollar sign
after the last grouped statement, if the value of the group is relevant: such an extra
terminator causes the group to have the value NIL or zero.

5.3 Conditional Statements

The conditional statement has the following syntax:

〈conditional statement〉 −→ if 〈boolean expression〉
then 〈statement〉
[else 〈statement〉]

The boolean expression is evaluated. If this is true, the first 〈statement〉 is executed.
If it is false, the second is.

Examples:

if x=5 then a:=b+c else d:=e+f

if x=5 and numberp y
then <<ff:=q1; a:=b+c>>
else <<ff:=q2; d:=e+f>>

Note the use of the group statement.

Conditional statements associate to the right; i.e.,

IF <a> THEN <b> ELSE IF <c> THEN <d> ELSE <e>

is equivalent to:

IF <a> THEN <b> ELSE (IF <c> THEN <d> ELSE <e>)

In addition, the construction

IF <a> THEN IF <b> THEN <c> ELSE <d>

parses as

IF <a> THEN (IF <b> THEN <c> ELSE <d>).

If the value of the conditional statement is of primary interest, it is often called a
conditional expression instead. Its value is the value of whichever statement was
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executed. (If the executed statement has no value, the conditional expression has
no value or the value 0, depending on how it is used.)

Examples:

a:=if x<5 then 123 else 456;
b:=u + v^(if numberp z then 10*z else 1) + w;

If the value is of no concern, the else clause may be omitted if no action is
required in the false case.

if x=5 then a:=b+c;

Note: As explained in Section 3.3, if a scalar or numerical expression is used in
place of the boolean expression – for example, a variable is written there – the true
alternative is followed unless the expression has the value 0.

5.4 FOR Statements

The for statement is used to define a variety of program loops. Its general syntax
is as follows:

for


⟨var⟩ := ⟨number⟩

{
step ⟨number⟩ until

:

}
⟨number⟩

each ⟨var⟩
{
in
on

}
⟨list⟩

 ⟨action⟩ ⟨exprn⟩

where

〈action〉 −→ do | product | sum | collect | join.

The assignment form of the for statement defines an iteration over the indicated
numerical range. If expressions that do not evaluate to numbers are used in the
designated places, an error will result.

The for each form of the for statement is designed to iterate down a list.
Again, an error will occur if a list is not used.

The action do means that 〈exprn〉 is simply evaluated and no value kept; the state-
ment returning 0 in this case (or no value at the top level). collect means that
the results of evaluating 〈exprn〉 each time are linked together to make a list, and
join means that the values of 〈exprn〉 are themselves lists that are joined to make
one list (similar to conc in Lisp). Finally, product and sum form the respective
combined value out of the values of 〈exprn〉.

In all cases, 〈exprn〉 is evaluated algebraically within the scope of the current value
of 〈var〉. If 〈action〉 is do, then nothing else happens. In other cases, 〈action〉 is



62 CHAPTER 5. STATEMENTS

a binary operator that causes a result to be built up and returned by for. In those
cases, the loop is initialized to a default value (0 for sum 1 for product, and an
empty list for the other actions). The test for the end condition is made before any
action is taken. As in Pascal, if the variable is out of range in the assignment case,
or the 〈list〉 is empty in the for each case, 〈exprn〉 is not evaluated at all.

Examples:

1. If a, b have been declared to be arrays, the following stores 52 through 102

in a(5) through a(10), and at the same time stores the cubes in the b
array:

for i := 5 step 1 until 10 do
<<a(i):=i^2; b(i):=i^3>>

2. As a convenience, the common construction

step 1 until

may be abbreviated to a colon. Thus, instead of the above we could write:

for i := 5:10 do <<a(i):=i^2; b(i):=i^3>>

3. The following sets c to the sum of the squares of 1,3,5,7,9; and d to the
expression x*(x+1)*(x+2)*(x+3)*(x+4):

c := for j:=1 step 2 until 9 sum j^2;
d := for k:=0 step 1 until 4 product (x+k);

4. The following forms a list of the squares of the elements of the list
{a,b,c}:

for each x in {a,b,c} collect x^2;

5. The following forms a list of the listed squares of the elements of the list
{a,b,c} (i.e., {{a^2},{b^2},{c^2}}):

for each x in {a,b,c} collect {x^2};

6. The following also forms a list of the squares of the elements of the list
{a,b,c}, since the join operation joins the individual lists into one list:

for each x in {a,b,c} join {x^2};
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The control variable used in the for statement is actually a new variable, not
related to the variable of the same name outside the for statement. In other words,
executing a statement for i:= . . . doesn’t change the system’s assumption that
i2 = −1. Furthermore, in algebraic mode, the value of the control variable is
substituted in 〈exprn〉 only if it occurs explicitly in that expression. It will not
replace a variable of the same name in the value of that expression. For example:

b := a; for a := 1:2 do write b;

prints A twice, not 1 followed by 2.

5.5 WHILE . . . DO

The for . . . do feature allows easy coding of a repeated operation in which the
number of repetitions is known in advance. If the criterion for repetition is more
complicated, while . . . do can often be used. Its syntax is:

while 〈boolean expression〉 do 〈statement〉

The while . . . do controls the single statement following do. If several state-
ments are to be repeated, as is almost always the case, they must be grouped using
the << . . . >> or begin . . . end as in the example below.

The while condition is tested each time before the action following the do is
attempted. If the condition is false to begin with, the action is not performed at all.
Make sure that what is to be tested has an appropriate value initially.

Example:

Suppose we want to add up a series of terms, generated one by one, until we reach
a term which is less than 1/1000 in value. For our simple example, let us suppose
the first term equals 1 and each term is obtained from the one before by taking one
third of it and adding one third its square. We would write:

ex:=0; term:=1;
while num(term - 1/1000) >= 0 do

<<ex := ex+term; term:=(term + term^2)/3>>;
ex;

As long as term is greater than or equal to (>=) 1/1000 it will be added to ex and
the next term calculated. As soon as term becomes less than 1/1000 the while
test fails and the term will not be added.
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5.6 REPEAT . . . UNTIL

repeat . . . until is very similar in purpose to while . . . do. Its syntax is:

repeat 〈statement〉 until 〈boolean expression〉

(PASCAL users note: Only a single statement – usually a group statement – is
allowed between the repeat and the until.)

There are two essential differences:

1. The test is performed after the controlled statement (or group of statements)
is executed, so the controlled statement is always executed at least once.

2. The test is a test for when to stop rather than when to continue, so its “polar-
ity” is the opposite of that in while . . . do.

As an example, we rewrite the example from the while ...do section:

ex:=0; term:=1;
repeat <<ex := ex+term; term := (term + term^2)/3>>

until num(term - 1/1000) < 0;
ex;

In this case, the answer will be the same as before, because in neither case is a term
added to ex which is less than 1/1000.

5.7 Compound Statements

Often the desired process can best (or only) be described as a series of steps to be
carried out one after the other. In many cases, this can be achieved by use of the
group statement. However, each step often provides some intermediate result, until
at the end we have the final result wanted. Alternatively, iterations on the steps are
needed that are not possible with constructs such as while or repeat statements.
In such cases the steps of the process must be enclosed between the words begin
and end forming what is technically called a block or compound statement. Such a
compound statement can in fact be used wherever a group statement appears. The
converse is not true: begin ...end can be used in ways that << . . . >> cannot.

If intermediate results must be formed, local variables must be provided in which
to store them. Local means that their values are deleted as soon as the block’s
operations are complete, and there is no conflict with variables outside the block
that happen to have the same name. Local variables are created by a scalar
declaration immediately after the begin:
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scalar a,b,c,z;

If more convenient, several scalar declarations can be given one after another:

scalar a,b,c;
scalar z;

In place of scalar one can also use the declarations integer or real. In the
present version of REDUCE variables declared integer are expected to have
only integer values, and are initialized by default to 0. real variables on the other
hand are currently treated as algebraic mode scalars.

CAUTION: integer, real and scalar declarations can only be given imme-
diately after a begin. An error will result if they are used after other statements
in a block (including array and operator declarations, which are global in
scope), or outside the top-most block (e.g., at the top level). All variables declared
scalar are automatically initialized by default to zero in algebraic mode (nil in
symbolic mode).

Optionally, each variable appearing in a scalar, integer or real declaration
can be followed by an assignment operator and an initial value, which overrides
the default initial value. For example,

scalar x := 5;

has the same effect as

scalar x; x := 5;

Any symbols not declared as local variables in a block refer to the variables of
the same name in the current calling environment. In particular, if they are not so
declared at a higher level (e.g., in a surrounding block or as parameters in a calling
procedure), their values can be permanently changed.

Following the scalar declaration(s), if any, write the statements to be executed,
one after the other, separated by delimiters (e.g., ; or $) (it doesn’t matter which).
However, from a stylistic point of view, ; is preferred.

The last statement in the body, just before end, need not have a terminator (since
the begin . . . end are in a sense brackets confining the block statements). The
last statement must also be the command return followed by the variable or
expression whose value is to be the value returned by the procedure. If the return
is omitted (or nothing is written after the word return) the procedure will have
no value or the value zero, depending on how it is used (and nil in symbolic
mode). Remember to put a terminator after the end.

Examples:
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Given a previously assigned integer value for n, the following block will compute
the Legendre polynomial of degree n in the variable x:

begin scalar seed,deriv,top,fact;
seed:=1/(y^2 - 2*x*y +1)^(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

This block uses explicit initialization and computes the 10th Fibonacci number:

begin integer f1 := 1, f2 := 1, f3;
for i := 3 : 10 do

<< f3 := f1 + f2; f1 := f2; f2 := f3 >>;
return f3

end;

5.7.1 Compound Statements with GO TO

It is possible to have more complicated structures inside the begin . . . end brack-
ets than indicated in the previous example. That the individual lines of the program
need not be assignment statements, but could be almost any other kind of state-
ment or command, needs no explanation. For example, conditional statements,
and while and repeat constructions, have an obvious role in defining more
intricate blocks.

If these structured constructs don’t suffice, it is possible to use labels and go tos
within a compound statement, and also to use return in places within the block
other than just before the end. The following subsections discuss these matters in
detail. For many readers the following example, presenting one possible definition
of a process to calculate the factorial of n for preassigned n will suffice:

Example:

begin scalar m;
m:=1;

l: if n=0 then return m;
m:=m*n;
n:=n-1;
go to l

end;
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5.7.2 Labels and GO TO Statements

Within a begin . . . end compound statement it is possible to label statements,
and transfer to them out of sequence using go to statements. Only statements on
the top level inside compound statements can be labeled, not ones inside subsidiary
constructions like << . . . >>, if . . . then . . . , while . . . do . . . , etc.

Labels and go to statements have the syntax:

〈go to statement〉 −→ go to 〈label〉 | goto 〈label〉
〈label〉 −→ 〈identifier〉
〈labeled statement〉 −→ 〈label〉:〈statement〉

Note that statement names cannot be used as labels.

While go to is an unconditional transfer, it is frequently used in conditional state-
ments such as

if x>5 then go to abcd;

giving the effect of a conditional transfer.

Transfers using go tos can only occur within the block in which the go to is
used. In other words, you cannot transfer from an inner block to an outer block us-
ing a go to. However, if a group statement occurs within a compound statement,
it is possible to jump out of that group statement to a point within the compound
statement using a go to.

5.7.3 RETURN Statements

The value corresponding to a begin . . . end compound statement, such as a
procedure body, is normally 0 (nil in symbolic mode). By executing a return
statement in the compound statement a different value can be returned. After a
return statement is executed, no further statements within the compound state-
ment are executed.

Examples:

return x+y;
return m;
return;

Note that parentheses are not required around the x+y, although they are permitted.
The last example is equivalent to return 0 or return nil, depending on
whether the block is used as part of an expression or not.
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Since return actually moves up only one block level, in a sense the casual user
is not expected to understand, we tabulate some cautions concerning its use.

1. return can be used on the top level inside the compound statement, i.e. as
one of the statements bracketed together by the begin . . . end

2. return can be used within a top level << . . . >> construction within the
compound statement. In this case, the return transfers control out of both
the group statement and the compound statement.

3. return can be used within an if . . . then . . . else . . . on the top level
within the compound statement.

NOTE: At present, there is no construct provided to permit early termination of
a for, while, or repeat statement. In particular, the use of return in such
cases results in a syntax error. For example,

begin scalar y;
y := for i:=0:99 do if a(i)=x then return b(i);
...

will lead to an error.
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Commands and Declarations

A command is an order to the system to do something. Some commands cause
visible results (such as calling for input or output); others, usually called declara-
tions, set options, define properties of variables, or define procedures. Commands
are formally defined as a statement followed by a terminator

〈command〉 −→ 〈statement〉〈terminator〉
〈terminator〉 −→ ; | $

Some REDUCE commands and declarations are described in the following sub-
sections.

6.1 Array Declarations

Array declarations in REDUCE are similar to FORTRAN dimension statements.
For example:

array a(10),b(2,3,4);

Array indices each range from 0 to the value declared. An element of an array is
referred to in standard FORTRAN notation, e.g. a(2).

We can also use an expression for defining an array bound, provided the value of
the expression is a positive integer. For example, if x has the value 10 and y the
value 7 then array c(5*x+y) is the same as array c(57).

If an array is referenced by an index outside its range, an error occurs. If the array
is to be one-dimensional, and the bound a number or a variable (not a more general
expression) the parentheses may be omitted:

array a 10, c 57;
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The operator length applied to an array name returns a list of its dimensions.

All array elements are initialized to 0 at declaration time. In other words, an array
element has an instant evaluation property and cannot stand for itself. If this is
required, then an operator should be used instead.

Array declarations can appear anywhere in a program. Once a symbol is declared
to name an array, it can not also be used as a variable, or to name an operator or
a procedure. It can however be re-declared to be an array, and its size may be
changed at that time. An array name can also continue to be used as a parameter in
a procedure, or a local variable in a compound statement, although this use is not
recommended, since it can lead to user confusion over the type of the variable.

Arrays once declared are global in scope, and so can then be referenced anywhere
in the program. In other words, unlike arrays in most other languages, a declara-
tion within a block (or a procedure) does not limit the scope of the array to that
block, nor does the array go away on exiting the block (use clear instead for this
purpose).

6.2 Mode Handling Declarations

The on and off declarations are available to the user for controlling various sys-
tem options. Each option is represented by a switch name. on and off take a list
of switch names as argument and turn them on and off respectively, e.g.,

on time;

causes the system to print a message after each command giving the elapsed CPU
time since the last command, or since time was last turned off, or the session be-
gan. Another useful switch with interactive use is demo, which causes the system
to pause after each command in a file (with the exception of comments) until a
Return is typed on the terminal. This enables a user to set up a demonstration

file and step through it command by command.

As with most declarations, arguments to on and off may be strung together sep-
arated by commas. For example,

off time,demo;

will turn off both the time messages and the demonstration switch.

We note here that while most on and off commands are obeyed almost instan-
taneously, some trigger slower actions such as reading in necessary modules from
secondary storage.

A diagnostic message is printed if on or off are used with a switch that is not
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known to the system. For example, if you misspell demo and type

on demq;

you will get the message

***** demq not defined as switch.

6.3 END

The identifier end has two separate uses.

1) Its use in a begin . . . end bracket has been discussed in connection with
compound statements.

2) Files to be read using in should end with an extra end; command. The reason
for this is explained in the section on the in command. This use of end does not
allow an immediately preceding end (such as the end of a procedure definition),
so we advise using ;end; there.

6.4 BYE Command

The command bye; (or alternatively quit;) stops the execution of REDUCE,
closes all open output files, and returns you to the calling program (usually the
operating system). Your REDUCE session is normally destroyed.

6.5 Timing Facilities

The command showtime causes REDUCE to print the elapsed time since the last
call of this command or, on its first call, since the current REDUCE session began.

Turning on the switch time causes REDUCE to print a message after each com-
mand giving the elapsed CPU time since the last command, or since time was last
turned off, or the session began.

The time is normally given in milliseconds and gives the time as measured by a
system clock. The operations covered by this measure are system dependent.

The Lisp function time() returns CPU time since the session began in millisec-
onds as an integer. It could be used in algebraic mode to time a computation like
this:

% Make time() available in algebraic mode:
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symbolic operator time;

start_time := time();
% perform a computation...
time_taken := time() - start_time;

write "Time taken was ", time_taken, " ms.";

Beware that modern computers can perform many computations in less than a mil-
lisecond, so the time taken may be reported inaccurately as zero.

6.6 DEFINE Command

The command define allows a user to supply a new name for any identifier or
replace it by any well-formed expression. Its argument is a list of expressions of
the form

〈identifier〉 = 〈number〉 | 〈identifier〉 | 〈operator〉 |
〈reserved word〉 | 〈expression〉

Example:

define be==,x=y+z;

means that be will be interpreted as an equal sign, and x as the expression y+z
from then on. This renaming is done at parse time, and therefore takes precedence
over any other replacement declared for the same identifier. It stays in effect until
the end of the REDUCE run.

The identifiers algebraic and symbolic have properties which prevent
define from being used on them. To define alg to be a synonym for
algebraic, use the more complicated construction

put(’alg,’newnam,’algebraic);

6.7 RESETREDUCE Command

The command resetreduce works through the history of previous commands,
and clears any values which have been assigned, plus any rules, arrays and the like.
It also sets the various switches to their initial values. It is not complete, but does
work for most things that cause a gradual loss of space.
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Built-in Prefix Operators

In the following subsections are descriptions of the most useful prefix operators
built into REDUCE that are not defined in other sections (such as substitution
operators). Some are fully defined internally as procedures; others are more nearly
abstract operators, with only some of their properties known to the system.

In many cases, an operator is described by a prototypical header line as follows.
Each formal parameter is given a name and followed by its allowed type. The
names of classes referred to in the definition are printed in lower case, and param-
eter names in upper case. If a parameter type is not commonly used, it may be
a specific set enclosed in brackets { . . . }. Operators that accept formal param-
eter lists of arbitrary length have the parameter and type class enclosed in square
brackets indicating that zero or more occurrences of that argument are permitted.
Optional parameters and their type classes are enclosed in angle brackets.

7.1 Numerical Operators

REDUCE includes a number of functions that are analogs of those found in most
numerical systems. With numerical arguments, such functions return the expected
result. However, they may also be called with non-numerical arguments. In such
cases, except where noted, the system attempts to simplify the expression as far as
it can. In such cases, a residual expression involving the original operator usually
remains. These operators are as follows:

7.1.1 ABS

abs returns the absolute value of its single argument, if that argument has a nu-
merical value. A non-numerical argument is returned as an absolute value, with an
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overall numerical coefficient taken outside the absolute value operator. For exam-
ple:

abs(-3/4) -> 3/4
abs(2a) -> 2*abs(a)
abs(i) -> 1
abs(-x) -> abs(x)

7.1.2 CEILING

This operator returns the ceiling (i.e., the least integer greater than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

ceiling(-5/4) -> -1
ceiling(-a) -> ceiling( - a)

7.1.3 CONJ

This returns the complex conjugate of an expression, if that argument has a nu-
merical value. By default the complex conjugate of a non-numerical argument is
returned as an expression in the operators repart and impart. For example:

conj(1+i) -> - i + 1
conj(a+i*b) -> - impart(a)*i - impart(b)

+ repart(a) - repart(b)*i

If rules have been previously defined for the complex conjugate(s) of one or more
non-numerical terms appearing in the argument, these rules are applied and the
expansion in terms of the operators repart and impart is suppressed.

For example:

realvalued a,b;
conj(a+i*b) -> a - b*i
let conj z => z!*, conj c => c!*;
conj(a+b*z*z!*+z*c!*) -> a + b*z*z* + c*z*
conj atan z -> atan(z*)

Note that in defining the rule conj z => z!*, the rule conj z!* => z is (in
effect) automatically defined and should not be entered by the user. A more conve-
nient method of associating two identifiers as mutual complex-conjugates is to use
the complex_conjugates declaration as described in the section Declaring
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Complex Conjugates.

The main use of rules for conj is to associate two identifiers as complex conju-
gates as in the examples above. In addition rules of the form let conj(z)=>z,
conj(w)=>-w may be used. They imply that z is real-valued and w is purely
imaginary, although the effect of the first rule can also be obtained by declaring z
to be realvalued.

Rules of the form let conj z => «some-expression» may be used, but
are not recommended. More useful results will usually be obtained by defining
the equivalent rule let z => conj(«some-expression»). Rules of the
form let conj z => «some-expression» are particularly problematic if
«some-expression» involves z itself as they may be inconsistent, for exam-
ple let conj z => z+1. Even where they are consistent, better results may
usually achieved by defining alternative rules. For example, given:

realvalued a,b;
let conj z => 2*a-z, conj w => w-2*b*i;

so that the real part of z is a and the imaginary part of w is b, more useful results
will be obtained by defining the mathematically equivalent rules:

realvalued a,b,x,y;
let z => a +i*y, w => x + b*i;

Note also that the standard elementary functions and their inverses (where appro-
priate) are automatically defined to be selfconjugate so that conj(f(z))
is simplified to f(conj(z)). User-defined operators may be declared to be self-
conjugate with the declaration selfconjugate.

7.1.4 Conversion between degree and radians

These operators convert an angle in degrees to radians and vice-versa. rad2deg
converts the radian value to an angle in degrees expressed as a single floating point
value (according to the currently specified system precision). The value to be con-
verted may be an integer, a rational or a floating value or indeed any expression
that simplifies to a rounded value. In particular numerical constants such as π may
be used in the input expression. deg2rad performs the inverse conversion.

rad2dms converts the radian value to an angle expressed in degrees, minutes and
seconds returned as a three element list. The degree and minute values are integers
the latter in the range 0 . . . 59 inclusive and the seconds value is a floating point
value in the half-open interval [0, 60.0). Similarly, deg2dms converts an angle
given in degrees into a such a three element list.
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The purpose of the operators dms2rad and dms2deg should also be obvious.
The degree, minute and second value to be converted is passed to the conversion
function as a three element list. There is considerable flexibility allowed in format
of the list supplied as parameter – all three values may be integers, rational numbers
or rounded values or any combination of these; the minute and second values need
not lie between zero and sixty. The list supplied is simplified with the appropriate
carrys and borrows performed (in effect at least) between the three values. For
example

{60.5, 9.2, 11.234} => {60, 39, 23.234}
{45, 0, -1} => {44, 59, 59}

7.1.5 FACTORIAL

If the single argument of factorial evaluates to a non-negative integer, its fac-
torial is returned. Otherwise an expression involving factorial is returned. For
example:

factorial(5) -> 120
factorial(a) -> factorial(a)

7.1.6 FIX

This operator returns the fixed value (i.e., the integer part of the given argument) if
its single argument has a numerical value. A non-numerical argument is returned
as an expression in the original operator. For example:

fix(-5/4) -> -1
fix(a) -> fix(a)

7.1.7 FLOOR

This operator returns the floor (i.e., the greatest integer less than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

floor(-5/4) -> -2
floor(a) -> floor(a)
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7.1.8 IMPART

This operator returns the imaginary part of an expression, if that argument has an
numerical value. A non-numerical argument is returned as an expression in the
operators repart and impart. For example:

impart(1+i) -> 1
impart(sin(3+4*i)) -> cos(3)*sinh(4)
impart(log(2+i)) -> atan(1/2)
impart(asin(1+i)) -> acosh(sqrt(5)+2)/2
impart(a+i*b) -> impart(a) + repart(b)

For the inverse trigometric and hyperbolic functions with non-numeric arguments
the output is usually more compact when the factor is on.

7.1.9 LEGENDRE_SYMBOL

The operator legendre_symbol(a,p) denotes the Legendre symbol(
a

p

)
≡ a

p−1
2 (mod p)

which, by its very definition can only have one of the values {−1, 0, 1}.

7.1.10 MAX/MIN

max and min can take an arbitrary number of expressions as their arguments.
If all arguments evaluate to numerical values, the maximum or minimum of the
argument list is returned. If any argument is non-numeric, an appropriately reduced
expression is returned. For example:

max(2,-3,4,5) -> 5
min(2,-2) -> -2.
max(a,2,3) -> max(A,3)
min(x) -> X

max or min of an empty list returns 0.

7.1.11 NEXTPRIME

nextprime returns the next prime greater than its integer argument, using a prob-
abilistic algorithm. A type error occurs if the value of the argument is not an inte-
ger. For example:
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nextprime(5) -> 7
nextprime(-2) -> 2
nextprime(-7) -> -5
nextprime 1000000 -> 1000003

whereas nextprime(a) gives a type error.

7.1.12 RANDOM

random(n) returns a random number r in the range 0 ≤ r < n. A type error
occurs if the value of the argument is not a positive integer in algebraic mode, or
positive number in symbolic mode. For example:

random(5) -> 3
random(1000) -> 191

whereas random(a) gives a type error.

7.1.13 RANDOM_NEW_SEED

random_new_seed(n) reseeds the random number generator to a sequence
determined by the integer argument n. It can be used to ensure that a repeat-
able pseudo-random sequence will be delivered regardless of any previous use of
random, or can be called early in a run with an argument derived from something
variable (such as the time of day) to arrange that different runs of a REDUCE pro-
gram will use different random sequences. When a fresh copy of REDUCE is first
created it is as if random_new_seed(1) has been obeyed.

A type error occurs if the value of the argument is not a positive integer.

7.1.14 REIMPART

This returns a two-element list of the real and imaginary parts of an expression, if
that argument has an numerical value. A non-numerical argument is returned as an
expression in the operators repart and impart. This is more efficient than call-
ing repart and impart separately particularly if its argument is complicated.
For example:

reimpart(1+i) -> {1,1}
reimpart(sin(3+4*i)) ->

{cosh(4)*sin(3),cos(3)*sinh(4)}
reimpart(log(2+i)) ->

{log(5)/2,atan(1/2)}
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reimpart(asin(1+i)) ->
{acos(sqrt(5)2)/2,acosh(sqrt(5)+2)/2}

reimpart(a+i*b) ->
{ - impart(b) + repart(a),

impart(a) + repart(b)}

For the inverse trigometric and hyperbolic functions with non-numeric arguments
the output is usually more compact when the FACTOR is on.

7.1.15 REPART

This returns the real part of an expression, if that argument has an numerical value.
A non-numerical argument is returned as an expression in the operators repart
and impart. For example:

repart(1+i) -> 1
repart(sin(3+4*i)) -> cosh(4)*sin(3)
repart(log(2+i)) -> log(5)/2
repart(asin(1+i)) -> acos(sqrt(5)-2)/2
repart(a+i*b) -> - impart(b) + repart(a)

For the inverse trigometric and hyperbolic functions with non-numeric arguments
the output is usually more compact when the FACTOR is on.

7.1.16 ROUND

This operator returns the rounded value (i.e, the nearest integer) of its single argu-
ment if that argument has a numerical value. A non-numeric argument is returned
as an expression in the original operator. For example:

round(-5/4) -> -1
round(a) -> round(a)

7.1.17 SIGN

sign tries to evaluate the sign of its argument. If this is possible sign returns
one of 1, 0 or -1. Otherwise, the result is the original form or a simplified variant.
For example:

sign(-5) -> -1
sign(-a^2*b) -> - sign(b)
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Note that even powers of formal expressions are assumed to be positive only as
long as the switch complex is off.

7.2 Mathematical Functions

REDUCE knows that the following represent mathematical functions that can take
arbitrary scalar expressions as their argument(s).

7.2.1 Elementary Functions

Trigonometric, hyperbolic and exponential functions:

sin cos tan cot csc sec sinh
cosh tanh coth csch sech exp

The trigonometric functions listed above take arguments given in radians; degree-
based versions are described below.

Inverse trigonometric, hyperbolic and exponential functions:

asin acos atan acot acsc asec
asinh acosh atanh acoth acsch asech
log log10 logb

where log is the natural logarithm, log10 is the logarithm to base 10, and logb
has two arguments of which the second is the logarithmic base. Note on the CSL
GUI and other graphical interfaces the inverse trigonometric and hyperbolic funct-
ions are output as arcsin etc.

REDUCE defines the identifier ln to be an abstract operator with no properties;
see section 2.7. You can use it any way you want. One way to use the identifier ln
to represent the natural logarithm (for input only) is to execute the command

define ln = log;

The degree variants of the trigonometric functions and their inverses:

sind cosd tand cotd cscd secd
asind acosd atand acotd acscd asecd

The names of the degree-based functions are those of the normal trig functions with
the letter d appended, for example sind, cosd and tand denote the sine, co-
sine and tangent repectively and their corresponding inverse functions are asind,
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acosd and atand. The secant, cosecant and cotangent functions and their in-
verses are also supported and, indeed, are treated more as first class objects than
their corresponding radian-based functions which are often converted to expres-
sions involving sine and cosine by some of the standard REDUCE simplifications
rules.

These degree-based functions are probably best regarded as functions defined for
real values only, but complex arguments are supported for completeness. The nu-
merical evaluation routines are fairly comprehensive for both real and complex
arguments. However, few simplifications occur for trigd functions with complex
arguments.

The range of the principal values returned by the inverse functions is consistent
with those of the corresponding radian-valued functions. More precisely, for
asind, atand and acscd the (closure of the) range is [−90, 90] whilst for
acosd, acotd and asecd the (closure of the) range is [0, 180]. In addition the
operator atan2d is the degree valued version of the two argument inverse tangent
function which returns an angle in the half-open interval (−180, 180] in the correct
quadrant depending on the signs of its two arguments. For x > 0, atan2d(y,
x) returns the same numerical value as atand(y/x). If x = 0 then ±90 is
returned depending on the sign of y.

Miscellaneous functions:

sqrt hypot atan2
norm arg argd

The function hypot takes two arguments x and y and returns the value
√
x2 + y2

but, when the switch rounded is ON, problems with rounding and possible over-
flow for large numerical arguments are reduced.

The function atan2 also takes two arguments y and x respectively and returns a
value of arctan(y/x) in the range (−π, π] taking account of the signs of its two
arguments and avoiding an error if x = 0.

The operator norm returns the modulus (or absolute value or norm) of a complex
number when the switches rounded and complex are on. When the switches
rounded and complex are both on, arg will return the argument in radians of
the complex number supplied as its parameter — supplying zero as the parameter
causes an error to be raised. With a real numerical value as parameter, it returns 0
or π when the value is positive or negative respectively. argd is similar to arg,
but returns the argument expressed in degrees. Currently these are purely numeric
operators; when rounded is off they basically return the input expression (per-
haps with their parameter simplified). Example

1: on rounded;
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2: {argd(-5), argd(1+i)};

{180.0,argd(i + 1)}

3: on complex;

*** Domain mode rounded changed to complex-rounded

4: {argd(1+i), argd(-1-i)};

{45.0, - 135.0}

5: {arg(3+4i), norm(3+4i)};

{0.927295218002,5.0}

REDUCE knows various elementary identities and properties of these functions.
For example:

cos(-x) = cos(x) sin(-x) = -sin(x)
cos(n*pi) = (-1)^n sin(n*pi) = 0
log(e) = 1 e^(i*pi/2) = i
log(1) = 0 e^(i*pi) = -1
log(e^x) = x e^(3*i*pi/2) = -i
sin(asin(x) = x atan(0) = 0
atan2(0, -1) = pi atan2(1, 0) = pi/2

The derivatives of all the elementary functions except hypot are also known
to the system. Beside these identities, there are a lot of simplifications for ele-
mentary functions defined in REDUCE as rulelists. In order to view these, the
SHOWRULES operator can be used, e.g.

showrules tan;

{tan(~n*arbint(~i)*pi + ~~x)

=> tan(x) when fixp(n),

tan(~x) => trigquot(sin(x),cos(x))

when knowledge_about(sin,x,tan),
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~x + ~~k*pi
tan(-------------) =>

~~d

x k
- cot(--- + i*pi*impart(---))

d d

k 1
when abs(repart(---))=---,

d 2

~~w + ~~k*pi
tan(--------------) =>

~~d

w k k
tan(--- + (--- - fix(repart(---)))*pi) when ((

d d d

ratnump(rp) and abs(rp)>=1) where rp

k
=> repart(---)),

d

tan(atan(~x)) => x,

2
df(tan(~x),~x) => 1 + tan(x) }

For further simplification, especially of expressions involving trigonometric funct-
ions, see section 8.7.

Functions not listed above may be defined in the special functions package
SPECFN.

The user can add further rules for the reduction of expressions involving these
operators by using the let command.

In many cases it is desirable to expand product arguments of logarithms, or collect
a sum of logarithms into a single logarithm. Since these are inverse operations, it
is not possible to provide rules for doing both at the same time and preserve the
REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides
two switches expandlogs and combinelogs to carry out these operations.
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Both are off by default, and are subject to the value of the switch precise. This
switch is on by default and prevents modifications that may be false in a complex
domain. Thus to expand log(3*y) into a sum of logs, one can say

on expandlogs; log(3*y);

whereas to expand log(x*y) into a sum of logs, one needs to say

off precise; on expandlogs; log(x*y);

To combine this sum into a single log:

off precise; on combinelogs; log(x) + log(y);

These switches affect the logarithmic functions log10 (base 10) and logb (arbi-
trary base) as well.

At the present time, it is possible to have both switches on at once, which could
lead to infinite recursion. However, an expression is switched from one form to the
other in this case. Users should not rely on this behavior, since it may change in
the future.

The current version of REDUCE does a poor job of simplifying surds. In particular,
expressions involving the product of variables raised to non-integer powers do not
usually have their powers combined internally, even though they are printed as if
those powers were combined. For example, the expression

x^(1/3)*x^(1/6);

will print as

sqrt(x)

but will have an internal form containing the two exponentiated terms. If you
now subtract sqrt(x) from this expression, you will not get zero. Instead, the
confusing form

sqrt(x) - sqrt(x)

will result. To combine such exponentiated terms, the switch combineexpt
should be turned on.

The square root function can be input using the name sqrt, or the power opera-
tion ^(1/2). On output, unsimplified square roots are normally represented by
the operator sqrt rather than a fractional power. With the default system switch
settings, the argument of a square root is first simplified, and any divisors of the
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expression that are perfect squares taken outside the square root argument. The
remaining expression is left under the square root. Thus the expression

sqrt(-8a^2*b)

becomes

2*a*sqrt(-2*b).

Note that such simplifications can cause trouble if A is eventually given a value
that is a negative number. If it is important that the positive property of the square
root and higher even roots always be preserved, the switch precise should be
set on (the default value). This causes any non-numerical factors taken out of surds
to be represented by their absolute value form. With precise on then, the above
example would become

2*abs(a)*sqrt(-2*b).

However, this is incorrect in the complex domain, where
√
x2 is not identical to

|x|. To avoid the above simplification, the switch precise_complex should be
set on (default is off). For example:

on precise_complex; sqrt(-8a^2*b);

yields the output

2
2*sqrt( - 2*a *b)

If the switch rounded is on, any of the elementary functions

acos acosd acosh acot acotd acoth acsc acscd
acsch asec asecd asech asin asind asinh atan
atan2 atanh atan2 atan2d cos cosd cosh cot
cotd coth csc cscd csch exp hypot log logb
log10 sec secd sech sin sind sinh sqrt tan
tand tanh

when given a numerical argument has its value calculated to the current degree of
floating point precision. In addition, real (non-integer valued) powers of numbers
will also be evaluated.

If the complex switch is turned on in addition to rounded, these funct-
ions will also calculate a real or complex result, again to the current degree of
floating point precision, if given complex arguments. For example, with on
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rounded,complex;

2.3^(5.6i) -> - 0.0480793490914 - 0.998843519372*i
cos(2+3i) -> - 4.18962569097 - 9.10922789376*i

For log and the inverse trigonometric and hyperbolic functions which are multi-
valued, the principal value is returned. The branch cuts chosen (except for acot
and acotd) are now those recommended by W. Kahan ([Kah87])

The exception for acot and acotd is necessary as elsewhere in REDUCE
acot(−z) is taken to be π − acot(z) rather than − acot(z), and acotd(−z) =
180− acotd(z). The branch cuts are:
log, sqrt: {r | r ∈ R ∧ r < 0}
asin, asind, acos, acosd: {r | r ∈ R ∧ (r > 1 ∨ r < −1)}
acsc, acscd, asec, asecd: {r | r ∈ R ∧ r ̸= 0 ∧ r > −1 ∧ r < 1}
atan, atand, acot, acotd: {r ∗ i | r ∈ R ∧ (r > 1 ∨ r < −1)}
asinh: {r ∗ i | r ∈ R ∧ (r ≥ 1 ∨ r ≤ −1)}
acsch: {r ∗ i | r ∈ R ∧ r ̸= 0 ∧ r ≥ −1 ∧ r ≤ 1}
acosh: {r | r ∈ R ∧ r < 1}
asech: {r | r ∈ R ∧ (r > 1 ∨ r < 0)}
atanh: {r | r ∈ R ∧ (r > 1 ∨ r < −1)}
acoth: {r | r ∈ R ∧ r > −1 ∧ r < 1}

7.2.2 Special Functions

The functions in this section are either built-in or are autoloading functions from
the package SPECFN. On the CSL GUI and other graphical interfaces many of the
functions will be output in standard form; for example BesselJ(nu,x) will be
output as Jν(x) and Fresnel_S(u) as S(u). For most of the non-unary special
functions in this section (Lerch_Phi is an exception), the last parameter is the
‘main’ variable and the earlier parameters are the order (or orders) usually rendered
in the literature as subscipts and/or superscripts.

The information provided below is fairly rudimentary; more complete information
may be found in the SPECFN package. Quick Reference Tables are also available.

Integral Functions:

Ei Li Si Ci Shi Chi Erf Fresnel_S Fresnel_C

All these functions are unary; the first six are the exponential, logarithmic, sine
and cosine integrals and their hyperbolic counterparts. Erf, Fresnel_S and
Fresnel_C are the error function and the Fresnel sine and cosine integrals re-
spectively.
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Beta, Gamma and Related Functions:

Beta ibeta Gamma iGamma psi Polygamma

The Gamma operator represents the Gamma function Γ(x) when used with one
argument; with two arguments it is the upper incomplete Gamma function Γ(a, x).
Beta is binary. The binary function iGamma and ternary function iBeta are the
(normalised) lower incomplete Gamma (γ(a, x)) and Beta functions respectively.
The unary function psi is sometimes known as the Digamma function and the
binary function Polygamma with integer first parameter n is the nth derivative of
the function psi.

Bessel and Related Functions:

BesselJ BesselY BesselI BesselK Hankel1 Hankel2

All of these functions are binary, their first argument being the order of the function.

For the special functions below, a second Quick Reference Table is available.

Airy Functions:

Airy_Ai Airy_Aiprime Airy_Bi Airy_Biprime

These are all unary functions.

Kummer, Lommel, Struve and Whittaker Functions:

KummerM KummerU Lommel1 Lommel2
StruveH StruveL WhittakerM WhittakerW

The Struve functions are both binary whilst the remaining ones are all ternary.

Riemann Zeta and Lambert’s W Function:

zeta Lambert_W

These are both unary functions.

Polylogarithms and Related Functions

dilog Polylog Lerch_Phi

These take one, two and three arguments respectively.

Associated Legendre functions:

SphericalHarmonicY SolidHarmonicY



88 CHAPTER 7. BUILT-IN PREFIX OPERATORS

These functions take four and six arguments respectively.

7.2.3 Polynomial Functions

The polynomial functions below are from the non-core package SPECFN and for
the most part are not autoloading. This package needs to be loaded before they
may be used with the command:

load_package specfn;

The names of the REDUCE operators for the polynomial functions below are
mostly built by adding a P to the name of the polynomial, e.g. EulerP imple-
ments the Euler polynomials.

The information in this subsection is fairly rudimentary; more complete informa-
tion may be found in the SPECFN package.
A Quick Reference Table is available for all the polynomial functions below.

Orthogonal Polynomials

Some well-known orthogonal polynomials are available:

• Hermite polynomials: (HermiteP);

• Chebyshev polynomials: (ChebyshevT, ChebyshevU);

• Legendre polynomials: (LegendreP);

• Laguerre polynomials: (LaguerreP);

• Associated Legendre functions: (LegendreP);

• Generalised Laguerre (or Sonin) polynomials: (LaguerreP);

• Gegenbauer polynomials: (GegenbauerP);

• Jacobi polynomials: (JacobiP).

The first three of these functions are binary and the first argument should be an in-
teger specifying the order of the required polynomial. The functions LegendreP
and LaguerreP may be used either as binary operators or ternary ones and rep-
resent the corresponding ‘basic’ and associated functions respectively. Finally the
Gegenbauer polynomials are ternary whilst the Jacobi polynomials are quaternary.

Most definitions are equivalent to those in [AS72], except for the ternary associated
Legendre functions:

P (m)
n (x) = (−1)m(1− x2)m/2d

mPn(x)

dxm
.
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These are sometimes mistakenly referred to as associated Legendre polynomials,
but they are only polynomial when m is even.

Other Polynomial Functions

Fibonacci Polynomials are computed by the binary operator FibonacciP,
where FibonacciP(n,x) returns the nth Fibonacci polynomial in the variable
x. If n is an integer, it will be

evaluated using the recursive definition:

F0(x) = 0; F1(x) = 1; Fn(x) = xFn−1(x) + Fn−2(x) .

Euler Polynomials are computed by the binary operator EulerP, where
EulerP(n,x) returns the nth Euler polynomial in the variable x.

Bernoulli Polynomials are computed by the binary operator BernoulliP, where
BernoulliP(n,x) returns the nth Bernoulli polynomial in the variable x.

7.2.4 Elliptic Functions and Integrals

All the functions documented in this subsection are autoloading functions from the
package ELLIPFN. On the CSL GUI and other graphical interfaces these functions
will be output in standard mathematical form; for example jacobisn(x,k) will
be output as sn(x, k) and weierstrass(x,omega1,omega3) as℘(x, ω1, ω3).

Jacobi Elliptic Functions:

jacobisn jacobicn jacobidn

and their three reciprocals

jacobins jacobinc jacobind

and six quotients

jacobisc jacobisd jacobicd
jacobics jacobids jacobidc

All are binary functions with the second argument being the modulus. The binary
function jacobiam is the amplitude.

Complete and Incomplete Elliptic Integrals of the First & Second Kinds:

ellipticK ellipticE ellipticF
jacobiE jacobiZeta
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The function ellipticE may take one or two arguments to denote the com-
plete and Legendre’s form of the incomplete elliptic integrals of the second kind
respectively. The complete integral of the first kind ellipticK is unary whilst
ellipticF, jacobiE and jacobiZeta are binary and represent the incom-
plete integral of the first kind, Jacobi’s form of the incomplete elliptic integral of
the second kind and Jacobi’s Zeta function respectively.

Jacobi’s Theta Functions:

elliptictheta1 elliptictheta2
elliptictheta3 elliptictheta4

are all binary functions with the second argument being the ‘parameter’ τ , the
nome q being given by q = exp(iπτ)

Weierstrassian Elliptic Functions:

weierstrass weierstrassZeta
weierstrass_sigma weierstrass_sigma1
weierstrass_sigma2 weierstrass_sigma3
weierstrass1 weierstrassZeta1

are all ternary functions with the second and third arguments of the first six funct-
ions being the the lattice period parameters ω1 and ω3. The remaining two funct-
ions are alternative versions of the Weierstrass functions with the second and third
arguments being the lattice invariants g2 and g3.

Inverse Elliptic Functions:

arcsn arccn arcdn arcns arcnc arcnd
arcsc arccs arcsd arcds arccd arcdc

These are all binary functions with the second argument being the modulus k.
They are the inverses of the corresponding Jacobi elliptic functions jacobisn,
jacobicn etc.(wrt their first argument).

For the elliptic functions above a Quick Reference Table is available.

7.3 Combinatorial Numbers

Binomial coefficients are provided by the binary operator Binomial. The value
of Binomial(n, m), where n and m are non-negative integers with n ≥ m, is
the number of ways of choosing m items from a set of n distinct items as well, of
course, as being the coefficient of xm in the expansion of (1 + x)n.
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The function call Binomial(n,m), where n and m are non-negative integers,
will return the expected integer value (from Pascal’s triangle). For other real nu-
merical values the result will usually involve the Γ function, but if the switch
rounded is ON the Γ functions will be evaluated numerically. This will also
be the case for complex numerical arguments if the switch complex is ON.
For non-numeric arguments the result returned will involve the original operator
binomial, or its pretty-printed equivalent on graphical interfaces.

Stirling numbers of the first and second kind are computed by the binary
operators Stirling1 and Stirling2 respectively using explicit formulae.
Stirling1(n, k) is (−1)n−k × (the number of permutations of the set
{1, 2, . . . , n} into exactly k cycles).
Stirling2(n, k) is the number of partitions of the set {1, 2, . . . , n} into ex-
actly k non-empty subsets.
Here n and k should be non-negative integers with n ≥ k.

For integer arguments an integer result will be returned, otherwise a result in-
volving the original operator will be returned. Note on graphical user interfaces
Stirling1(n,m) and Stirling2(n,m) are rendered as smn and Smn respec-
tively.

Stirling numbers are implemented in the non-core package SPECFN and are not
currently autoloading. Before use this package should be loaded with the com-
mand:

load_package specfn;

For more information see here.

A Motzkin number Mn (named after Theodore Motzkin) is the number of differ-
ent ways of drawing non-intersecting chords on a circle between n points. For a
non-negative integer n, the operator Motzkin(n) returns the nth Motzkin num-
ber, according to the recursion formula

M0 = 1; M1 = 1; Mn+1 =
2n+ 3

n+ 3
Mn +

3n

n+ 3
Mn−1 .

The recursion is, of course, optimised as a simple loop to avoid repeated computa-
tion of lower-order numbers.

For the functions in this and the section below a Quick Reference Table is available.
It also includes a list of reserved constants known to REDUCE.

7.4 Bernoulli, Euler and Fibonacci Numbers

Bernoulli numbers are provided by the unary operator Bernoulli. If n is a non-
negative integer, the call Bernoulli(n) evaluates to the nth Bernoulli number;
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all of the odd Bernoulli numbers, except Bernoulli(1), are zero. Otherwise
the result involves the original operator Bernoulli; on graphical interfaces this
is rendered as Bn.

Euler numbers are computed by the unary operator Euler. If n is a non-negative
integer, the call Euler(n) returns the nth Euler number; all of the odd Euler num-
bers are zero. Otherwise the result returned involves the original operator Euler;
on graphical interfaces this is rendered as En.

Fibonacci numbers are provided by the unary operator Fibonacci, where
Fibonacci(n) evaluates to the nth Fibonacci number; if n is an integer, this
will be evaluated following the recursive definition:

F0 = 0; F1 = 1; Fn = Fn−1 + Fn−2 .

The recursion is, of course, optimised as a simple loop to avoid repeated compu-
tation of lower-order numbers. Otherwise the result returned involves the original
operator fibonacci; on graphical interfaces this is rendered as Fn.

7.5 CHANGEVAR Operator

Author: G. Üçoluk.

The operator changevar does a variable transformation in a set of differential
equations. Syntax:

changevar(〈depvars〉, 〈newvars〉, 〈eqlist〉, 〈diffeq〉)

〈diffeq〉 is either a single differential equation or a list of differential equations, 〈de-
pvars〉 are the dependent variables to be substituted, 〈newvars〉 are the new depend
variables, and 〈eqlist〉 is a list of equations of the form 〈depvar〉 = 〈expression〉
where 〈expression〉 is some function in the new dependent variables.

The three lists 〈depvars〉, 〈newvars〉, and 〈eqlist〉 must be of the same length. If
there is only one variable to be substituted, then it can be given instead of the
list. The same applies to the list of differential equations, i.e., the following two
commands are equivalent

changevar(u,y,x=e^y,df(u(x),x) - log(x));

changevar({u},{y},{x=e^y},{df(u(x),x) - log(x)});

except for one difference: the first command returns the transformed differential
equation, the second one a list with a single element.

The switch dispjacobian governs the display the entries of the inverse Jaco-
bian, it is off per default.
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The mathematics behind the change of independent variable(s) in differential
equations is quite straightforward. It is basically the application of the chain rule.
If the dependent variable of the differential equation is F , the independent vari-
ables are xi and the new independent variables are ui (where i=1...n) then the first
derivatives are:

∂F

∂xi
=
∂F

∂uj

∂uj
∂xi

We assumed Einstein’s summation convention. Here the problem is to calculate
the ∂uj/∂xi terms if the change of variables is given by

xi = fi(u1, . . . , un)

The first thought might be solving the above given equations for uj and then dif-
ferentiating them with respect to xi, then again making use of the equations above,
substituting new variables for the old ones in the calculated derivatives. This is
not always a preferable way to proceed. Mainly because the functions fi may not
always be easily invertible. Another approach that makes use of the Jacobian is
better. Consider the above given equations which relate the old variables to the
new ones. Let us differentiate them:

∂xj
∂xi

=
∂fj
∂xi

δij =
∂fj
∂uk

∂uk
∂xi

The first derivative is nothing but the (j, k) th entry of the Jacobian matrix.

So if we speak in matrix language

1 = J ·D

where we defined the Jacobian

Jij
△
=
∂fi
∂uj

and the matrix of the derivatives we wanted to obtain as

Dij
△
=
∂ui
∂xj

.

If the Jacobian has a non-vanishing determinant then it is invertible and we are able
to write from the matrix equation above:

D = J−1

so finally we have what we want

∂ui
∂xj

=
[
J−1

]
ij
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The higher derivatives are obtained by the successive application of the chain rule
and using the definitions of the old variables in terms of the new ones. It can be
easily verified that the only derivatives that are needed to be calculated are the first
order ones which are obtained above.

7.5.1 CHANGEVAR example: The 2-dim. Laplace Equation

The 2-dimensional Laplace equation in cartesian coordinates is:

∂2u

∂x2
+
∂2u

∂y2
= 0

Now assume we want to obtain the polar coordinate form of Laplace equation. The
change of variables is:

x = r cos θ, y = r sin θ

The solution using changevar is as follows

changevar({u},{r,theta},{x=r*cos theta,y=r*sin theta},
{df(u(x,y),x,2)+df(u(x,y),y,2)} );

Here we could omit the curly braces in the first and last arguments (because those
lists have only one member) and the curly braces in the third argument (because
they are optional), but you cannot leave off the curly braces in the second argument.
So one could equivalently write

changevar(u,{r,theta},x=r*cos theta,y=r*sin theta,
df(u(x,y),x,2)+df(u(x,y),y,2) );

If you have tried out the above example, you will notice that the denominator con-
tains a cos2 θ + sin2 θ which is actually equal to 1. This has of course nothing to
do with changevar. One has to be overcome these pattern matching problems
by the conventional methods REDUCE provides (a rule, for example, will fix it).

Secondly you will notice that your u(x,y) operator has changed to u(r,theta)
in the result. Nothing magical about this. That is just what we do with pencil and
paper. u(r,theta) represents the the transformed dependent variable.

7.5.2 Another CHANGEVAR example: An Euler Equation

Consider a differential equation which is of Euler type, for instance:

x3y′′′ − 3x2y′′ + 6xy′ − 6y = 0



7.6. CONTINUED_FRACTION OPERATOR 95

where prime denotes differentiation with respect to x. As is well known, Euler
type of equations are solved by a change of variable:

x = eu

So our call to changevar reads as follows:

changevar(y, u, x=e**u, x**3*df(y(x),x,3)-
3*x**2*df(y(x),x,2)+6*x*df(y(x),x)-6*y(x));

and returns the result

df(y(u),u,3) - 6*df(y(u),u,2) + 11*df(y(u),u) - 6*y(u)

7.6 CONTINUED_FRACTION Operator

The operator continued_fraction generates the continued fraction expan-
sion of a rational number argument. For irrational or rounded arguments, it ap-
proximates the real number as a rational number to the current system precision
and generates the continued fraction expansion. Currently the operator cf is a
complete synonym for continued_fraction although this may change in fu-
ture updates of the package RATAPRX.

The operator continued_fraction accepts one, two or three arguments: the
number to be expanded; an optional maximum size permitted for the denominator
of the convergent and an optional number of continuents to be generated:

continued_fraction(〈num〉)
continued_fraction(〈num〉, 〈size〉)
continued_fraction(〈num〉, 〈size〉, 〈numterms〉)

The result is the special operator contfrac with three arguments: the original
number to be expanded 〈num〉, secondly the rational number approximation (the
final convergent) and thirdly a list of continuents of the continued fraction (i.e. a
list of pairs of partial numerators and denominators)

{t0, {1, t1}, {1, t2}, .... }

which represents the same value according to the definition

t0 + 1/(t1 + 1/(t2 + ...)).

Note that, although with the current algorithm all the partial numerators have the
value 1, they are stored in the list of continuents. This is for compatibility with
the output of other continued fractions functions cfrac and cf_euler. This
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facilitates pretty-printing and the implementation of various equivalence transfor-
mations all of which are documented in the continued fraction subsection of the
rataprx manual (Section 20.48.2).

Precision: the second optional parameter 〈size〉 is an upper bound for the absolute
value of the denominator of the convergent.
Number of terms: the third optional parameter 〈numterms〉 is the maximum num-
ber of terms (continuents) to be generated.
If both optional parameters omitted, the expansion performed is exact for rational
number arguments and for irrational or rounded arguments it is up to the current
system precision. If both optional parameters are given the expansion is halted
when the desired precision is reached or when the specified maximum number of
terms have been generated whichever is the sooner. If the size parameter is zero, its
value is ignored. Thus to obtain a continued fraction expansion to, for example, 10
terms one would specify the 〈size〉 parameter to be 0 and the 〈numterms〉 parameter
to be 10.

Note that the operator contfrac is not normally seen as the output is pretty-
printed, unless the number of continuents generated is larger than 12.

Examples:

continued_fraction(6/11);

6 1
{----,exact,---------------}

11 1
1 + ---------

1
1 + ---

5

continued_fraction(pi,1000);

355 1
{pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

continued_fraction(pi,0,6);

104348 1
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{pi,--------,3 + ------------------------------}
33215 1

7 + ------------------------
1

15 + -----------------
1

1 + -----------
1

292 + ---
1

continued_fraction(pi,1000,3);

333 1
{pi,-----,3 + ----------}

106 1
7 + ----

15

continued_fraction(pi,1000,6);

355 1
{pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

continued_fraction e;

{e,

13580623
----------,
4996032

{2, {1,1}, {1,2}, {1,1}, {1,1}, {1,4}, {1,1}, {1,1},
{1,6}, {1,1}, {1,1}, {1,8}, {1,1}, {1,1}, {1,10},
{1,1}, {1,1}, {1,12}}}
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7.7 DF Operator

The operator df is used to represent partial differentiation with respect to one or
more variables. It is used with the syntax:

df(〈exprn:algebraic〉[, 〈var:kernel〉<, 〈num:integer〉>]) : algebraic.

The first argument is the expression to be differentiated. The remaining arguments
specify the differentiation variables and the number of times they are applied.

The number num may be omitted if it is 1. For example,

df(y,x) = ∂y/∂x
df(y,x,2) = ∂2y/∂x2

df(y,x1,2,x2,x3,2) = ∂5y/∂x21∂x2∂x
2
3.

The evaluation of df(y,x) proceeds as follows: first, the values of y and x are
found. Let us assume that x has no assigned value, so its value is x. Each term
or other part of the value of y that contains the variable x is differentiated by the
standard rules. If z is another variable, not x itself, then its derivative with respect
to x is taken to be 0, unless z has previously been declared to depend on x, in
which case the derivative is reported as the symbol df(z,x).

7.7.1 Switches influencing differentiation

Consider df(u,x,y,z), assuming u depends on each of x,y,z in some way.
If none of x,y,z is equal to u then the order of differentiation is commuted into a
canonical form, unless the switch nocommutedf is turned on (default is off). If at
least one of x,y,z is equal to u then the order of differentiation is not fully com-
muted and the derivative is not simplified to zero, unless the switch commutedf
is turned on. It is off by default.

If commutedf is off and the switch simpnoncomdf is on then simplify as fol-
lows:

df(u,x,u) -> df(u,x,2) / df(u,x)
df(u,x,n,u) -> df(u,x,n+1) / df(u,x)

provided u depends only on the one variable x. This simplification removes the
non-commutative aspect of the derivative.

If the switch expanddf is turned on then REDUCE uses the chain rule to expand
symbolic derivatives of indirectly dependent variables provided the result is unam-
biguous, i.e. provided there is no direct dependence. It is off by default. Thus, for
example, given
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depend f,u,v; depend {u,v},x;
on expanddf;
df(f,x) -> df(f,u)*df(u,x) + df(f,v)*df(v,x)

whereas after

depend f,x;

df(f,x) does not expand at all (since the result would be ambiguous and the
algorithm would loop).

Turning on the switch allowdfint allows “differentiation under the integral
sign”, i.e.

df(int(y, x), v) -> int(df(y, v), x)

if this results in a simplification. If the switch dfint is also turned on then this
happens regardless of whether the result simplifies. Both switches are off by de-
fault.

7.7.2 Adding Differentiation Rules

The let statement can be used to introduce rules for differentiation of user-defined
operators. Its general form is

for all 〈var1〉, . . ., 〈varn〉
let df(〈operator〉〈varlist〉, 〈vari〉) = 〈expression〉

where

〈varlist〉 −→ (〈var1〉, . . . , 〈varn〉),

and 〈var1〉, . . . , 〈varn〉 are the dummy variable arguments of 〈operator〉.

An analogous form applies to infix operators.

Examples:

for all x let df(tan x,x) = 1 + tan(x)^2;

(This is how the tan differentiation rule appears in the REDUCE source.)

for all x,y let df(f(x,y),x)=2*f(x,y),
df(f(x,y),y)=x*f(x,y);
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Notice that all dummy arguments of the relevant operator must be declared arbi-
trary by the for all command, and that rules may be supplied for operators with
any number of arguments. If no differentiation rule appears for an argument in an
operator, the differentiation routines will return as result an expression in terms
of df. For example, if the rule for the differentiation with respect to the second
argument of f is not supplied, the evaluation of df(f(x,z),z) would leave this
expression unchanged. (No depend declaration is needed here, since f(x,z)
obviously “depends on” Z.)

Once such a rule has been defined for a given operator, any future differentiation
rules for that operator must be defined with the same number of arguments for that
operator, otherwise we get the error message

Incompatible DF rule argument length for <operator>

7.7.3 Options controlling display of derivatives

If the switch dfprint is turned on (it is off by default) then derivatives are dis-
played using subscripts, as illustrated below. In graphical environments with type-
set mathematics enabled, the (shared) variable fancy_print_df can be set to
one of the values partial, total or indexed to control the display of deriva-
tives. The default value is partial. However, if the switch dfprint is on then
fancy_print_df is ignored. For example, with the following settings, deriva-
tives are displayed as follows (assuming depend f,x,y and operator g):

Setting df(f,x,2,y) df(g(x,y),x,2,y)

fancy_print_df:=partial
∂3f

∂x2∂y

∂3g(x, y)

∂x2∂y

fancy_print_df:=total
d3f

dx2dy

d3g(x, y)

dx2dy
fancy_print_df:=indexed fx,x,y g(x, y)x,x,y
on dfprint fx,x,y gx,x,y

7.8 INT Operator

int is an operator in REDUCE for indefinite or definite integration.
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7.8.1 Indefinite integration

Indefinite integration is performed using a combination of the Risch-Norman algo-
rithm and pattern matching [NM77, Har79, ND79]. It is used with the syntax:

int(〈exprn:algebraic〉, 〈var:kernel〉) : algebraic.

This will return correctly the indefinite integral for expressions comprising poly-
nomials, log functions, exponential functions and tan and atan. The arbitrary con-
stant is not represented. If the integral cannot be done in closed terms, it returns a
formal integral for the answer in one of two ways:

1. It returns the input, int(...,...) unchanged.

2. It returns an expression involving ints of some other functions (sometimes
more complicated than the original one, unfortunately).

Rational functions can be integrated when the denominator is factorizable by the
program. In addition it will attempt to integrate expressions involving error funct-
ions, dilogarithms and other trigonometric expressions. In these cases it might not
always succeed in finding the solution, even if one exists.

Examples:

int(log(x),x) -> x*(log(x) - 1),
int(e^x,x) -> e**x.

The program checks that the second argument is a variable and gives an error if it
is not.

7.8.2 Definite Integration

If int is used with the syntax

INT(EXPRN:algebraic,VAR:kernel,
LOWER:algebraic,UPPER:algebraic):algebraic.

The definite integral of exprnwith respect to var is calculated between the limits
lower and upper. This is calculated by several methods that are tried one after
the other: pattern matching, by first finding the indefinite integral and then substi-
tuting the limits into this, by contour integration for some types integrands with
polynomial denominator, or by transforming the integrand into one or two Meijer
G-functions. For details, see the documentation on the DEFINT package described
in section D.11.

1This code was written by Kerry Gaskell, Stanley M. Kameny, Winfried Neun.
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7.8.3 Options

The switch trint when on will trace the operation of the algorithm. It produces
a great deal of output in a somewhat illegible form, and is not of much interest to
the general user. It is normally off.

The switch trintsubst when on will trace the heuristic attempts to solve the
integral by substitution. It is normally off.

The switch trdefint when on will trace the operation of the definite integration
algorithm.

If the switch failhard is on the algorithm will terminate with an error if the
integral cannot be done in closed terms, rather than return a formal integration
form. failhard is normally off.

The switch nolnr suppresses the use of the linear properties of integration in
cases when the integral cannot be found in closed terms. It is normally off.

The switch nointsubst disables the heuristic attempts to solve the integral by
substitution. It is normally off.

7.8.4 Advanced Use

If a function appears in the integrand that is not one of the functions exp, Erf,
tan, atan, log, dilog then the algorithm will make an attempt to inte-
grate the argument if it can, differentiate it and reach a known function. However
the answer cannot be guaranteed in this case. If a function is known to be alge-
braically independent of this set it can be flagged transcendental by

flag(’(trilog),’transcendental);

in which case this function will be added to the permitted field descriptors for a
genuine decision procedure. If this is done the user is responsible for the mathe-
matical correctness of his actions.

The standard version does not deal with algebraic extensions. Thus integration of
expressions involving square roots and other like things can lead to trouble. The
extension package ALGINT will analytically integrate a wide range of expressions
involving square roots where the answer exists in that class of functions. It is an
implementation of the work described by J.H. Davenport [Dav81].

The extension package is loaded automatically when the switch algint is turned
on. One enters an expression for integration, as with the regular integrator, for
example:

int(sqrt(x+sqrt(x**2+1))/x,x);
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If one later wishes to integrate expressions without using the facilities of this pack-
age, the switch algint should be turned off.

The switches supported by the standard integrator (e.g., trint) are also supported
by this package. In addition, the switch tra, if on, will give further tracing
information about the specific functioning of the algebraic integrator.

7.9 LENGTH Operator

length is a generic operator for finding the length of various objects in the sys-
tem. The meaning depends on the type of the object. In particular, the length
of an algebraic expression is the number of additive top-level terms its expanded
representation.

Examples:

length(a+b) -> 2
length(2) -> 1.

Other objects that support a length operator include arrays, lists and matrices. The
explicit meaning in these cases is included in the description of these objects.

7.10 LIMIT Operator

LIMITS is a fast limit package for REDUCE for functions which are continuous
except for computable poles and singularities, written by Stanley L. Kameny, based
on some earlier work by Ian Cohen and John P. Fitch. The Truncated Power Series
package is used for non-critical points, at which the value of the function is the
constant term in the expansion around that point. l’Hôpital’s rule is used in critical
cases, with preprocessing of∞−∞ forms and reformatting of product forms in
order to apply l’Hôpital’s rule. A limited amount of bounded arithmetic is also
employed where applicable.

The standard way of calling limit, applying all of the methods, is

limit(〈exprn:algebraic〉, 〈var:kernel〉, 〈limpoint:algebraic〉) : algebraic

The result is the limit of exprn as var approaches limpoint. To compute the of
sin(x)/x at the point 0, enter

limit(sin(x)/x,x,0);

1
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If the limit depends upon the direction of approach to the limpoint, the onesided
limit functions limit!+ and limit!- may be used:

limit!+(〈exprn:algebraic〉, 〈var:kernel〉, 〈limpoint:algebraic〉) : algebraic
limit!-(〈exprn:algebraic〉, 〈var:kernel〉, 〈limpoint:algebraic〉) : algebraic

they are defined by:

limit!+ (limit!-) (exp,var,limpoint)→limit(exp*,ϵ,0),
exp*=sub(var=var+(-)ϵ2,exp)

for example,

limit!+(sqrt x/sin x,x,0);

infinity;

7.11 MAP Operator

The map operator applies a uniform evaluation pattern to all members of a com-
posite structure: a matrix, a list, or the arguments of an operator expression. The
evaluation pattern can be a unary procedure, an operator, or an algebraic expression
with one free variable.

It is used with the syntax:

map(fnc:function,obj:object)

Here obj is a list, a matrix or an operator expression. fnc can be one of the
following:

1. the name of an operator with a single argument: the operator is evaluated
once with each element of obj as its single argument;

2. an algebraic expression with exactly one free variable, i.e. a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
obj, with the element substituted for the free variable;

3. a replacement rule of the form var => rep where var is a variable (a
kernel without a subscript) and rep is an expression that contains var. The
replacement expression rep is evaluated for each element of obj with the
element substituted for var. The variable var may be optionally preceded
by a tilde.
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The rule form for fnc is needed when more than one free variable occurs.

Examples:

map(abs,{1,-2,a,-a}) -> {1,2,ABS(A),ABS(A)}
map(int(~w,x), mat((x^2,x^5),(x^4,x^5))) ->

[ 3 6 ]
[ x x ]
[---- ----]
[ 3 6 ]
[ ]
[ 5 6 ]
[ x x ]
[---- ----]
[ 5 6 ]

map(~w*6, x^2/3 = y^3/2 -1) -> 2*X^2=3*(Y^3-2)

You can use map in nested expressions. However, you cannot apply map to a
non-composite object, e.g. an identifier or a number.

7.12 MKID Operator

In many applications, it is useful to create a set of identifiers for naming objects in
a consistent manner. In most cases, it is sufficient to create such names from two
components. The operator mkid is provided for this purpose. Its syntax is:

mkid(u:id,v:id|non-negative integer):id

for example

mkid(a,3) -> a3
mkid(apple,s) -> apples

while mkid(a+b,2) gives an error.

The set statement can be used to give a value to the identifiers created by mkid,
for example

set(mkid(a,3),3);

will give a3 the value 2. Similarly, the unset statement can be used to remove
the value from these identifiers, for example
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unset(mkid(a,3));

7.13 The Pochhammer Notation

The Pochhammer notation (a)k (also called Pochhammer’s symbol) is supported
by the binary operator Pochhammer(a,k). For a non-negative integer k, it is
defined as (http://dlmf.nist.gov/5.2.iii)

(a)0 = 1,

(a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1).

For a ̸= 0,−1,−2,−3, . . ., this is equivalent to

(a)k =
Γ(a+ k)

Γ(a)
.

When n is integral, the defining product is expanded (assuming the switch exp is
on). With rounded off, this expression is evaluated numerically if a is numerical
and k is integral, and otherwise may be simplified where appropriate. The simpli-
fication rules are based upon algorithms supplied by Wolfram Koepf [Koe92].

The Pochhammer symbol is used quite extensively in the simplification and nu-
merical evaluation of special functions.

7.14 PF Operator

pf(〈exp〉,〈var〉) transforms the expression 〈exp〉 into a list of partial frac-
tions with respect to the main variable, 〈var〉. pf does a complete partial fraction
decomposition, and as the algorithms used are fairly unsophisticated (factoriza-
tion and the extended Euclidean algorithm), the code may be unacceptably slow in
complicated cases.

Example: Given 2/((x+1)^2*(x+2)) in the workspace, pf(ws,x); gives
the result

2 - 2 2
{-------,-------,--------------} .

x + 2 x + 1 2
x + 2*x + 1

If you want the denominators in factored form, set the switch exp to off.
Thus, with 2/((x+1)^2*(x+2)) in the workspace, the input off exp;
pf(ws,x); gives the result

http://dlmf.nist.gov/5.2.iii
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2 - 2 2
{-------,-------,----------} .

x + 2 x + 1 2
(x + 1)

To recombine the terms, for each . . . sum can be used. So with the above list
in the workspace, for each j in ws sum j; returns the result

2
------------------

2
(x + 2)*(x + 1)

Alternatively, one can use the operations on lists to extract any desired term.

7.15 RESIDUE and POLEORDER Operators

The residue Res
z=a

f(z) of a function f(z) at the point a ∈ C is defined as

Res
z=a

f(z) =
1

2πi

∮
f(z) dz ,

with integration along a closed curve around z = a with winding number 1.

If f(z) is given by a Laurent series expansion at z = a

f(z) =
∞∑

k=−∞
ak (z − a)k ,

then
Res
z=a

f(z) = a−1 . (7.1)

If a =∞, one defines on the other hand

Res
z=∞

f(z) = −a−1 (7.2)

for given Laurent representation

f(z) =
∞∑

k=−∞
ak

1

zk
.

The operator residue(f,z,a) determines the residue of f at the point z = a
if f is meromorphic at z = a. The calculation of residues at essential singularities
of f is not supported, as are the residues of factorial terms.2

2This code was written by Wolfram Koepf.
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poleorder(f,z,a) determines the pole order of f at the point z = a if f is
meromorphic at z = a.

Note that both functions use the operator taylor in connection with representa-
tions (7.1)–(7.2).

Here are some examples:

2: residue(x/(x^2-2),x,sqrt(2));

1
---
2

3: poleorder(x/(x^2-2),x,sqrt(2));

1

4: residue(sin(x)/(x^2-2),x,sqrt(2));

sqrt(2)*sin(sqrt(2))
----------------------

4

5: poleorder(sin(x)/(x^2-2),x,sqrt(2));

1

6: residue(1/(x-1)^m/(x-2)^2,x,2);

- m

7: poleorder(1/(x-1)/(x-2)^2,x,2);

2

8: residue(sin(x)/x^2,x,0);

1

9: poleorder(sin(x)/x^2,x,0);

1

10: residue((1+x^2)/(1-x^2),x,1);

-1

11: poleorder((1+x^2)/(1-x^2),x,1);
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1

12: residue((1+x^2)/(1-x^2),x,-1);

1

13: poleorder((1+x^2)/(1-x^2),x,-1);

1

14: residue(tan(x),x,pi/2);

-1

15: poleorder(tan(x),x,pi/2);

1

16: residue((x^n-y^n)/(x-y),x,y);

0

17: poleorder((x^n-y^n)/(x-y),x,y);

0

18: residue((x^n-y^n)/(x-y)^2,x,y);

n
y *n
------

y

19: poleorder((x^n-y^n)/(x-y)^2,x,y);

1

20: residue(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);

-2

21: poleorder(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);

1

22: for k:=1:2 sum residue((a+b*x+c*x^2)/(d+e*x+f*x^2),x,
part(part(solve(d+e*x+f*x^2,x),k),2));

b*f - c*e
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-----------
2
f

23: residue(x^3/sin(1/x)^2,x,infinity);

- 1
------

15

24: residue(x^3*sin(1/x)^2,x,infinity);

-1

25: residue(gamma(x),x,-1);

-1

26: residue(psi(x),x,-1);

-1

27: on fullroots;

28: for k:=1:3 sum
28: residue((a+b*x+c*x^2+d*x^3)/(e+f*x+g*x^2+h*x^3),x,
28: part(part(solve(e+f*x+g*x^2+h*x^3,x),k),2));

0

7.16 SELECT Operator

The select operator extracts from a list, or from the arguments of an n–ary
operator, elements corresponding to a boolean predicate. It is used with the syntax:

select(〈fnc:function〉, 〈lst:list〉)

fnc can be one of the following forms:

1. the name of an operator with a single argument: the operator is evaluated
once on each element of lst;

2. an algebraic expression with exactly one free variable, i.e. a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
〈lst〉, with the element substituted for the free variable;
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3. a replacement rule of the form 〈var〉 => 〈rep〉 where 〈var〉 is a variable (a
kernel without subscript) and 〈rep〉 is an expression that contains 〈var〉. 〈rep〉
is evaluated for each element of LST with the element substituted for 〈var〉.
〈var〉 may be optionally preceded by a tilde.

The rule form for fnc is needed when more than one free variable occurs.

The result of evaluating fnc is interpreted as a boolean value corresponding to the
conventions of REDUCE. These values are composed with the leading operator of
the input expression.

Examples:

select( ~w>0 , {1,-1,2,-3,3}) -> {1,2,3}
select(evenp deg(~w,y),part((x+y)^5,0):=list)

-> {X^5 ,10*X^3*Y^2 ,5*X*Y^4}
select(evenp deg(~w,x),2x^2+3x^3+4x^4)

-> 4X^4 + 2X^2
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7.17 SOLVE Operator

solve is an operator for solving one or more simultaneous algebraic equations. It
is used with the syntax:

solve(〈exprn:algebraic〉[, 〈var:kernel〉 | , 〈varlist:list of kernels〉]) : list.

exprn is of the form 〈expression〉 or { 〈expression1〉,〈expression2〉, . . .}. Each
expression is an algebraic equation, or is the difference of the two sides of the
equation. The second argument is either a kernel or a list of kernels representing
the unknowns in the system. This argument may be omitted if the number of
distinct, non-constant, top-level kernels equals the number of unknowns, in which
case these kernels are presumed to be the unknowns and a message is printed:

solve(x^2 - 1);

->

Unknown: x

{x=1,x=-1}

For one equation, solve recursively uses factorization and decomposition, to-
gether with the known inverses of log, sin, cos, ^, acos, asin, and linear,
quadratic, cubic, quartic, or binomial factors. Solutions of equations built with
exponentials or logarithms are often expressed in terms of Lambert’s W function.
This function is (partially) implemented in the special functions package.

Linear equations are solved by the multi-step elimination method due to Bareiss,
unless the switch cramer is on, in which case Cramer’s method is used. The
Bareiss method is usually more efficient unless the system is large and dense.

Non-linear equations are solved using the Groebner basis package (chapter 20.26).
Users should note that this can be quite a time consuming process.

Examples:

solve(log(sin(x+3))^5 = 8,x);
solve(a*log(sin(x+3))^5 - b, sin(x+3));
solve({a*x+y=3,y=-2},{x,y});

solve returns a list of solutions. If there is one unknown, each solution is an
equation for the unknown. If a complete solution was found, the unknown will
appear by itself on the left-hand side of the equation. On the other hand, if the
solve package could not find a solution, the “solution” will be an equation for the
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unknown in terms of the operator root_of. If there are several unknowns, each
solution will be a list of equations for the unknowns. For example,

solve(x^2=1,x); -> {x=-1,x=1}

solve(x^7-x^6+x^2=1,x)
6

-> {x=root_of(x_ + x_ + 1,x_,tag_1),x=1}

solve({x+3y=7,y-x=1},{x,y}) -> {{x=1,y=2}}.

The TAG argument is used to uniquely identify those particular solutions. Solution
multiplicities are stored in the global variable root_multiplicities rather
than the solution list. The value of this variable is a list of the multiplicities of the
solutions for the last call of solve. For example,

solve(x^2=2x-1,x); root_multiplicities;

gives the results

{x=1}

{2}

If you want the multiplicities explicitly displayed, the switch multiplicities
can be turned on. For example

on multiplicities; solve(x^2=2x-1,x);

yields the result

{x=1,x=1}

7.17.1 Handling of Undetermined Solutions

When solve cannot find a solution to an equation, it normally returns an equation
for the relevant indeterminates in terms of the operator ROOT_OF. For example, the
expression

solve(cos(x) + log(x),x);

returns the result

{x=root_of(cos(x_) + log(x_),x_,tag_1)} .
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An expression with a top-level root_of operator is implicitly a list with an un-
known number of elements (since we don’t always know how many solutions an
equation has). If a substitution is made into such an expression, closed form solu-
tions can emerge. If this occurs, the root_of construct is replaced by an operator
one_of. At this point it is of course possible to transform the result of the origi-
nal solve operator expression into a standard solve solution. To effect this, the
operator expand_cases can be used.

The following example shows the use of these facilities:

solve(-a*x^3+a*x^2+x^4-x^3-4*x^2+4,x);
2 3

{x=root_of(a*x_ - x_ + 4*x_ + 4,x_,tag_2),x=1}

sub(a=-1,ws);

{x=one_of({2,-1,-2},tag_2),x=1}

expand_cases ws;

{x=2,x=-1,x=-2,x=1}

7.17.2 Solutions of Equations Involving Cubics and Quartics

Since roots of cubics and quartics can often be very messy, a switch fullroots
is available, that, when off (the default), will prevent the production of a result in
closed form. The root_of construct will be used in this case instead.

In constructing the solutions of cubics and quartics, trigonometrical forms are used
where appropriate. This option is under the control of a switch trigform, which
is normally on.

The following example illustrates the use of these facilities:

let xx = solve(x^3+x+1,x);

xx;
3

{x=root_of(x_ + x_ + 1,x_)}

on fullroots;

xx;

- sqrt(31)*i
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atan(---------------)
3*sqrt(3)

{x=(i*(sqrt(3)*sin(-----------------------)
3

- sqrt(31)*i
atan(---------------)

3*sqrt(3)
- cos(-----------------------)))/sqrt(3),

3

- sqrt(31)*i
atan(---------------)

3*sqrt(3)
x=( - i*(sqrt(3)*sin(-----------------------)

3

- sqrt(31)*i
atan(---------------)

3*sqrt(3)
+ cos(-----------------------)))/sqrt(

3

3),

- sqrt(31)*i
atan(---------------)

3*sqrt(3)
2*cos(-----------------------)*i

3
x=----------------------------------}

sqrt(3)

off trigform;

xx;
2/3

{x=( - (sqrt(31) - 3*sqrt(3)) *sqrt(3)*i

2/3 2/3
- (sqrt(31) - 3*sqrt(3)) - 2 *sqrt(3)*i

2/3 1/3 1/3
+ 2 )/(2*(sqrt(31) - 3*sqrt(3)) *6
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1/6

*3 ),

2/3
x=((sqrt(31) - 3*sqrt(3)) *sqrt(3)*i

2/3 2/3
- (sqrt(31) - 3*sqrt(3)) + 2 *sqrt(3)*i

2/3 1/3 1/3
+ 2 )/(2*(sqrt(31) - 3*sqrt(3)) *6

1/6

*3 ),

2/3 2/3
(sqrt(31) - 3*sqrt(3)) - 2

x=-------------------------------------}
1/3 1/3 1/6

(sqrt(31) - 3*sqrt(3)) *6 *3

7.17.3 Other Options

If solvesingular is on (the default setting), degenerate systems such as
x+y=0, 2x+2y=0 will be solved by introducing appropriate arbitrary constants.
The consistent singular equation 0=0 or equations involving functions with multi-
ple inverses may introduce unique new indeterminant kernels arbcomplex(j),
or arbint(j), (j=1,2,...), representing arbitrary complex or integer numbers re-
spectively. To automatically select the principal branches, do off allbranch.
To avoid the introduction of new indeterminant kernels do off arbvars – then
no equations are generated for the free variables and their original names are used
to express the solution forms. To suppress solutions of consistent singular equat-
ions do off solvesingular.

To incorporate additional inverse functions do, for example:

put(’sinh,’inverse,’asinh);
put(’asinh,’inverse,’sinh);

together with any desired simplification rules such as

for all x let sinh(asinh(x))=x, asinh(sinh(x))=x;
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For completeness, functions with non-unique inverses should be treated as ^, sin,
and cos are in the solve module source.

Arguments of asin and acos are not checked to ensure that the absolute value
of the real part does not exceed 1; and arguments of log are not checked to ensure
that the absolute value of the imaginary part does not exceed π; but checks (perhaps
involving user response for non-numerical arguments) could be introduced using
let statements for these operators.

7.17.4 Parameters and Variable Dependency

The proper design of a variable sequence supplied as a second argument to solve
is important for the structure of the solution of an equation system. Any unknown
in the system not in this list is considered totally free. E.g. the call

solve({x=2*z,z=2*y},{z});

produces an empty list as a result because there is no function z = z(x, y) which
fulfills both equations for arbitrary x and y values. In such a case the share variable
requirements displays a set of restrictions for the parameters of the system:

requirements;

{x - 4*y}

The non-existence of a formal solution is caused by a contradiction which disap-
pears only if the parameters of the initial system are set such that all members of
the requirements list take the value zero. For a linear system the set is complete:
a solution of the requirements list makes the initial system solvable. E.g. in the
above case a substitution x = 4y makes the equation set consistent. For a non-
linear system only one inconsistency is detected. If such a system has more than
one inconsistency, you must reduce them one after the other. 3 The set shows you
also the dependency among the parameters: here one of x and y is free and a formal
solution of the system can be computed by adding it to the variable list of solve.
The requirement set is not unique – there may be other such sets.

A system with parameters may have a formal solution, e.g.

solve({x=a*z+1,0=b*z-y},{z,x});

y a*y + b

3The difference between linear and non–linear inconsistent systems is based on the algorithms
which produce this information as a side effect when attempting to find a formal solution; example:
solve({x = a, x = b, y = c, y = d}, {x, y}) gives a set {a− b, c− d} while solve({x2 = a, x2 =
b, y2 = c, y2 = d}, {x, y} leads to {a− b}.
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{{z=---,x=---------}}
b b

which is not valid for all possible values of the parameters. The variable
assumptions contains then a list of restrictions: the solutions are valid only
as long as none of these expressions vanishes. Any zero of one of them represents
a special case that is not covered by the formal solution. In the above case the value
is

assumptions;

{b}

which excludes formally the case b = 0; obviously this special parameter value
makes the system singular. The set of assumptions is complete for both, linear and
non–linear systems.

solve rearranges the variable sequence to reduce the (expected) computing time.
This behavior is controlled by the switch varopt, which is on by default. If it is
turned off, the supplied variable sequence is used or the system kernel ordering is
taken if the variable list is omitted. The effect is demonstrated by an example:

s:= {y^3+3x=0,x^2+y^2=1};

solve(s,{y,x});

6 2
{{y=root_of(y_ + 9*y_ - 9,y_),

3
- y

x=-------}}
3

off varopt; solve(s,{y,x});

6 4 2
{{x=root_of(x_ - 3*x_ + 12*x_ - 1,x_),

4 2
x*( - x + 2*x - 10)

y=-----------------------}}
3
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In the first case, solve forms the solution as a set of pairs (yi, x(yi)) because the
degree of x is higher – such a rearrangement makes the internal computation of the
Gröbner basis generally faster. For the second case the explicitly given variable
sequence is used such that the solution has now the form (xi, y(xi)). Controlling
the variable sequence is especially important if the system has one or more free
variables. As an alternative to turning off varopt, a partial dependency among
the variables can be declared using the depend statement: solve then rearranges
the variable sequence but keeps any variable ahead of those on which it depends.

on varopt;
s:={a^3+b,b^2+c}$
solve(s,{a,b,c});

3 6
{{a=arbcomplex(1),b= - a ,c= - a }}

depend a,c; depend b,c; solve(s,{a,b,c});

{{c=arbcomplex(2),

6
a=root_of(a_ + c,a_),

3
b= - a }}

Here solve is forced to put c after a and after b, but there is no obstacle to inter-
changing a and b.

7.18 Support for Solving Inequalities

The operator ineq_solve tries to solves single inequalities and sets of coupled
inequalities4. The following types of systems are supported:

• only numeric coefficients (no parametric system),

• a linear system of mixed equations and ≤,≥ inequalities, applying the
method of Fourier and Motzkin, as described by G. B. Dantzig in [Dan63],

• a univariate inequality with≤,≥,< or> operator and polynomial or rational
left–hand and right–hand sides, or a system of such inequalities with only
one variable.

4This code was written by Herbert Melenk.
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For linear optimization problems please use the operator simplex of the LINALG

package (cf. section 20.33).

Syntax:

ineq_solve(〈expr〉 [, 〈vl〉])

where 〈expr〉 is an inequality or a list of coupled inequalities and equations, and the
optional argument 〈vl〉 is a single variable (kernel) or a list of variables (kernels). If
not specified, they are extracted automatically from 〈expr〉. For multivariate input
an explicit variable list specifies the elimination sequence: the last member is the
most specific one.

An error message occurs if the input cannot be processed by the currently imple-
mented algorithms.

The result is a list. It is empty if the system has no feasible solution. Otherwise
the result presents the admissible ranges as set of equations where each variable
is equated to one expression or to an interval. The most specific variable is the
first one in the result list and each form contains only preceding variables (resolved
form). The interval limits can be formal max or min expressions. Algebraic num-
bers are encoded as rounded number approximations.

Examples:

ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x>0});

{x=(0 .. 0.326583),x=(1 .. 2.56777)}

reg:=
{a + b - c>=0, a - b + c>=0, - a + b + c>=0, 0>=0,
2>=0, 2*c - 2>=0, a - b + c>=0, a + b - c>=0,
- a + b + c - 2>=0, 2>=0, 0>=0, 2*b - 2>=0,

k + 1>=0, - a - b - c + k>=0,
- a - b - c + k + 2>=0, - 2*b + k>=0,
- 2*c + k>=0, a + b + c - k>=0,

2*b + 2*c - k - 2>=0, a + b + c - k>=0}$

ineq_solve (reg,{k,a,b,c});

{c=(1 .. infinity),

b=(1 .. infinity),

a=(max( - b + c,b - c) .. b + c - 2),
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k=a + b + c}

7.19 Finding Rational or Integer Zeros

The operators r_solve and i_solve compute the exact rational zeros of a sin-
gle univariate polynomial using fast modular methods. The algorithm used is that
described by R. Loos ([Loo83]). The operator r_solve computes all rational ze-
ros whereas the operator i_solve computes only integer zeros in a way that is
slightly more efficient than extracting them from the rational zeros. The r_solve
and i_solve interfaces are almost identical, and are intended to be completely
compatible with that of the general r_solve operator, although r_solve and
i_solve give more convenient output when only rational or integer zeros respec-
tively are required. The current implementation appears to be faster than solve
by a factor that depends on the example, but is typically up to about 2.5

Extension to compute Gaussian integer and rational zeros and zeros of polynomial
systems is planned.

7.19.1 The user interface

The first argument is required and must simplify to either a univariate polynomial
expression or equation with integer, rational or rounded coefficients. Symbolic
coefficients are not allowed (and currently complex coefficients are not allowed
either.) The argument is simplified to a quotient of integer polynomials and the
denominator is silently ignored.

ARBRAT Subsequent arguments are optional. If the polynomial variable is to be
specified then it must be the first optional argument, and if the first optional argu-
ment is not a valid option (see below) then it is (mis-)interpreted as the polynomial
variable. However, since the variable in a non-constant univariate polynomial can
be deduced from the polynomial it is unnecessary to specify it separately, except
in the degenerate case that the first argument simplifies to either 0 or 0 = 0. In
this case the result is returned by i_solve in terms of the operator arbint and
by r_solve in terms of the (new) analogous operator arbrat. The operator
i_solve will generally run slightly faster than r_solve.

The (rational or integer) zeros of the first argument are returned as a list and the
default output format is the same as that used by solve. Each distinct zero is
returned in the form of an equation with the variable on the left and the multi-
plicities of the zeros are assigned to the variable root_multiplicities as
a list. However, if the switch multiplicities is turned on then each zero

5This code was written by Francis J. Wright.
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is explicitly included in the solution list the appropriate number of times (and
root_multiplicities has no value).

Optional keyword arguments acting as local switches allow other output formats.
They have the following meanings:

separate: assign the multiplicity list to the global variable
root_multiplicities (the default);

expand or multiplicities: expand the solution list to include multiple ze-
ros multiple times (the default if the multiplicities switch is on);

together: return each solution as a list whose second element is the multiplic-
ity;

nomul: do not compute multiplicities (thereby saving some time);

noeqs: do not return univariate zeros as equations but just as values.

7.19.2 Examples

r_solve((9x^2 - 16)*(x^2 - 9), x);{
x =

−4
3
, x = 3, x = −3, x =

4

3

}
i_solve((9x^2 - 16)*(x^2 - 9), x);

{x = 3, x = −3}

See the test/demonstration file rsolve.tst for more examples.

7.19.3 Tracing

The switch trsolve turns on tracing of the algorithm. It is off by default.

7.20 Modular Solve and Roots

The operators (m_solve) and (m_roots) are for modular polynomials and modular
polynomial systems.6 The moduli need not be primes. m_solve requires a mod-
ulus to be set. m_roots takes the modulus as a second argument. For example:

6This code was written by Herbert Melenk.
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on modular; setmod 8;
m_solve(2x=4); -> {{X=2},{X=6}}
m_solve({x^2-y^3=3});

-> {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}}
m_solve({x=2,x^2-y^3=3}); -> {{X=2,Y=1}}
off modular;
m_roots(x^2-1,8); -> {1,3,5,7}
m_roots(x^3-x,7); -> {0,1,6}

7.21 Even and Odd Operators

An operator can be declared to be even or odd in its first argument by the declara-
tions even and odd respectively. Expressions involving an operator declared in
this manner are transformed if the first argument contains a minus sign. Any other
arguments are not affected. In addition, if say f is declared odd, then f(0) is
replaced by zero unless f is also declared non zero by the declaration nonzero.
For example, the declarations

even f1; odd f2;

mean that

f1(-a) -> f1(a)
f2(-a) -> -f2(a)
f1(-a,-b) -> f1(a,-b)
f2(0) -> 0.

To inhibit the last transformation, say nonzero f2;.

7.22 Linear Operators

An operator can be declared to be linear in its first argument over powers of its
second argument. If an operator f is so declared, f of any sum is broken up into
sums of fs, and any factors that are not powers of the variable are taken outside.
This means that f must have (at least) two arguments. In addition, the second
argument must be an identifier (or more generally a kernel), not an expression.

Example:

If F were declared linear, then

f(a*x^5+b*x+c,x) ->
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5
f(x ,x)*a + f(x,x)*b + f(1,x)*c

More precisely, not only will the variable and its powers remain within the scope
of the f operator, but so will any variable and its powers that had been declared
to depend on the prescribed variable; and so would any expression that contains
that variable or a dependent variable on any level, e.g. cos(sin(x)).

To declare operators f and g to be linear operators, use:

linear f,g;

The analysis is done of the first argument with respect to the second; any other
arguments are ignored. It uses the following rules of evaluation:

f(0) −→ 0
f(-y,x) −→ -f(y,x)
f(y+z,x) −→ f(y,x)+f(z,x)
f(y*z,x) −→ z*f(y,x) if z does not depend on x
f(y/z,x) −→ f(y,x)/z if z does not depend on x

To summarize, y “depends” on the indeterminate x in the above if either of the
following hold:

1. y is an expression that contains x at any level as a variable, e.g.,
cos(sin(x))

2. Any variable in the expression y has been declared dependent on x by use
of the declaration depend.

The use of such linear operators can be seen in the paper [FH74] which contains a
complete listing of a program for definite integration of some expressions that arise
in fourth order quantum electrodynamics.

7.23 Non-Commuting Operators

An operator can be declared to be non-commutative under multiplication by the
declaration noncom.

Example:

After the declaration

noncom u,v;
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the expressions u(x)*u(y)-u(y)*u(x) and u(x)*v(y)-v(y)*u(x) will
remain unchanged on simplification, and in particular will not simplify to zero.

Note that it is the operators (u and v in the above example) and not the variable
that have the non-commutative property.

The let statement may be used to introduce rules of evaluation for such operators.
In particular, the boolean operator ordp is useful for introducing an ordering on
such expressions.

Example:

The rule

for all x,y such that x neq y and ordp(x,y)
let u(x)*u(y)= u(y)*u(x)+comm(x,y);

would introduce the commutator of u(x) and u(y) for all x and y. Note that
since ordp(x,x) is true, the equality check is necessary in the degenerate case
to avoid a circular loop in the rule.

7.24 Symmetric and Antisymmetric Operators

An operator can be declared to be symmetric with respect to its arguments by the
declaration symmetric. For example

symmetric u,v;

means that any expression involving the top level operators u or v will have its
arguments reordered to conform to the internal order used by REDUCE. The user
can change this order for kernels by the command korder.

For example, u(x,v(1,2)) would become u(v(2,1),x), since numbers are
ordered in decreasing order, and expressions are ordered in decreasing order of
complexity.

Similarly the declaration antisymmetric declares an operator antisymmetric.
For example,

antisymmetric l,m;

means that any expression involving the top level operators l or m will have its
arguments reordered to conform to the internal order of the system, and the sign
of the expression changed if there are an odd number of argument interchanges
necessary to bring about the new order.

For example, l(x,m(1,2)) would become -l(-m(2,1),x) since one inter-
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change occurs with each operator. An expression like l(x,x) would also be
replaced by 0.

7.25 Declaring New Prefix Operators

The user may add new prefix operators to the system by using the declaration
operator. For example:

operator h,g1,arctan;

adds the prefix operators h, g1 and arctan to the system.

This allows symbols like h(w), h(x,y,z), g1(p+q), arctan(u/v) to
be used in expressions, but no meaning or properties of the operator are implied.
The same operator symbol can be used equally well as a 0-, 1-, 2-, 3-, etc.-place
operator.

To give a meaning to an operator symbol, or express some of its properties, let
statements can be used, or the operator can be given a definition as a procedure.

If the user forgets to declare an identifier as an operator, the system will prompt the
user to do so in interactive mode, or do it automatically in non-interactive mode.
A diagnostic message will also be printed if an identifier is declared operator
more than once.

Operators once declared are global in scope, and so can then be referenced any-
where in the program. In other words, a declaration within a block (or a procedure)
does not limit the scope of the operator to that block, nor does the operator go away
on exiting the block (use clear instead for this purpose).

An operator declared print_indexed has its arguments displayed as indices,
e.g. after print_indexed a; the operator value a(i,2) is displayed as ai,2.
You can declare several operators together to be indexed, e.g.

print_indexed b, c;

and remove indexed declarations using print_noindexed.

7.26 Declaring New Infix Operators

Users can add new infix operators by using the infix and precedence decla-
rations. For example,

infix mm;
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precedence mm,-;

The declaration infix mm; would allow one to use the symbol mm as an infix
operator:

a mm b instead of mm(a,b).

The declaration precedence mm,-; says that mm should be inserted into the
infix operator precedence list just after the − operator. This gives it higher prece-
dence than − and lower precedence than * . Thus

a - b mm c - d means a - (b mm c) - d,

while

a * b mm c * d means (a * b) mm (c * d).

Both infix and prefix operators have no transformation properties unless let state-
ments or procedure declarations are used to assign a meaning.

We should note here that infix operators so defined are always binary:

a mm b mm c means (a mm b) mm c.

7.27 Creating / Removing Variable Dependency

There are several facilities in REDUCE, such as the differentiation operator and
the linear operator facility, that can utilize knowledge of the dependency between
various variables, or kernels. Such dependency may be expressed by the command
depend. This takes an arbitrary number of arguments and sets up a dependency
of the first argument on the remaining arguments. For example,

depend x,y,z;

says that x is dependent on both y and z.

depend z,cos(x),y;

says that z is dependent on cos(x) and y.

Dependencies introduced by depend can be removed by nodepend. The argu-
ments of this are the same as for depend. For example, given the above depen-
dencies,
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nodepend z,cos(x);

says that z is no longer dependent on cos(x), although it remains dependent on
y.

As a convenience, one or more dependent variables can be specified together in a
list for both the depend and nodepend commands, i.e.

(no)depend {y1, y2, . . .}, x1, x2, . . .

is equivalent to

(no)depend y1, x1, x2, . . .; (no)depend y2, x1, x2, . . .; . . .

Both commands also accept a sequence of “dependence sequences”, where the
beginning of each new dependence sequence is indicated by a list of one or more
dependent variables. For example,

depend {x,y,z},u,v,{theta},time;

is equivalent to

depend x,u,v;
depend y,u,v;
depend z,u,v;
depend theta,time;



Chapter 8

Display and Structuring of
Expressions

In this section, we consider a variety of commands and operators that permit the
user to obtain various parts of algebraic expressions and also display their structure
in a variety of forms. Also presented are some additional concepts in the REDUCE
design that help the user gain a better understanding of the structure of the system.

8.1 Kernels

REDUCE is designed so that each operator in the system has an evaluation (or
simplification) function associated with it that transforms the expression into an
internal canonical form. This form, which bears little resemblance to the original
expression, is described in detail in [Hea71].

The evaluation function may transform its arguments in one of two alternative
ways. First, it may convert the expression into other operators in the system, leav-
ing no functions of the original operator for further manipulation. This is in a sense
true of the evaluation functions associated with the operators +, * and / , for ex-
ample, because the canonical form does not include these operators explicitly. It
is also true of an operator such as the determinant operator det because the rel-
evant evaluation function calculates the appropriate determinant, and the operator
det no longer appears. On the other hand, the evaluation process may leave some
residual functions of the relevant operator. For example, with the operator cos,
a residual expression like cos(x) may remain after evaluation unless a rule for
the reduction of cosines into exponentials, for example, were introduced. These
residual functions of an operator are termed kernels and are stored uniquely like
variables. Subsequently, the kernel is carried through the calculation as a variable
unless transformations are introduced for the operator at a later stage.

129
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In those cases where the evaluation process leaves an operator expression with
non-trivial arguments, the form of the argument can vary depending on the state
of the system at the point of evaluation. Such arguments are normally produced in
expanded form with no terms factored or grouped in any way. For example, the
expression cos(2*x+2*y) will normally be returned in the same form. If the
argument 2*x+2*y were evaluated at the top level, however, it would be printed
as 2*(X+Y). If it is desirable to have the arguments themselves in a similar form,
the switch intstr (for “internal structure”), if on, will cause this to happen.

In cases where the arguments of the kernel operators may be reordered, the sys-
tem puts them in a canonical order, based on an internal intrinsic ordering of the
variables. However, some commands allow arguments in the form of kernels, and
the user has no way of telling what internal order the system will assign to these
arguments. To resolve this difficulty, we introduce the notion of a kernel form as
an expression that transforms to a kernel on evaluation.

Examples of kernel forms are:

a
cos(x*y)
log(sin(x))

whereas

a*b
(a+b)^4

are not.

We see that kernel forms can usually be used as generalized variables, and most
algebraic properties associated with variables may also be associated with kernels.

8.2 The Expression Workspace

Several mechanisms are available for saving and retrieving previously evaluated
expressions. The simplest of these refers to the last algebraic expression simpli-
fied. When an assignment of an algebraic expression is made, or an expression is
evaluated at the top level, (i.e., not inside a compound statement or procedure) the
results of the evaluation are automatically saved in a variable ws that we shall refer
to as the workspace. (More precisely, the expression is assigned to the variable ws
that is then available for further manipulation.)

Example:

If we evaluate the expression (x+y)^2 at the top level and next wish to differen-
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tiate it with respect to y, we can simply say

df(ws,y);

to get the desired answer.

If the user wishes to assign the workspace to a variable or expression for later use,
the saveas statement can be used. It has the syntax

saveas 〈expression〉

For example, after the differentiation in the last example, the workspace holds the
expression 2*x+2*y. If we wish to assign this to the variable z we can now say

saveas z;

If the user wishes to save the expression in a form that allows him to use some of
its variables as arbitrary parameters, the for all command can be used.

Example:

for all x saveas h(x);

with the above expression would mean that h(z) evaluates to 2*y+2*z.

A further method for referencing more than the last expression is described in
chapter 13 on interactive use of REDUCE.

8.3 Output of Expressions

A considerable degree of flexibility is available in REDUCE in the printing of
expressions generated during calculations. No explicit format statements are sup-
plied, as these are in most cases of little use in algebraic calculations, where the size
of output or its composition is not generally known in advance. Instead, REDUCE
provides a series of mode options to the user that should enable him to produce his
output in a comprehensible and possibly pleasing form.

The most extreme option offered is to suppress the output entirely from any top
level evaluation. This is accomplished by turning off the switch output which is
normally on. It is useful for limiting output when loading large files or producing
“clean” output from the prettyprint programs.

In most circumstances, however, we wish to view the output, so we need to know
how to format it appropriately. As we mentioned earlier, an algebraic expression
is normally printed in an expanded form, filling the whole output line with terms.
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Certain output declarations, however, can be used to affect this format. To begin
with, we look at an operator for changing the length of the output line.

8.3.1 LINELENGTH Operator

This operator is used with the syntax

linelength(num:integer):integer

and sets the output line length to the integer num. It returns the previous output
line length (so that it can be stored for later resetting of the output line if needed).

8.3.2 Output Declarations

We now describe a number of switches and declarations that are available for con-
trolling output formats. It should be noted, however, that the transformation of
large expressions to produce these varied output formats can take a lot of comput-
ing time and space. If a user wishes to speed up the printing of the output in such
cases, he can turn off the switch pri. If this is done, then output is produced in
one fixed format, which basically reflects the internal form of the expression, and
none of the options below apply. pri is normally on.

With pri on, the output declarations and switches available are as follows:

ORDER Declaration

The declaration order may be used to order variables on output. The syntax is:

order v1,...vn;

where the vi are kernels. Thus,

order x,y,z;

orders x ahead of y, y ahead of z and all three ahead of other variables not given
an order. order nil; resets the output order to the system default. The order
of variables may be changed by further calls of order, but then the reordered
variables would have an order lower than those in earlier order calls. Thus,

order x,y,z;
order y,x;

would order z ahead of y and x. The default ordering is usually alphabetic.
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FACTOR Declaration

This declaration takes a list of identifiers or kernels as argument. factor is not
a factoring command (use factorize or the factor switch for this purpose);
rather it is a separation command. All terms involving fixed powers of the declared
expressions are printed as a product of the fixed powers and a sum of the rest of the
terms.

For example, after the declaration

factor x;

the polynomial (x+ y + 1)2 will be printed as

2 2
x + 2*x*(y + 1) + y + 2*y + 1

All expressions involving a given prefix operator may also be factored by putting
the operator name in the list of factored identifiers. For example:

factor x,cos,sin(x);

causes all powers of x and sin(x) and all functions of cos to be factored.

Note that factor does not affect the order of its arguments. You should also use
order if this is important.

The declaration remfac v1,...,vn; removes the factoring flag from the ex-
pressions v1 through vn.

8.3.3 Output Control Switches

In addition to these declarations, the form of the output can be modified by switch-
ing various output control switches using the declarations on and off. We shall
illustrate the use of these switches by an example, namely the printing of the ex-
pression

x^2*(y^2+2*y)+x*(y^2+z)/(2*a) .

The relevant switches are as follows:

ALLFAC Switch

This switch will cause the system to search the whole expression, or any sub-
expression enclosed in parentheses, for simple multiplicative factors and print them
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outside the parentheses. Thus our expression with allfac off will print as

2 2 2 2
(2*x *y *a + 4*x *y*a + x*y + x*z)/(2*a)

and with allfac on as

2 2
x*(2*x*y *a + 4*x*y*a + y + z)/(2*a) .

allfac is normally on, and is on in the following examples, except where other-
wise stated.

DIV Switch

This switch makes the system search the denominator of an expression for simple
factors that it divides into the numerator, so that rational fractions and negative
powers appear in the output. With div on, our expression would print as

2 2 (-1) (-1)
x*(x*y + 2*x*y + 1/2*y *a + 1/2*a *z) .

div is normally off.

HORNER Switch

This switch causes the system to print polynomials according to Horner’s rule.
With horner on, our expression prints as

2
x*(y + z + 2*(y + 2)*a*x*y)/(2*a) .

horner is normally off.

LIST Switch

This switch causes the system to print each term in any sum on a separate line.
With list on, our expression prints as

2
x*(2*x*y *a
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+ 4*x*y*a

2
+ y

+ z)/(2*a) .

list is normally off.

NOSPLIT Switch

Under normal circumstances, the printing routines try to break an expression across
lines at a natural point. This is a fairly expensive process. If you are not overly
concerned about where the end-of-line breaks come, you can speed up the printing
of expressions by turning off the switch nosplit. This switch is normally on.

RAT Switch

This switch is only useful with expressions in which variables are factored with
factor. With this mode, the overall denominator of the expression is printed
with each factored sub-expression. We assume a prior declaration factor x; in
the following output. We first print the expression with rat set to off:

2 2
(2*x *y*a*(y + 2) + x*(y + z))/(2*a) .

With rat on the output becomes:

2 2
x *y*(y + 2) + x*(y + z)/(2*a) .

rat is normally off.

Next, if we leave x factored, and turn on both div and rat, the result becomes

2 (-1) 2
x *y*(y + 2) + 1/2*x*a *(y + z) .

Finally, with x factored, rat on and allfac off we retrieve the original structure

2 2 2
X *(Y + 2*Y) + X*(Y + Z)/(2*A) .
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RATPRI Switch

If the numerator and denominator of an expression can each be printed in one line,
the output routines will print them in a two dimensional notation, with numerator
and denominator on separate lines and a line of dashes in between. For example,
(a+b)/2 will print as

a + b
-----

2

Turning this switch off causes such expressions to be output in a linear form.

REVPRI Switch

The normal ordering of terms in output is from highest to lowest power. In some
situations (e.g., when a power series is output), the opposite ordering is more con-
venient. The switch revpri if on causes such a reverse ordering of terms. For
example, the expression y*(x+1)^2+(y+3)^2 will normally print as

2 2
x *y + 2*x*y + y + 7*y + 9

whereas with REVPRI on, it will print as

2 2
9 + 7*y + y + 2*x*y + x *y.

8.3.4 WRITE Command

In simple cases no explicit output command is necessary in REDUCE, since the
value of any expression is automatically printed if a semicolon is used as a delim-
iter. There are, however, several situations in which such a command is useful.

In a for, while, or repeat statement it may be desired to output something
each time the statement within the loop construct is repeated.

It may be desired for a procedure to output intermediate results or other information
while it is running. It may be desired to have results labeled in special ways,
especially if the output is directed to a file or device other than the terminal.

The write command consists of the word write followed by one or more items
separated by commas, and followed by a terminator. There are three kinds of items
that can be used:
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1. Expressions (including variables and constants). The expression is evalu-
ated, and the result is printed out.

2. Assignments. The expression on the right side of the := operator is evalu-
ated, and is assigned to the variable on the left; then the symbol on the left is
printed, followed by a “:=”, followed by the value of the expression on the
right – almost exactly the way an assignment followed by a semicolon prints
out normally. (The difference is that if the write is in a for statement and
the left-hand side of the assignment is an array position or something similar
containing the variable of the for iteration, then the value of that variable is
inserted in the printout.)

3. Arbitrary strings of characters, preceded and followed by double-quote
marks (e.g., "string").

The items specified by a single write statement print side by side on one line.
(The line is broken automatically if it is too long.) Strings print exactly as quoted.
The write command itself however does not return a value.

The print line is closed at the end of a write command evaluation. Therefore the
command write ""; (specifying nothing to be printed except the empty string)
causes a line to be skipped.

Examples:

1. if a is x+5, b is itself, c is 123, m is an array, and q=3, then

write m(q):=a," ",b/c," THANK YOU";

will set m(3) to x+5 and print

b
m(3) := x + 5 ----- THANK YOU

123

The blanks between the 5 and the fraction, and the fraction and t, come
from the blanks in the quoted strings.

2. To print a table of the squares of the integers from 1 to 20:

for i:=1:20 do write i," ",i^2;

3. To print a table of the squares of the integers from 1 to 20, and at the same
time store them in positions 1 to 20 of an array a:

for i:=1:20 do <<a(i):=i^2; write i," ",a(i)>>;
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This will give us two columns of numbers. If we had used

for i:=1:20 do write i," ",a(i):=i^2;

we would also get a(i) := repeated on each line.

4. The following more complete example calculates the famous f and g series,
first reported in [SLT65].

x1:= -sig*(mu+2*eps)$
x2:= eps - 2*sig^2$
x3:= -3*mu*sig$
f:= 1$
g:= 0$
for i:= 1 step 1 until 10 do begin

f1:= -mu*g+x1*df(f,eps)+x2*df(f,sig)+x3*df(f,mu);
write "f(",i,") := ",f1;
g1:= f+x1*df(g,eps)+x2*df(g,sig)+x3*df(g,mu);
write "g(",i,") := ",g1;
f:=f1$
g:=g1$

end;

A portion of the output, to illustrate the printout from the write command,
is as follows:

... <prior output> ...

2
f(4) := mu*(3*eps - 15*sig + mu)

g(4) := 6*sig*mu

2
f(5) := 15*sig*mu*( - 3*eps + 7*sig - mu)

2
g(5) := mu*(9*eps - 45*sig + mu)

... <more output> ...

When the switch nat is turned off, write adds a $ character to the end of the
output line, as illustrated below.
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8.3.5 Suppression of Zeros

It is sometimes annoying to have zero assignments (i.e. assignments of the form
〈expression〉 := 0) printed, especially in printing large arrays with many zero
elements. The output from such assignments can be suppressed by turning on the
switch nero.

8.3.6 FORTRAN Style Output Of Expressions

It is naturally possible to evaluate expressions numerically in REDUCE by giving
all variables and sub-expressions numerical values. However, as we pointed out
elsewhere the user must declare real arithmetical operation by turning on the switch
rounded. However, it should be remembered that arithmetic in REDUCE is not
particularly fast, since results are interpreted rather than evaluated in a compiled
form. The user with a large amount of numerical computation after all necessary
algebraic manipulations have been performed is therefore well advised to perform
these calculations in a FORTRAN or similar system. For this purpose, REDUCE
offers facilities for users to produce FORTRAN compatible files for numerical pro-
cessing.

First, when the switch fort is on, the system will print expressions in a FOR-
TRAN notation. Expressions begin in column seven. If an expression extends over
one line, a continuation mark (.) followed by a blank appears on subsequent cards.
After a certain number of lines have been produced (according to the value of the
variable card_no), a new expression is started. If the expression printed arises
from an assignment to a variable, the variable is printed as the name of the expres-
sion. Otherwise the expression is given the default name ans. An error occurs if
identifiers or numbers are outside the bounds permitted by FORTRAN.

A second option is to use the write command to produce other programs.

Example:

The following REDUCE statements

on fort;
out "forfil";
write "C this is a fortran program";
write " 1 format(e13.5)";
write " u=1.23";
write " v=2.17";
write " w=5.2";
x:=(u+v+w)^11;
write "C it was foolish to expand this expression";
write " print 1,x";
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write " end";
shut "forfil";
off fort;

will generate a file forfil that contains:

c this is a fortran program
1 format(e13.5)

u=1.23
v=2.17
w=5.2
ans1=1980.0*u**2*v**7*w**2+4620.0*u**2*v**6*w**3+6930.0*u**2*v
. **5*w**4+6930.0*u**2*v**4*w**5+4620.0*u**2*v**3*w**6+1980.0*u
. **2*v**2*w**7+495.0*u**2*v*w**8+55.0*u**2*w**9+11.0*u*v**10+
. 110.0*u*v**9*w+495.0*u*v**8*w**2+1320.0*u*v**7*w**3+2310.0*u*v
. **6*w**4+2772.0*u*v**5*w**5+2310.0*u*v**4*w**6+1320.0*u*v**3*w
. **7+495.0*u*v**2*w**8+110.0*u*v*w**9+11.0*u*w**10+v**11+11.0*v
. **10*w+55.0*v**9*w**2+165.0*v**8*w**3+330.0*v**7*w**4+462.0*v
. **6*w**5+462.0*v**5*w**6+330.0*v**4*w**7+165.0*v**3*w**8+55.0*
. v**2*w**9+11.0*v*w**10+w**11
x=u**11+11.0*u**10*v+11.0*u**10*w+55.0*u**9*v**2+110.0*u**9*v*w
. +55.0*u**9*w**2+165.0*u**8*v**3+495.0*u**8*v**2*w+495.0*u**8*v
. *w**2+165.0*u**8*w**3+330.0*u**7*v**4+1320.0*u**7*v**3*w+
. 1980.0*u**7*v**2*w**2+1320.0*u**7*v*w**3+330.0*u**7*w**4+462.0
. *u**6*v**5+2310.0*u**6*v**4*w+4620.0*u**6*v**3*w**2+4620.0*u**
. 6*v**2*w**3+2310.0*u**6*v*w**4+462.0*u**6*w**5+462.0*u**5*v**6
. +2772.0*u**5*v**5*w+6930.0*u**5*v**4*w**2+9240.0*u**5*v**3*w**
. 3+6930.0*u**5*v**2*w**4+2772.0*u**5*v*w**5+462.0*u**5*w**6+
. 330.0*u**4*v**7+2310.0*u**4*v**6*w+6930.0*u**4*v**5*w**2+
. 11550.0*u**4*v**4*w**3+11550.0*u**4*v**3*w**4+6930.0*u**4*v**2
. *w**5+2310.0*u**4*v*w**6+330.0*u**4*w**7+165.0*u**3*v**8+
. 1320.0*u**3*v**7*w+4620.0*u**3*v**6*w**2+9240.0*u**3*v**5*w**3
. +11550.0*u**3*v**4*w**4+9240.0*u**3*v**3*w**5+4620.0*u**3*v**2
. *w**6+1320.0*u**3*v*w**7+165.0*u**3*w**8+55.0*u**2*v**9+495.0*
. u**2*v**8*w+ans1

c it was foolish to expand this expression
print 1,x
end

If the arguments of a write statement include an expression that requires con-
tinuation records, the output will need editing, since the output routine prints the
arguments of write sequentially, and the continuation mechanism therefore gen-
erates its auxiliary variables after the preceding expression has been printed.

Finally, since there is no direct analog of list in FORTRAN, a comment line of the
form

c ***** invalid fortran construct (list) not printed

will be printed if you try to print a list with fort on.
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FORTRAN Output Options

There are a number of methods available to change the default format of the FOR-
TRAN output.

The breakup of the expression into subparts is such that the number of continuation
lines produced is less than a given number. This number can be modified by the
assignment

card_no := 〈number〉;

where 〈number〉 is the total number of cards allowed in a statement. The default
value of card_no is 20.

The width of the output expression is also adjustable by the assignment

fort_width := 〈integer〉;

fort_width which sets the total width of a given line to 〈integer〉. The initial
FORTRAN output width is 70.

REDUCE automatically inserts a decimal point after each isolated integer coeffi-
cient in a FORTRAN expression (so that, for example, 4 becomes 4. ). To prevent
this, set the period mode switch to off.

FORTRAN output is normally produced in lower case. If upper case is desired, the
switch fortupper should be turned on.

Finally, the default name ans assigned to an unnamed expression and its subparts
can be changed by the operator varname. This takes a single identifier as argu-
ment, which then replaces ans as the expression name. The value of varname is
its argument.

Further facilities for the production of FORTRAN and other language output are
provided by the GENTRAN and SCOPE packages described in sections 20.24 and
20.53.

8.3.7 Saving Expressions for Later Use as Input

It is often useful to save an expression on an external file for use later as input
in further calculations. The commands for opening and closing output files are
explained elsewhere. However, we see in the examples on output of expressions
that the standard “natural” method of printing expressions is not compatible with
the input syntax. So to print the expression in an input compatible form we must
inhibit this natural style by turning off the switch nat. If this is done, a dollar sign
will also be printed at the end of the expression.
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Example:

The following sequence of commands

off nat; out "out"; x := (y+z)^2; write "end";
shut "out"; on nat;

will generate a file out that contains

x := y**2 + 2*y*z + z**2$
end$

8.3.8 Displaying Expression Structure

In those cases where the final result has a complicated form, it is often convenient
to display the skeletal structure of the answer. The operator structr, that takes
a single expression as argument, will do this for you. Its syntax is:

structr(exprn:algebraic
[,id1:identifier[,id2:identifier]]);

The structure is printed effectively as a tree, in which the subparts are laid out with
auxiliary names. If the optional id1 is absent, the auxiliary names are prefixed by
the root ans. This root may be changed by the operator varname. If the optional
id1 is present, and is an array name, the subparts are named as elements of that
array, otherwise id1 is used as the root prefix. (The second optional argument
id2 is explained later.)

The exprn can be either a scalar or a matrix expression. Use of any other will
result in an error.

Example:

Let us suppose that the workspace contains ((a+b)^2+c)^3+d. Then the input
STRUCTR ws; will (with exp off) result in the output:

ans3

where

3
ans3 := ans2 + d

2
ans2 := ans1 + c
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ans1 := a + b

The workspace remains unchanged after this operation, since structr in the de-
fault situation returns no value (if structr is used as a sub-expression, its value
is taken to be 0). In addition, the sub-expressions are normally only displayed and
not retained. If you wish to access the sub-expressions with their displayed names,
the switch savestructr should be turned on. In this case, structr returns a
list whose first element is a representation for the expression, and subsequent ele-
ments are the sub-expression relations. Thus, with savestructr on, structr
ws in the above example would return

3 2
{ans3,ans3=ans2 + d,ans2=ans1 + c,ans1=a + b}

The part operator can be used to retrieve the required parts of the expression. For
example, to get the value of ans2 in the above, one could say:

part(ws,3,2);

If fort is on, then the results are printed in the reverse order; the algorithm in fact
guaranteeing that no sub-expression will be referenced before it is defined. The
second optional argument id2 may also be used in this case to name the actual
expression (or expressions in the case of a matrix argument).

Example:

Let us suppose that m, a 2 by 1 matrix, contains the elements ((a+b)^2 + c)^3
+ d and (a + b)*(c + d) respectively, and that v has been declared to be an
array. With exp off and fort on, the statement structr(2*m,v,k); will
result in the output

v(1)=a+b
v(2)=v(1)**2+c
v(3)=v(2)**3+d
v(4)=c+d
k(1,1)=2.*v(3)
k(2,1)=2.*v(1)*v(4)

8.4 Changing the Internal Order of Variables

The internal ordering of variables (more specifically kernels) can have a significant
effect on the space and time associated with a calculation. In its default state, RE-
DUCE uses a specific order for this which may vary between sessions. However,
it is possible for the user to change this internal order by means of the declaration
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korder. The syntax for this is:

korder v1,...,vn;

where the vi are kernels. With this declaration, the vi are ordered internally ahead
of any other kernels in the system. v1 has the highest order, v2 the next highest,
and so on. A further call of korder replaces a previous one. korder nil;
resets the internal order to the system default.

Unlike the order declaration, that has a purely cosmetic effect on the way results
are printed, the use of korder can have a significant effect on computation time.
In critical cases then, the user can experiment with the ordering of the variables
used to determine the optimum set for a given problem.

8.5 Obtaining Parts of Algebraic Expressions

There are many occasions where it is desirable to obtain a specific part of an ex-
pression, or even change such a part to another expression. A number of operators
are available in REDUCE for this purpose, and will be described in this section. In
addition, operators for obtaining specific parts of polynomials and rational funct-
ions (such as a denominator) are described in another section.

8.5.1 COEFF Operator

Syntax:

coeff(exprn:polynomial,var:kernel)

coeff is an operator that partitions exprn into its various coefficients with re-
spect to var and returns them as a list, with the coefficient independent of var
first.

Under normal circumstances, an error results if exprn is not a polynomial in var,
although the coefficients themselves can be rational as long as they do not depend
on var. However, if the switch ratarg is on, denominators are not checked for
dependence on var, and are taken to be part of the coefficients.

Example:

coeff((y^2+z)^3/z,y);

returns the result

2
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{z ,0,3*z,0,3,0,1/z}.

whereas

coeff((y^2+z)^3/y,y);

gives an error if ratarg is off, and the result

3 2
{z /y,0,3*z /y,0,3*z/y,0,1/y}

if ratarg is on.

The length of the result of coeff is the highest power of var encountered plus
1. In the above examples it is 7. In addition, the variable high_pow is set to
the highest non-zero power found in exprn during the evaluation, and low_pow
to the lowest non-zero power, or zero if there is a constant term. If exprn is a

constant, then high_pow and low_pow are both set to zero.

8.5.2 COEFFN Operator

The coeffn operator is designed to give the user a particular coefficient of a vari-
able in a polynomial, as opposed to coeff that returns all coefficients. coeffn
is used with the syntax

coeffn(exprn:polynomial,var:kernel,n:integer)

It returns the nth coefficient of var in the polynomial exprn.

8.5.3 PART Operator

Syntax:

part(exprn:algebraic[,intexp:integer])

This operator works on the form of the expression as printed or as it would have
been printed at that point in the calculation bearing in mind all the relevant switch
settings at that point. The reader therefore needs some familiarity with the way
that expressions are represented in prefix form in REDUCE to use these operators
effectively. Furthermore, it is assumed that pri is on at that point in the calcula-
tion. The reason for this is that with pri off, an expression is printed by walking
the tree representing the expression internally. To save space, it is never actually
transformed into the equivalent prefix expression as occurs when pri is on. How-
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ever, the operations on polynomials described elsewhere can be equally well used
in this case to obtain the relevant parts.

The evaluation proceeds recursively down the integer expression list. In other
words,

part(〈expression〉, 〈integer1〉, 〈integer2〉)
−→ part(part(〈expression〉, 〈integer1〉), 〈integer2〉)

and so on, and

part(〈expression〉) −→ 〈expression〉.

intexp can be any expression that evaluates to an integer. If the integer is pos-
itive, then that term of the expression is found. If the integer is 0, the operator
is returned. Finally, if the integer is negative, the counting is from the tail of the
expression rather than the head.

For example, if the expression a+b is printed as a+b (i.e., the ordering of the
variables is alphabetical), then

part(a+b,2) -> b
part(a+b,-1) -> b

and
part(a+b,0) -> plus

If M is either a matrix or a matrix-valued expression then part(M,i) evaluates
to row i represented as a list, and (hence) part(M,i,j) evaluates to the matrix
element in row i and column j.

An operator arglength is available to determine the number of arguments of the
top level operator in an expression. If the expression does not contain a top level
operator, then −1 is returned. For example,

arglength(a+b+c) -> 3
arglength(f()) -> 0
arglength(a) -> -1

8.5.4 Substituting for Parts of Expressions

part may also be used to substitute for a given part of an expression. In this case,
the part construct appears on the left-hand side of an assignment statement, and
the expression to replace the given part on the right-hand side.

For example, with the normal settings of the REDUCE switches:
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xx := a+b;
part(xx,2) := c; -> a+c
part(c+d,0) := -; -> c-d

Note that xx in the above is not changed by this substitution. In addition, un-
like expressions such as array and matrix elements that have an instant evaluation
property, the values of part(xx,2) and part(c+d,0) are also not changed.

The part operator may be used to replace part of a matrix-valued expression, in-
cluding part of a matrix element. If it is used to replace a row then the replacement
must be a list with the same number of elements as the row.

8.6 COMPACT Operator

compact is an operator for the reduction of a polynomial in the presence of side
relations. It applies the side relations to the polynomial so that an equivalent ex-
pression results with as few terms as possible. For example, the evaluation of

compact(s*(1-sin x^2)+c*(1-cos x^2)+sin x^2+cos x^2,
{cos x^2+sin x^2=1});

yields the result

2 2
cos(x) *s + sin(x) *c + 1

The switch trcompact can be used to trace the operation.

8.7 TRIGSIMP package: Simplification and factorization
of trigonometric and hyperbolic functions

TRIGSIMP is a useful tool for all kinds of problems related to trigonometric
and hyperbolic simplification and factorization.1 There are three operators in-
cluded: trigsimp, trigfactorize and triggcd. The first is for simpli-
fying trigonometric or hyperbolic expressions and has many options, the second is
for factorizing them and the third is for finding the greatest common divisor of two
trigonometric or hyperbolic polynomials. This package is automatically loaded
when one of these operators is used.

1This code was written by Wolfram Koepf.
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8.7.1 Simplifying trigonometric expressions

As there is no normal form for trigonometric and hyperbolic expressions, the same
function can convert in many different directions, e.g. sin(2x) ↔ 2 sin(x) cos(x).
The user has the possibility to give several parameters to the operator trigsimp
in order to influence the transformations. It is possible to decide whether or not a
rational expression involving trigonometric and hyperbolic functions vanishes.

To simplify an expression f, one uses trigsimp(f[,options]). For exam-
ple:

trigsimp(sin(x)^2+cos(x)^2);

1

The possible options (where ∗ denotes the default) are:

1. sin∗ or cos;

2. sinh∗ or cosh;

3. expand∗, combine or compact;

4. hyp, trig or expon;

5. keepalltrig;

6. tan and/or tanh;

7. target arguments of the form variable / positive integer.

From each of the first four groups one can use at most one option, otherwise an
error message will occur. Options can be given in any order.

The first group fixes the preference used while transforming a trigonometric ex-
pression:

trigsimp(sin(x)^2);

2
sin(x)

trigsimp(sin(x)^2, cos);

2
- cos(x) + 1
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The second group is the equivalent for the hyperbolic functions.

The third group determines the type of transformation. With the default, expand,
an expression is transformed to use only simple variables as arguments:

trigsimp(sin(2x+y));

2
2*cos(x)*cos(y)*sin(x) - 2*sin(x) *sin(y) + sin(y)

With combine, products of trigonometric functions are transformed to trig-
onometric functions involving sums of variables:

trigsimp(sin(x)*cos(y), combine);

sin(x - y) + sin(x + y)
-------------------------

2

With compact, the REDUCE operator compact (cf. section 8.6) is applied to
f. This often leads to a simple form, but in contrast to expand one does not get a
normal form. For example:

trigsimp((1-sin(x)^2)^20*(1-cos(x)^2)^20, compact);

40 40
cos(x) *sin(x)

With an option from the fourth group, the input expression is transformed to
trigonometric, hyperbolic or exponential form respectively:

trigsimp(sin(x), hyp);

- sinh(i*x)*i

trigsimp(sinh(x), expon);

2*x
e - 1
----------

x
2*e

trigsimp(e^x, trig);
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cos(i*x) - sin(i*x)*i

Usually, tan, cot, sec, csc are expressed in terms of sin and cos. It can
sometimes be useful to avoid this, which is handled by the option keepalltrig:

trigsimp(tan(x+y), keepalltrig);

- (tan(x) + tan(y))
----------------------

tan(x)*tan(y) - 1

Alternatively, the options tan and/or tanh can be given to convert the output to
the specified form as far as possible:

trigsimp(tan(x+y), tan);

- (tan(x) + tan(y))
----------------------

tan(x)*tan(y) - 1

By default, the other functions used will be cos and/or cosh, unless the other
desired functions are also specified in which case this choice will be respected.

The final possibility is to specify additional target arguments for the trigonometric
or hyperbolic functions, each of which should have the form of a variable divided
by a positive integer. These additional arguments are treated as if they had oc-
curred within the expression to be simplified, and their denominators are used in
determining the overall denominator to use for each variable in the simplified form:

trigsimp(csc x - cot x + csc y - cot y, x/2, y/2, tan);

x y
tan(---) + tan(---)

2 2

It is possible to use the options of different groups simultaneously:

trigsimp(sin(x)^4, cos, combine);

cos(4*x) - 4*cos(2*x) + 3
---------------------------

8

Sometimes, it is necessary to handle an expression in separate steps:
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trigsimp((sinh(x)+cosh(x))^n+(cosh(x)-sinh(x))^n,
expon);

1 n n*x
(----) + e

x
e

trigsimp(ws, hyp);

2*cosh(n*x)

trigsimp((cosh(a*n)*sinh(a)*sinh(p)+
cosh(a)*sinh(a*n)*sinh(p)+
sinh(a - p)*sinh(a*n))/sinh(a));

cosh(a*n)*sinh(p) + cosh(p)*sinh(a*n)

trigsimp(ws, combine);

sinh(a*n + p)

The trigsimp operator can be applied to equations, lists and matrices (and com-
positions thereof) as well as scalar expressions, and automatically maps itself re-
cursively over such non-scalar data structures:

trigsimp( { sin(2x) = cos(2x) } );

2
{2*cos(x)*sin(x)= - 2*sin(x) + 1}

8.7.2 Factorizing trigonometric expressions

With trigfactorize(p,x) one can factorize the trigonometric or hyperbolic
polynomial p in terms of trigonometric functions of the argument x. The output
has the same format as that from the standard REDUCE operator factorize.
For example:

trigfactorize(sin(x), x/2);

x x
{{2,1},{sin(---),1},{cos(---),1}}

2 2



152 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

If the polynomial is not coordinated or balanced [Roa], the output will equal the
input. In this case, changing the value for x can help to find a factorization, e.g.

trigfactorize(1+cos(x), x);

{{cos(x) + 1,1}}

trigfactorize(1+cos(x), x/2);

x
{{2,1},{cos(---),2}}

2

The polynomial can consist of both trigonometric and hyperbolic functions:

trigfactorize(sin(2x)*sinh(2x), x);

{{4,1},

{sinh(x),1},

{cosh(x),1},

{sin(x),1},

{cos(x),1}}

The trigfactorize operator respects the standard REDUCE factorize
switch nopowers – see the REDUCE manual for details. Turning it on gives
the behaviour that was standard before REDUCE 3.7:

on nopowers;

trigfactorize(1+cos(x), x/2);

x x
{2,cos(---),cos(---)}

2 2

8.7.3 GCDs of trigonometric expressions

The operator triggcd is essentially an application of the algorithm behind
trigfactorize. With its help the user can find the greatest common divisor
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of two trigonometric or hyperbolic polynomials. It uses the method described in
[Roa]. The syntax is triggcd(p,q,x), where p and q are the trigonometric
polynomials and x is the argument to use. For example:

triggcd(sin(x), 1+cos(x), x/2);

x
cos(---)

2

triggcd(sin(x), 1+cos(x), x);

1

The polynomials p and q can consist of both trigonometric and hyperbolic funct-
ions:

triggcd(sin(2x)*sinh(2x), (1-cos(2x))*(1+cosh(2x)), x);

cosh(x)*sin(x)

8.7.4 Further Examples

With the help of this package the user can create identities:

trigsimp(tan(x)*tan(y));

sin(x)*sin(y)
---------------
cos(x)*cos(y)

trigsimp(ws, combine);

cos(x - y) - cos(x + y)
-------------------------
cos(x - y) + cos(x + y)

trigsimp((sin(x-a)+sin(x+a))/(cos(x-a)+cos(x+a)));

sin(x)
--------
cos(x)
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trigsimp(cosh(n*acosh(x))-cos(n*acos(x)), trig);

0

trigsimp(sec(a-b), keepalltrig);

csc(a)*csc(b)*sec(a)*sec(b)
-------------------------------
csc(a)*csc(b) + sec(a)*sec(b)

trigsimp(tan(a+b), keepalltrig);

- (tan(a) + tan(b))
----------------------

tan(a)*tan(b) - 1

trigsimp(ws, keepalltrig, combine);

tan(a + b)

Some difficult expressions can be simplified:

df(sqrt(1+cos(x)), x, 4);

5 4 3 2
( - 4*cos(x) - 4*cos(x) - 20*cos(x) *sin(x)

3 2 2 2
+ 12*cos(x) - 24*cos(x) *sin(x) + 20*cos(x)

4 2
- 15*cos(x)*sin(x) + 12*cos(x)*sin(x)

4 2
+ 8*cos(x) - 15*sin(x) + 16*sin(x) )/(16

4 3

*sqrt(cos(x) + 1)*(cos(x) + 4*cos(x)

2
+ 6*cos(x) + 4*cos(x) + 1))

on rationalize;
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trigsimp(ws);

sqrt(cos(x) + 1)
------------------

16

off rationalize;

taylor(sin(x+a)*cos(x+b), x, 0, 4);

cos(b)*sin(a) + (cos(a)*cos(b) - sin(a)*sin(b))*x

2
- (cos(a)*sin(b) + cos(b)*sin(a))*x

2*( - cos(a)*cos(b) + sin(a)*sin(b)) 3
+ --------------------------------------*x

3

cos(a)*sin(b) + cos(b)*sin(a) 4 5
+ -------------------------------*x + O(x )

3

trigsimp(ws, combine);

sin(a - b) + sin(a + b)
------------------------- + cos(a + b)*x

2

2 2*cos(a + b) 3
- sin(a + b)*x - --------------*x

3

sin(a + b) 4 5
+ ------------*x + O(x )

3

Certain integrals whose evaluation was not possible in REDUCE (without prepro-
cessing) are now computable:

int(trigsimp(sin(x+y)*cos(x-y)*tan(x)), x);

2
(cos(x) *x - cos(x)*sin(x) - 2*cos(y)*log(cos(x))*sin(y)
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2
+ sin(x) *x)/2

int(trigsimp(sin(x+y)*cos(x-y)/tan(x)), x);

x 2
(cos(x)*sin(x) - 2*cos(y)*log(tan(---) + 1)*sin(y)

2

x
+ 2*cos(y)*log(tan(---))*sin(y) + x)/2

2

Without the package, the integration fails, and in the second case one does not
receive an answer for many hours.

trigfactorize(sin(2x)*cos(y)^2, y/2);

{{2*cos(x)*sin(x),1},

y y
{cos(---) - sin(---),2},

2 2

y y
{cos(---) + sin(---),2}}

2 2

trigfactorize(sin(y)^4-x^2, y);

2 2
{{sin(y) + x,1},{sin(y) - x,1}}

trigfactorize(sin(x)*sinh(x), x/2);

{{4,1},

x
{sinh(---),1},

2

x
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{cosh(---),1},
2

x
{sin(---),1},

2

x
{cos(---),1}}

2

triggcd(-5+cos(2x)-6sin(x), -7+cos(2x)-8sin(x), x/2);

x x
2*cos(---)*sin(---) + 1

2 2

triggcd(1-2cosh(x)+cosh(2x), 1+2cosh(x)+cosh(2x), x/2);

x 2
2*sinh(---) + 1

2
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Chapter 9

Polynomials and Rationals

Many operations in computer algebra are concerned with polynomials and rational
functions. In this section, we review some of the switches and operators available
for this purpose. These are in addition to those that work on general expressions
(such as df and int) described elsewhere. In the case of operators, the arguments
are first simplified before the operations are applied. In addition, they operate
only on arguments of prescribed types, and produce a type mismatch error if given
arguments which cannot be interpreted in the required mode with the current switch
settings. For example, if an argument is required to be a kernel and a/2 is used
(with no other rules for a), an error

a/2 invalid as kernel

will result.

With the exception of those that select various parts of a polynomial or rational
function, these operations have potentially significant effects on the space and time
associated with a given calculation. The user should therefore experiment with
their use in a given calculation in order to determine the optimum set for a given
problem.

One such operation provided by the system is an operator length which returns
the number of top level terms in the numerator of its argument. For example,

length ((a+b+c)^3/(c+d));

has the value 10. To get the number of terms in the denominator, one would first
select the denominator by the operator den and then call length, as in

length den ((a+b+c)^3/(c+d));

Other operations currently supported, the relevant switches and operators, and the

159
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required argument and value modes of the latter, follow.

9.1 Controlling the Expansion of Expressions

The switch exp controls the expansion of expressions. If it is off, no expansion of
powers or products of expressions occurs. Users should note however that in this
case results come out in a normal but not necessarily canonical form. This means
that zero expressions simplify to zero, but that two equivalent expressions need not
necessarily simplify to the same form.

Example: With exp on, the two expressions

(a+b)*(a+2*b)

and

a^2+3*a*b+2*b^2

will both simplify to the latter form. With exp off, they would remain unchanged.
The switch exp is normally on. Note that if the complete factoring (allfac)
option is in force it affects the output independently of the setting of exp.

Several operators that expect a polynomial as an argument behave differently when
exp is off, since there is often only one term at the top level. For example, with
exp off

length((a+b+c)^3/(c+d));

returns the value 1.

9.2 Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials that
have integer coefficients, finding all factors that also have integer coefficients. The
package for doing this was written by Dr. Arthur C. Norman and Ms. P. Mary Ann
Moore at The University of Cambridge. It is described in [NM81].

The easiest way to use this facility is to turn on the switch factor, which causes
all expressions to be output in a factored form. For example, with factor on, the
expression a^2-b^2 is returned as (a+b)*(a-b).
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It is also possible to factorize a given expression explicitly. The operator
factorize that invokes this facility is used with the syntax

factorize((〈polynomial〉 [,prime integer]):〈list〉,

the optional argument of which will be described later. Thus to find and display all
factors of the cyclotomic polynomial x105 − 1, one could write:

factorize(x^105-1);

The result is a list of factor,exponent pairs. In the above example, there is no overall
numerical factor in the result, so the results will consist only of polynomials in x.
The number of such polynomials can be found by using the operator length. If
there is a numerical factor, as in factorizing 12x2 − 12, the first member of the
result will be a list with two elements: the numerical factor and its multiplicity
(1). It will however not be factored further. Prime factors of such numbers can be
found, using a probabilistic algorithm, by turning on the switch ifactor. For
example,

on ifactor; factorize(12x^2-12);

would result in the output

{{2,2},{3,1},{x + 1,1},{x - 1,1}}.

If the first argument of factorize is an integer, it will be decomposed into its
prime components, whether or not ifactor is on.

Note that the ifactor switch only affects the result of factorize. It has no
effect if the factor switch is also on.

The order in which the factors occur in the result (with the exception of a possi-
ble overall numerical coefficient which comes first) can be system dependent and
should not be relied on. Similarly it should be noted that any pair of individ-
ual factors can be negated without altering their product, and that REDUCE may
sometimes do that.

The factorizer works by first reducing multivariate problems to univariate ones and
then solving the univariate ones modulo small primes. It normally selects both
evaluation points and primes using a random number generator that should lead
to different detailed behavior each time any particular problem is tackled. If, for
some reason, it is known that a certain (probably univariate) factorization can be
performed effectively with a known prime, p say, this value of p can be handed to
factorize as a second argument. An error will occur if a non-prime is provided
to factorize in this manner. It is also an error to specify a prime that divides
the discriminant of the polynomial being factored, but users should note that this
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condition is not checked by the program, so this capability should be used with
care.

Factorization can be performed over a number of polynomial coefficient domains
in addition to integers. The particular description of the relevant domain should
be consulted to see if factorization is supported. For example, the following state-
ments will factorize x4 + 1 modulo 7:

setmod 7;
on modular;
factorize(x^4+1);

The factorization module is provided with a trace facility that may be useful as a
way of monitoring progress on large problems, and of satisfying curiosity about the
internal workings of the package. The most simple use of this is enabled by issuing
the REDUCE command on trfac; . Following this, all calls to the factorizer
will generate informative messages reporting on such things as the reduction of
multivariate to univariate cases, the choice of a prime and the reconstruction of
full factors from their images. Further levels of detail in the trace are intended
mainly for system tuners and for the investigation of suspected bugs. For example,
trallfac gives tracing information at all levels of detail. on overview; re-
duces the amount of detail presented in other forms of trace. Other forms of trace
output are enabled by directives of the form

symbolic set!-trace!-factor(<number>,<filename>);

where useful numbers are 1, 2, 3 and 100, 101, ... . This facility is intended to make
it possible to discover in fairly great detail what just some small part of the code has
been doing — the numbers refer mainly to depths of recursion when the factorizer
calls itself, and to the split between its work forming and factorizing images and
reconstructing full factors from these. If nil is used in place of a filename the
trace output requested is directed to the standard output stream. After use of this
trace facility the generated trace files should be closed by calling

symbolic close!-trace!-files();

NOTE: Using the factorizer with mcd off will result in an error.

9.3 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factors in the numer-
ators and denominators of expressions, at the option of the user. The system will
perform this greatest common divisor computation if the switch gcd is on. (gcd
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is normally off.)

A check is automatically made, however, for common variable and numerical prod-
ucts in the numerators and denominators of expressions, and the appropriate can-
cellations made.

When gcd is on, and exp is off, a check is made for square free factors in an
expression. This includes separating out and independently checking the content
of a given polynomial where appropriate. (For an explanation of these terms, see
[Hea79].)

Example: With exp off and gcd on, the polynomial a*c+a*d+b*c+b*d would
be returned as (a+b)*(c+d).

Under normal circumstances, GCDs are computed using an algorithm described in
the above paper. It is also possible in REDUCE to compute GCDs using an al-
ternative algorithm, called the EZGCD Algorithm, which uses modular arithmetic.
The switch ezgcd, if on in addition to gcd, makes this happen.

In non-trivial cases, the EZGCD algorithm is almost always better than the basic
algorithm, often by orders of magnitude. We therefore strongly advise users to
use the ezgcd switch where they have the resources available for supporting the
package.

For a description of the EZGCD algorithm, [MY73].

NOTE: This package shares code with the factorizer, so a certain amount of trace
information can be produced using the factorizer trace switches.

An implementation of the heuristic GCD algorithm, first introduced by B.W. Char,
K.O. Geddes and G.H. Gonnet, as described in [DP85], is also available on an
experimental basis. To use this algorithm, the switch heugcd should be on in
addition to gcd. Note that if both ezgcd and heugcd are on, the former takes
precedence.

9.3.1 Determining the GCD of Two Polynomials

This operator, used with the syntax

gcd(exprn1:polynomial,exprn2:polynomial):polynomial,

returns the greatest common divisor of the two polynomials exprn1 and exprn2.

Examples:

gcd(x^2+2*x+1,x^2+3*x+2) -> x+1
gcd(2*x^2-2*y^2,4*x+4*y) -> 2*x+2*y
gcd(x^2+y^2,x-y) -> 1.



164 CHAPTER 9. POLYNOMIALS AND RATIONALS

9.4 Working with Least Common Multiples

Greatest common divisor calculations can often become expensive if extensive
work with large rational expressions is required. However, in many cases, the only
significant cancellations arise from the fact that there are often common factors
in the various denominators which are combined when two rationals are added.
Since these denominators tend to be smaller and more regular in structure than the
numerators, considerable savings in both time and space can occur if a full GCD
check is made when the denominators are combined and only a partial check when
numerators are constructed. In other words, the true least common multiple of
the denominators is computed at each step. The switch lcm is available for this
purpose, and is normally on.

In addition, the operator lcm, used with the syntax

lcm(exprn1:polynomial,exprn2:polynomial):polynomial,

returns the least common multiple of the two polynomials exprn1 and exprn2.

Examples:

lcm(x^2+2*x+1,x^2+3*x+2) -> x**3 + 4*x**2 + 5*x + 2
lcm(2*x^2-2*y^2,4*x+4*y) -> 4*(x**2 - y**2)

9.5 Controlling Use of Common Denominators

When two rational functions are added, REDUCE normally produces an expression
over a common denominator. However, if the user does not want denominators
combined, he or she can turn off the switch mcd which controls this process. The
latter switch is particularly useful if no greatest common divisor calculations are
desired, or excessive differentiation of rational functions is required.

CAUTION: With mcd off, results are not guaranteed to come out in either normal
or canonical form. In other words, an expression equivalent to zero may in fact not
be simplified to zero. This option is therefore most useful for avoiding expression
swell during intermediate parts of a calculation.

mcd is normally on.

9.6 Euclidean Division

The operators divide, poly_quotient and mod / remainder imple-
ment Euclidean division of polynomials (over the current number domain). The
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remainder operator is used with the syntax

remainder(exprn1:polynomial,exprn2:polynomial):
polynomial.

It returns the remainder when exprn1 is divided by exprn2. This is the true
remainder based on the internal ordering of the variables, and not the pseudo-
remainder.

Examples:

remainder((x + y)*(x + 2*y), x + 3*y) -> 2*y^2
remainder(2*x + y, 2) -> y

CAUTION: In the default case, remainders are calculated over the integers. If you
need the remainder with respect to another domain, it must be declared explicitly.

Example:

remainder(x^2 - 2, x + sqrt(2)); -> x^2 - 2
load_package arnum;
defpoly sqrt2^2 - 2;
remainder(x^2 - 2, x + sqrt2); -> 0

(Note the use of sqrt2 in place of sqrt(2) in the second call of remainder.)

The infix operator mod is an alias for remainder when at least one operand is
explicitly polynomial, e.g.

(x^2 + y^2) mod (x - y);

2
2*y

However, when both operands are integers, mod implements the integer modulus
operation, regardless of the current number domain, e.g.

7 mod 4 -> 3

The Euclidean division operator divide is used with the syntax

divide(exprn1:polynomial,exprn2:polynomial):
list(polynomial,polynomial)

and returns both the quotient and the remainder together as the first and second
elements of a list, e.g.
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divide(x^2 + y^2, x - y);

2
{x + y,2*y }

It can also be used as an infix operator:

(x^2 + y^2) divide (x - y);

2
{x + y,2*y }

The infix operator poly_quotient returns only the quotient, i.e. the first ele-
ment of the list returned by divide.

All Euclidean division operators (when used in prefix form) accept an optional
third argument, which specifies the main variable to be used during the division.
The default is the leading kernel in the current global ordering. Specifying the main
variable does not change the ordering of any other variables involved, nor does it
change the global environment. For example

divide(x^2 + y^2, x - y, y);

2
{ - (x + y),2*x }

Specifying x as main variable gives the same behaviour as the default shown ear-
lier, i.e.

divide(x^2 + y^2, x - y, x);

2
{x + y,2*y }

All Euclidean division operators accept a (possibly nested) list as first argu-
ment/operand and map over that list, e.g.

{x, x + 1, x^2 - 1} mod x - 1;

{1,2,0}
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9.7 Polynomial Pseudo-Division

The polynomial division discussed above is normally most useful for a univariate
polynomial over a field, otherwise the division is likely to fail giving trivially a zero
quotient and a remainder equal to the dividend. (A ring of univariate polynomials
is a Euclidean domain only if the coefficient ring is a field.) For example, over the
integers:

divide(x^2 + y^2, 2(x - y));

2 2
{0,x + y }

The division of a polynomial u(x) of degreem by a polynomial v(x) of degree n ≤
m can be performed over any commutative ring with identity (such as the integers,
or any polynomial ring) if the polynomial u(x) is first multiplied by lc(v, x)m−n+1

(where lc denotes the leading coefficient). This is called pseudo-division. The
polynomial pseudo-division operators pseudo_divide, pseudo_quotient
and pseudo_remainder are implemented as prefix operators (only). When
multivariate polynomials are pseudo-divided it is important which variable is taken
as the main variable, because the leading coefficient of the divisor is computed
with respect to this variable. Therefore, if this is allowed to default and there is any
ambiguity, i.e. the polynomials are multivariate or contain more than one kernel,
the pseudo-division operators output a warning message to indicate which kernel
has been selected as the main variable – it is the first kernel found in the internal
forms of the dividend and divisor. (As usual, the warning can be turned off by
setting the switch msg to off.) For example

pseudo_divide(x^2 + y^2, x - y);

*** Main division variable selected is x

2
{x + y,2*y }

pseudo_divide(x^2 + y^2, x - y, x);

2
{x + y,2*y }

pseudo_divide(x^2 + y^2, x - y, y);

2
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{ - (x + y),2*x }

If the leading coefficient of the divisor is a unit (invertible element) of the coeffi-
cient ring then division and pseudo-division should be identical, otherwise they are
not, e.g.

divide(x^2 + y^2, 2(x - y));

2 2
{0,x + y }

pseudo_divide(x^2 + y^2, 2(x - y));

*** Main division variable selected is x

2
{2*(x + y),8*y }

The pseudo-division gives essentially the same result as would division over the
field of fractions of the coefficient ring (apart from the overall factors [contents] of
the quotient and remainder), e.g.

on rational;

divide(x^2 + y^2, 2(x - y));

1 2
{---*(x + y),2*y }

2

pseudo_divide(x^2 + y^2, 2(x - y));

*** Main division variable selected is x

2
{2*(x + y),8*y }

Polynomial division and pseudo-division can only be applied to what REDUCE
regards as polynomials, i.e. rational expressions with denominator 1, e.g.

off rational;

pseudo_divide((x^2 + y^2)/2, x - y);
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2 2
x + y

***** --------- invalid as polynomial
2

All pseudo-division operators accept a (possibly nested) list as first argument/operand
and map over that list.

Pseudo-division is implemented using an algorithm ([Knu81], Algorithm R, page
407) that does not perform any actual division at all (which proves that it applies
over a ring). It is more efficient than the naive algorithm, and it also has the advan-
tage that it works over coefficient domains in which REDUCE may not be able to
perform in practice divisions that are possible mathematically. An example of this
is coefficient domains involving algebraic numbers, such as the integers extended
by
√
2, as illustrated in the file polydiv.tst.

The implementation attempts to be reasonably efficient, except that it always com-
putes the quotient internally even when only the remainder is required (as does the
standard remainder operator).

9.8 RESULTANT Operator

This is used with the syntax

resultant(〈polynomial〉,〈polynomial〉,〈kernel〉):〈polynomial〉.

It computes the resultant of the two given polynomials with respect to the given
variable, the coefficients of the polynomials can be taken from any domain. The
result can be identified as the determinant of a Sylvester matrix, but can often
also be thought of informally as the result obtained when the given variable is
eliminated between the two input polynomials. If the two input polynomials have
a non-trivial GCD their resultant vanishes.

The switch bezout controls the computation of the resultants. It is off by default.
In this case a subresultant algorithm is used. If the switch Bezout is turned on,
the resultant is computed via the Bezout Matrix. However, in the latter case, only
polynomial coefficients are permitted.

The sign conventions used by the resultant function follow those in [Loo82].
namely, with a and b not dependent on x:

resultant(p(x), q(x), x) = (−1)deg(p)·deg(q) · resultant(q(x), p(x), x)
resultant(a, q(x), x) = adeg(p)

resultant(a, b, x) = 1
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Examples:

2
resultant(x/r*u+y,u*y,u) -> - y

calculation in an algebraic extension:

load arnum;
defpoly sqrt2**2 - 2;

resultant(x + sqrt2,sqrt2 * x +1,x) -> -1

or in a modular domain:

setmod 17;
on modular;

resultant(2x+1,3x+4,x) -> 5

9.9 DECOMPOSE Operator

The decompose operator takes a multivariate polynomial as argument, and re-
turns an expression and a list of equations from which the original polynomial can
be found by composition. Its syntax is:

decompose(exprn:polynomial):list.

For example:

decompose(x^8-88*x^7+2924*x^6-43912*x^5+263431*x^4-
218900*x^3+65690*x^2-7700*x+234)
2 2 2

-> {u + 35*u + 234, u=v + 10*v, v=x - 22*x}
2

decompose(u^2+v^2+2u*v+1) -> {w + 1, w=u + v}

Users should note however that, unlike factorization, this decomposition is not
unique.
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9.10 INTERPOL Operator

Syntax:

interpol(〈values〉, 〈variable〉, 〈points〉);

where 〈values〉 and 〈points〉 are lists of equal length and <variable> is an alge-
braic expression (preferably a kernel).

interpol generates an interpolation polynomial f in the given variable of degree
length(〈values〉)-1. The unique polynomial f is defined by the property that for
corresponding elements v of 〈values〉 and p of 〈points〉 the relation f(p) = v holds.

The Aitken-Neville interpolation algorithm is used which guarantees a stable result
even with rounded numbers and an ill-conditioned problem.

9.11 Obtaining Parts of Polynomials and Rationals

These operators select various parts of a polynomial or rational function structure.
Except for the cost of rearrangement of the structure, these operations take very
little time to perform.

For those operators in this section that take a kernel var as their second argument,
an error results if the first expression is not a polynomial in var, although the coef-
ficients themselves can be rational as long as they do not depend on var. However,
if the switch ratarg is on, denominators are not checked for dependence on var,
and are taken to be part of the coefficients.

9.11.1 DEG Operator

This operator is used with the syntax

deg(exprn:polynomial,var:kernel):integer.

It returns the leading degree of the polynomial exprn in the variable var. If var
does not occur as a variable in exprn, 0 is returned.

Examples:

deg((a+b)*(c+2*d)^2,a) -> 1
deg((a+b)*(c+2*d)^2,d) -> 2
deg((a+b)*(c+2*d)^2,e) -> 0.

Note also that if ratarg is on,
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deg((a+b)^3/a,a) -> 3

since in this case, the denominator a is considered part of the coefficients of the
numerator in a. With ratarg off, however, an error would result in this case.

9.11.2 DEN Operator

This is used with the syntax:

den(exprn:rational):polynomial.

It returns the denominator of the rational expression exprn. If exprn is a poly-
nomial, 1 is returned.

Examples:

den(x/y^2) -> Y**2
den(100/6) -> 3

% since 100/6 is first simplified to 50/3
den(a/4+b/6) -> 12
den(a+b) -> 1

9.11.3 LCOF Operator

lcof is used with the syntax

lcof(exprn:polynomial,var:kernel):polynomial.

It returns the leading coefficient of the polynomial exprn in the variable var. If
var does not occur as a variable in exprn, exprn is returned. Examples:

lcof((a+b)*(c+2*d)^2,a) -> c**2+4*c*d+4*d**2
lcof((a+b)*(c+2*d)^2,d) -> 4*(a+b)
lcof((a+b)*(c+2*d),e) -> a*c+2*a*d+b*c+2*b*d

9.11.4 LPOWER Operator

Syntax:

lpower(exprn:polynomial,var:kernel):polynomial.

lpower returns the leading power of exprn with respect to var. If exprn does
not depend on var, 1 is returned.
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Examples:

lpower((a+b)*(c+2*d)^2,a) -> a
lpower((a+b)*(c+2*d)^2,d) -> d**2
lpower((a+b)*(c+2*d),e) -> 1

9.11.5 LTERM Operator

Syntax:

lterm(exprn:polynomial,var:kernel):polynomial.

lterm returns the leading term of exprn with respect to var. If exprn does
not depend on var, exprn is returned.

Examples:

lterm((a+b)*(c+2*d)^2,a) -> a*(c**2+4*c*d+4*d**2)
lterm((a+b)*(c+2*d)^2,d) -> 4*d**2*(a+b)
lterm((a+b)*(c+2*d),e) -> a*c+2*a*d+b*c+2*b*d

Compatibility Note: In some earlier versions of REDUCE, lterm returned 0 if
the exprn did not depend on var. In the present version, exprn is always equal
to lterm(exprn,var) + reduct(exprn,var).

9.11.6 MAINVAR Operator

Syntax:

mainvar(exprn:polynomial):expression.

Returns the main variable (based on the internal polynomial representation) of
exprn. If exprn is a domain element, 0 is returned.

Examples:

Assuming a has higher kernel order than b, c, or d:

mainvar((a+b)*(c+2*d)^2) -> a
mainvar(2) -> 0

9.11.7 NUM Operator

Syntax:
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num(exprn:rational):polynomial.

Returns the numerator of the rational expression exprn. If exprn is a polyno-
mial, that polynomial is returned.

Examples:

num(x/y^2) -> x
num(100/6) -> 50
num(a/4+b/6) -> 3*a+2*b
num(a+b) -> a+b

9.11.8 REDUCT Operator

Syntax:

reduct(exprn:polynomial,var:kernel):polynomial.

Returns the reductum of exprn with respect to var (i.e., the part of exprn left
after the leading term is removed). If exprn does not depend on the variable var,
0 is returned.

Examples:

reduct((a+b)*(c+2*d),a) -> b*(c + 2*d)
reduct((a+b)*(c+2*d),d) -> c*(a + b)
reduct((a+b)*(c+2*d),e) -> 0

Compatibility Note: In some earlier versions of REDUCE, reduct returned
exprn if it did not depend on var. In the present version, exprn is always
equal to lterm(exprn,var) + reduct(exprn,var).

9.11.9 TOTALDEG Operator

Syntax:

totaldeg(a*x^2+b*x+c, x) => 2
totaldeg(a*x^2+b*x+c, {a,b,c}) => 1
totaldeg(a*x^2+b*x+c, {x, a}) => 3
totaldeg(a*x^2+b*x+c, {x,b}) => 2
totaldeg(a*x^2+b*x+c, {p,q,r}) => 0

totaldeg(u, kernlist) finds the total degree of the polynomial u in the
variables in kernlist. If kernlist is not a list it is treated as a simple single
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variable. The denominator of u is ignored, and "degree" here does not pay attention
to fractional powers. Mentions of a kernel within the argument to any operator or
function (eg sin, cos, log, sqrt) are ignored. Really u is expected to be just a
polynomial.

9.12 Polynomial Coefficient Arithmetic

REDUCE allows for a variety of numerical domains for the numerical coefficients
of polynomials used in calculations. The default mode is integer arithmetic, al-
though the possibility of using real coefficients has been discussed elsewhere. Ra-
tional coefficients have also been available by using integer coefficients in both the
numerator and denominator of an expression, using the on div option to print
the coefficients as rationals. However, REDUCE includes several other coefficient
options in its basic version which we shall describe in this section. All such coef-
ficient modes are supported in a table-driven manner so that it is straightforward
to extend the range of possibilities. A description of how to do this is given in
[BHPS86].

9.12.1 Rational Coefficients in Polynomials

Instead of treating rational numbers as the numerator and denominator of a rational
expression, it is also possible to use them as polynomial coefficients directly. This
is accomplished by turning on the switch rational.

Example: With rational off, the input expression a/2 would be converted
into a rational expression, whose numerator was a and denominator 2. With
rational on, the same input would become a rational expression with numerator
1/2*a and denominator 1. Thus the latter can be used in operations that require
polynomial input whereas the former could not.

9.12.2 Real Coefficients in Polynomials

The switch rounded permits the use of arbitrary sized real coefficients in poly-
nomial expressions. The actual precision of these coefficients can be set by the
operator precision. For example, precision 50; sets the precision to
fifty decimal digits. The default precision is system dependent and can be found
by precision 0;. In this mode, denominators are automatically made monic,
and an appropriate adjustment is made to the numerator.

Example: With ROUNDED on, the input expression a/2 would be converted into a
rational expression whose numerator is 0.5*a and denominator 1.

Internally, REDUCE uses floating point numbers up to the precision supported by
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the underlying machine hardware, and so-called bigfloats for higher precision or
whenever necessary to represent numbers whose value cannot be represented in
floating point. The internal precision is two decimal digits greater than the external
precision to guard against roundoff inaccuracies. Bigfloats represent the fraction
and exponent parts of a floating-point number by means of (arbitrary precision)
integers, which is a more precise representation in many cases than the machine
floating point arithmetic, but not as efficient. If a case arises where use of the
machine arithmetic leads to problems, a user can force REDUCE to use the bigfloat
representation at all precisions by turning on the switch roundbf. In rare cases,
this switch is turned on by the system, and the user informed by the message

ROUNDBF turned on to increase accuracy

Rounded numbers are normally printed to the specified precision. However, if the
user wishes to print such numbers with less precision, the printing precision can be
set by the command print_precision. For example, print_precision
5; will cause such numbers to be printed with five digits maximum.

Under normal circumstances when rounded is on, REDUCE converts the number
1.0 to the integer 1. If this is not desired, the switch noconvert can be turned
on.

Numbers that are stored internally as bigfloats are normally printed with a space
between every five digits to improve readability. If this feature is not required, it
can be suppressed by turning off the switch bfspace.

Further information on the bigfloat arithmetic may be found in T. Sasaki, “Man-
ual for Arbitrary Precision Real Arithmetic System in REDUCE”, Department of
Computer Science, University of Utah, Technical Note No. TR-8 (1979).

When a real number is input, it is normally truncated to the precision in effect
at the time the number is read. If it is desired to keep the full precision of all
numbers input, the switch adjprec (for adjust precision) can be turned on. While
on, adjprec will automatically increase the precision, when necessary, to match
that of any integer or real input, and a message printed to inform the user of the
precision increase.

When rounded is on, rational numbers are normally converted to rounded rep-
resentation. However, if a user wishes to keep such numbers in a rational form
until used in an operation that returns a real number, the switch roundall can be
turned off. This switch is normally on.

Results from rounded calculations are returned in rounded form with two excep-
tions: if the result is recognized as 0 or 1 to the current precision, the integer result
is returned.
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9.12.3 Modular Number Coefficients in Polynomials

REDUCE includes facilities for manipulating polynomials whose coefficients are
computed modulo a given base. To use this option, two commands must be used;
setmod 〈integer〉, to set the prime modulus, and on modular to cause the
actual modular calculations to occur. For example, with setmod 3; and on
modular;, the polynomial (a+2*b)^3 would become a^3+2*b^3.

The argument of setmod is evaluated algebraically, except that non-modular (in-
teger) arithmetic is used. Thus the sequence

setmod 3; on modular; setmod 7;

will correctly set the modulus to 7.

Modular numbers are by default represented by integers in the interval [0,p-1]
where p is the current modulus. Sometimes it is more convenient to use an equiv-
alent symmetric representation in the interval [-p/2+1,p/2], or more precisely [-
floor((p-1)/2), ceiling((p-1)/2)], especially if the modular numbers map objects that
include negative quantities. The switch balanced_mod allows you to select the
symmetric representation for output.

Users should note that the modular calculations are on the polynomial coefficients
only. It is not currently possible to reduce the exponents since no check for a prime
modulus is made (which would allow xp−1 to be reduced to 1 mod p). Note also
that any division by a number not co-prime with the modulus will result in the error
“Invalid modular division”.

9.12.4 Complex Number Coefficients in Polynomials

Although REDUCE routinely treats the square of the variable i as equivalent to−1,
this is not sufficient to reduce expressions involving i to lowest terms, or to factor
such expressions over the complex numbers. For example, in the default case,

factorize(a^2+1);

gives the result

{{a**2+1,1}}

and

(a^2+b^2)/(a+i*b)

is not reduced further. However, if the switch complex is turned on, full complex
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arithmetic is then carried out. In other words, the above factorization will give the
result

{{a + i,1},{a - i,1}}

and the quotient will be reduced to a-i*b.

The switch complexmay be combined with rounded to give complex real num-
bers; the appropriate arithmetic is performed in this case. Similarly, combining
complex with rational performs polynomial arithmetic with complex ratio-
nal numbers.

Complex conjugation is used to remove complex numbers from denominators
of expressions. To do this if complex is off, you must turn the switch
rationalize on.

9.12.5 Algebraic Numbers as Coefficients in Polynomial

The ARNUM package1 provides facilities for handling algebraic numbers as poly-
nomial coefficients in REDUCE calculations. It includes facilities for introducing
indeterminates to represent algebraic numbers, for calculating splitting fields, and
for factoring and finding greatest common divisors in such domains.

Algebraic numbers are the solutions of an irreducible polynomial over some
ground domain. The algebraic number i (imaginary unit), for example, would
be defined by the polynomial i2 + 1. The arithmetic of algebraic number s can be
viewed as a polynomial arithmetic modulo the defining polynomial.

Given a defining polynomial for an algebraic number a

an + pn−1a
n−1 + ... + p0

All algebraic numbers which can be built up from a are then of the form:

rn−1a
n−1 + rn−2a

n−2 + ... + r0

where the rj’s are rational numbers.

The operation of addition is defined by

(rn−1a
n−1 + rn−2a

n−2 + ...) + (sn−1a
n−1 + sn−2a

n−2 + ...) =

(rn−1 + sn−1)a
n−1 + (rn−2 + sn−2)a

n−2 + ... (9.1)

Multiplication of two algebraic numbers can be performed by normal polynomial
multiplication followed by a reduction of the result with the help of the defining
polynomial.

1This package was written by Eberhard Schrüfer.
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(rn−1a
n−1 + rn−2a

n−2 + ...) × (sn−1a
n−1 + sn−2a

n−2 + ...) =

rn−1s
n−1a2n−2 + ... modulo (an + pn−1a

n−1 + ... + p0)

= qn−1a
n−1 + qn−2a

n−2 + ... (9.2)

Division of two algebraic numbers r and s yields another algebraic number q.
r
s = q or r = qs.

The last equation written out explicitly reads

(rn−1a
n−1 + rn−2a

n−2 + . . .)

= (qn−1a
n−1 + qn−2a

n−2 + . . .)× (sn−1a
n−1 + sn−2a

n−2 + . . .)

modulo (an + pn−1a
n−1 + . . .)

= (tn−1a
n−1 + tn−2a

n−2 + . . .)

The ti are linear in the qj . Equating equal powers of a yields a linear system for
the quotient coefficients qj .

With this, all field operations for the algebraic numbers are available. The transla-
tion into algorithms is straightforward. For an implementation we have to decide
on a data structure for an algebraic number. We have chosen the representation
REDUCE normally uses for polynomials, the so-called standard form. Since our
polynomials have in general rational coefficients, we must allow for a rational num-
ber domain inside the algebraic number.

〈 algebraic number 〉 ::=
:ar: . 〈 univariate polynomial over the rationals 〉

〈 univariate polynomial over the rationals 〉 ::=
〈 variable 〉 .** 〈 ldeg 〉 .* 〈 rational 〉 .+ 〈 reductum 〉

〈 ldeg 〉 ::= integer

〈 rational 〉 ::=
:rn: . 〈 integer numerator 〉 . 〈 integer denominator 〉 : integer

〈 reductum 〉 ::= 〈 univariate polynomial 〉 : 〈 rational 〉 : nil

This representation allows us to use the REDUCE functions for adding and multi-
plying polynomials on the tail of the tagged algebraic number. Also, the routines
for solving linear equations can easily be used for the calculation of quotients.
We are still left with the problem of introducing a particular algebraic number. In
the current version this is done by giving the defining polynomial to the statement
defpoly. The algebraic number sqrt(2), for example, can be introduced by
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defpoly sqrt2**2 - 2;

This statement associates a simplification function for the translation of the vari-
able in the defining polynomial into its tagged internal form and also generates a
power reduction rule used by the operations times and quotient for the reduction
of their result modulo the defining polynomial. A basis for the representation of
an algebraic number is also set up by the statement. In the working version, the
basis is a list of powers of the indeterminate of the defining polynomial up to one
less then its degree. Experiments with integral bases, however, have been very
encouraging, and these bases might be available in a later version. If the defining
polynomial is not monic, it will be made so by an appropriate substitution.

Example 1

defpoly sqrt2**2-2;

1/(sqrt2+1);

sqrt2 - 1

(x**2+2*sqrt2*x+2)/(x+sqrt2);

x + sqrt2

on gcd;

(x**3+(sqrt2-2)*x**2-(2*sqrt2+3)*x-3*sqrt2)/(x**2-2);

2
(x - 2*x - 3)/(x - sqrt2)

off gcd;

sqrt(x**2-2*sqrt2*x*y+2*y**2);

abs(x - sqrt2*y)

Until now we have dealt with only a single algebraic number. In practice this is not
sufficient as very often several algebraic numbers appear in an expression. There
are two possibilities for handling this: one can use multivariate extensions [Dav81]
or one can construct a defining polynomial that contains all specified extensions.
This package implements the latter case (the so called primitive representation).
The algorithm we use for the construction of the primitive element is the same as
given by Trager [Tra76]. In the implementation, multiple extensions can be given
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as a list of equations to the statement defpoly, which, among other things, adds
the new extension to the previously defined one. All algebraic numbers are then
expressed in terms of the primitive element.

Example 2

defpoly sqrt2**2-2,cbrt5**3-5;

*** defining polynomial for primitive element:

6 4 3 2
a1 - 6*a1 - 10*a1 + 12*a1 - 60*a1 + 17

sqrt2;

48 5 45 4 320 3 780 2
------*a1 + ------*a1 - ------*a1 - ------*a1
1187 1187 1187 1187

735 1820
+ ------*a1 - ------

1187 1187

sqrt2**2;

2

We can provide factorization of polynomials over the algebraic number domain by
using Trager’s algorithm. The polynomial to be factored is first mapped to a poly-
nomial over the integers by computing the norm of the polynomial, which is the
resultant with respect to the primitive element of the polynomial and the defining
polynomial. After factoring over the integers, the factors over the algebraic number
field are recovered by GCD calculations.

Example 3

defpoly a**2-5;

on factor;

x**2 + x - 1;

(x + (1/2*a + 1/2))*(x - (1/2*a - 1/2))
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We have also incorporated a function split_field for the calculation of a prim-
itive element of minimal degree for which a given polynomial splits into linear
factors. The algorithm as described in Trager’s article is essentially a repeated
primitive element calculation.

Example 4

split_field(x**3-3*x+7);

*** Splitting field is generated by:

6 4 2
a2 - 18*a2 + 81*a2 + 1215

4 2
{1/126*a2 - 5/42*a2 - 1/2*a2 + 2/7,

4 2
- (1/63*a2 - 5/21*a2 + 4/7),

4 2
1/126*a2 - 5/42*a2 + 1/2*a2 + 2/7}

for each j in ws product (x-j);

3
x - 3*x + 7

A more complete description can be found in [BHPS86].

9.13 Finding Roots

The simplest way to find roots of a univariate polynomial with real or complex
coefficients is to call solve with the switch rounded set to on. For example, the
evaluation of

on rounded,complex;
solve(x**3+x+5,x);
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yields the result

{x=0.757990113846 + 1.65034755069*i,

x=0.757990113846 - 1.65034755069*i,

x= - 1.51598022769}

In the following, the independent use of the roots finder is described. It can be
used to find some or all of the roots of univariate polynomials with real or complex
coefficients, to the accuracy specified by the user.2

9.13.1 Root Finding Strategies

For all polynomials handled by the root finding package, strategies of factoring
are employed where possible to reduce the amount of required work. These in-
clude square-free factoring and separation of complex polynomials into a product
of a polynomial with real coefficients and one with complex coefficients. When-
ever these succeed, the resulting smaller polynomials are solved separately, except
that the root accuracy takes into account the possibility of close roots on different
branches. One other strategy used where applicable is the powergcd method of
reducing the powers of the initial polynomial by a common factor, and deriving
the roots in two stages, as roots of the reduced power polynomial. Again here, the
possibility of close roots on different branches is taken into account.

9.13.2 Top Level Functions

The top level functions can be called either as symbolic operators from algebraic
mode, or they can be called directly from symbolic mode with symbolic mode
arguments. Outputs are expressed in forms that print out correctly in algebraic
mode.

Functions that refer to real roots only

Three top level functions refer only to real roots. Each of these functions can
receive 1, 2 or 3 arguments.

The first argument is the polynomial p, that can be complex and can have multiple
or zero roots. If arg2 and arg3 are not present, all real roots are found. If the
additional arguments are present, they restrict the region of consideration.

2This code was written by Stanley L. Kameny.
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• If arguments are (p,arg2) then arg2 must be positive or negative. If
arg2=negative then only negative roots of p are included; similarly, if
arg2=positive then only positive roots of p are included. Zero roots are
excluded.

• If arguments are (p,arg2,arg3) then Arg2 and Arg3 must be r (a real
number) or exclude r, or a member of the list positive, negative,
infinity, -infinity. exclude r causes the value r to be excluded
from the region. The order of the sequence arg2, arg3 is unimportant. As-
suming that arg2 ≤ arg3 when both are numeric, then

{-infinity,infinity} is equivalent to {} represents all roots;
{arg2,negative} represents −∞ < r < arg2;
{arg2,positive} represents arg2 < r <∞;

In each of the following, replacing an arg with exclude arg converts the
corresponding inclusive ≤ to the exclusive <

{arg2,-infinity} represents −∞ < r ≤ arg2;
{arg2,infinity} represents arg2 ≤ r <∞;
{arg2,arg3} represents arg2 ≤ r ≤ arg3;

• If zero is in the interval the zero root is included.

realroots This function finds the real roots of the polynomial p, using the
REALROOT package to isolate real roots by the method of Sturm sequences,
then polishing the root to the desired accuracy. Precision of computation is
guaranteed to be sufficient to separate all real roots in the specified region.
(cf. multiroot for treatment of multiple roots.)

isolater This function produces a list of rational intervals, each containing a
single real root of the polynomial p, within the specified region, but does not
find the roots.

rlrootno This function computes the number of real roots of p in the specified
region, but does not find the roots.

Functions that return both real and complex roots

roots p; This is the main top level function of the roots package. It will find all
roots, real and complex, of the polynomial p to an accuracy that is sufficient
to separate them and which is a minimum of 6 decimal places. The value
returned by roots is a list of equations for all roots. In addition, roots
stores separate lists of real roots and complex roots in the global variables
rootsreal and rootscomplex.
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The order of root discovery by roots is highly variable from system to
system, depending upon very subtle arithmetic differences during the com-
putation. In order to make it easier to compare results obtained on different
computers, the output of roots is sorted into a standard order: a root with
smaller real part precedes a root with larger real part; roots with identical
real parts are sorted so that larger imaginary part precedes smaller imaginary
part. (This is done so that for complex pairs, the positive imaginary part is
seen first.)

However, when a polynomial has been factored (by square-free factoring or
by separation into real and complex factors) then the root sorting is applied
to each factor separately. This makes the final resulting order less obvious.
However it is consistent from system to system.

roots_at_prec p; Same as roots except that roots values are returned to
a minimum of the number of decimal places equal to the current system
precision.

root_val p; Same as roots_at_prec, except that instead of returning a list
of equations for the roots, a list of the root value is returned. This is the
function that SOLVE calls.

nearestroot(p,s); This top level function uses an iterative method to find the
root to which the method converges given the initial starting origin s, which
can be complex. If there are several roots in the vicinity of s and s is not
significantly closer to one root than it is to all others, the convergence could
arrive at a root that is not truly the nearest root. This function should there-
fore be used only when the user is certain that there is only one root in the
immediate vicinity of the starting point s.

firstroot p; roots is called, but only the first root determined by roots is
computed. Note that this is not in general the first root that would be listed
in roots output, since the roots outputs are sorted into a canonical order.
Also, in some difficult root finding cases, the first root computed might be
incorrect.

Other top level functions

getroot(n,rr); If rr has the form of the output of ROOTS, REALROOTS, or
NEARESTROOTS; GETROOT returns the rational, real, or complex value
of the root equation. An error occurs if n < 1 or n > the number of roots in
rr.

mkpoly rr; This operator can be used to reconstruct a polynomial whose root
equation list is rr and whose denominator is 1. Thus one can verify that if
rr := roots p, and rr1 := roots mkpoly rr, then rr1 = rr. (This will be
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true if multiroot and ratroot are ON, and rounded is off.) However,
mkpoly rr − num p = 0 will be true if and only if all roots of p have been
computed exactly.

Functions available for diagnostic or instructional use only

gfnewt(p,r,cpx); This function will do a single pass through the function
gfnewton for polynomial p and root r. If cpx=T, then any complex part
of the root will be kept, no matter how small.

gfroot(p,r,cpx); This function will do a single pass through the function
GFROOTFIND for polynomial p and root r. If cpx=T, then any complex
part of the root will be kept, no matter how small.

9.13.3 Switches Used in Input

The input of polynomials in algebraic mode is sensitive to the switches complex,
rounded, and adjprec. The correct choice of input method is important since
incorrect choices will result in undesirable truncation or rounding of the input co-
efficients.

Truncation or rounding may occur if rounded is on and one of the following is
true:

1. a coefficient is entered in floating point form or rational form.

2. complex is on and a coefficient is imaginary or complex.

Therefore, to avoid undesirable truncation or rounding, then:

1. rounded should be off and input should be in integer or rational form; or

2. rounded can be on if it is acceptable to truncate or round input to the
current value of system precision; or both rounded and adjprec can
be on, in which case system precision will be adjusted to accommodate the
largest coefficient which is input; or

3. if the input contains complex coefficients with very different magnitude for
the real and imaginary parts, then all three switches rounded, adjprec
and complex must be on.

integer and complex modes (off rounded) any real polynomial can be input us-
ing integer coefficients of any size; integer or rational coefficients can be
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used to input any real or complex polynomial, independent of the setting of
the switch complex. These are the most versatile input modes, since any
real or complex polynomial can be input exactly.

modes rounded and complex-rounded (on rounded) polynomials can be input
using integer coefficients of any size. Floating point coefficients will be
truncated or rounded, to a size dependent upon the system. If complex is
on, real coefficients can be input to any precision using integer form, but
coefficients of imaginary parts of complex coefficients will be rounded or
truncated.

9.13.4 Internal and Output Use of Switches

The REDUCE arithmetic mode switches rounded and complex control the be-
havior of the root finding package. These switches are returned in the same state
in which they were set initially, (barring catastrophic error).

complex The root finding package controls the switch complex internally,
turning the switch on if it is processing a complex polynomial. For a polyno-
mial with real coefficients, the starting point argument for nearestroot
can be given in algebraic mode in complex form as rl + im * I and will be
handled correctly, independent of the setting of the switch complex. Com-
plex roots will be computed and printed correctly regardless of the setting of
the switch complex. However, if complex is off, the imaginary part will
print out ahead of the real part, while the reverse order will be obtained if
complex is on.

rounded The root finding package performs computations using the arithmetic
mode that is required at the time, which may be integer, Gaussian integer,
rounded, or complex rounded. The switch bftag is used internally to gov-
ern the mode of computation and precision is adjusted whenever necessary.
The initial position of switches rounded and complex are ignored. At
output, these switches will emerge in their initial positions.

9.13.5 Root Package Switches

ratroot (Default off) If RATROOT is on all root equations are output in rational
form. Assuming that the mode is complex (i.e. rounded is off,) the
root equations are guaranteed to be able to be input into REDUCE without
truncation or rounding errors. (Cf. the function mkpoly described above.)

multiroot (Default on) Whenever the polynomial has complex coefficients or
has real coefficients and has multiple roots, as determined by the Sturm
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function, the function sqfrf is called automatically to factor the polyno-
mial into square-free factors. If multiroot is on, the multiplicity of the
roots will be indicated in the output of roots or realroots by printing
the root output repeatedly, according to its multiplicity. If multiroot is
off, each root will be printed once, and all roots should be normally be dis-
tinct. (Two identical roots should not appear. If the initial precision of the
computation or the accuracy of the output was insufficient to separate two
closely-spaced roots, the program attempts to increase accuracy and/or pre-
cision if it detects equal roots. If, however, the initial accuracy specified was
too low, and it was not possible to separate the roots, the program will abort.)

trroot (Default off) If switch trroot is on, trace messages are printed out
during the course of root determination, to show the progress of solution.

rootmsg (Default off) If switch rootmsg is on in addition to switch trroot,
additional messages are printed out to aid in following the progress of La-
guerre and Newton complex iteration. These messages are intended for de-
bugging use primarily.

9.13.6 Operational Parameters and Parameter Setting.

ROOTACC!# (Default 6) This parameter can be set using the function rootacc
n; which causes rootacc!# to be set to max(n,6). (If roots are closely
spaced, a higher number of significant places is computed where needed.)

system precision The roots package, during its operation, will change the value
of system precision but will restore the original value of system precision at
termination except that the value of system precision is increased if necessary
to allow the full roots output to be printed.

PRECISION n; If the user sets system precision, using the command precision
n; then the effect is to increase the system precision to n, and to have the
same effect on roots as rootacc n; ie. roots will now be printed with
minimum accuracy n. The original conditions can then be restored by using
the command PRECISION RESET; or PRECISION NIL;.

ROOTPREC n; The roots package normally sets the computation mode and preci-
sion automatically. However, if rootprec n; is called and n is greater than
the initial system precision then all root computation will be done initially
using a minimum system precision n. Automatic operation can be restored
by input of rootprec 0;.
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9.13.7 Avoiding truncation of polynomials on input

The roots package will not internally truncate polynomials. However, it is possible
that a polynomial can be truncated by input reading functions of the embedding
lisp system, particularly when input is given in floating point (rounded) format.

To avoid any difficulties, input can be done in integer or Gaussian integer format,
or mixed, with integers or rationals used to represent quantities of high precision.
There are many examples of this in the test package. It is usually best to let the
roots package determine the precision needed to compute roots.

The number of digits that can be safely represented in floating point in the lisp
system are contained in the global variable !!nfpd. Similarly, the maximum
number of significant figures in floating point output are contained in the global
variable !!flim. The roots package computes these values, which are needed to
control the logic of the program.

The values of intermediate root iterations (that are printed when TRROOT is on)
are given in bigfloat format even when the actual values are computed in floating
point. This avoids intrusive rounding of root printout.
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Chapter 10

Assigning and Testing Algebraic
Properties

Sometimes algebraic expressions can be further simplified if there is additional
information about the value ranges of its components. The following section de-
scribes how to inform REDUCE of such assumptions.

10.1 REALVALUED Declaration and Check

The declaration realvalued may be used to restrict variables to the real num-
bers. The syntax is:

realvalued v1,...vn;

For such variables the operator impart gives the result zero. Thus, with

realvalued x,y;

the expression impart(x+sin(y)) is evaluated as zero. You may also declare
an operator as real valued with the meaning, that this operator maps real arguments
always to real values. Example:

operator h; realvalued h,x;
impart h(x);

0

impart h(w);
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impart(h(w))

Such declarations are not needed for the standard elementary functions.

To remove the propery from a variable or an operator use the declaration
notrealvalued with the syntax:

notrealvalued v1,...vn;

The boolean operator realvaluedp allows you to check if a variable, an opera-
tor, or an operator expression is known as real valued. Thus,

realvalued x;
write if realvaluedp(sin x) then "yes" else "no";
write if realvaluedp(sin z) then "yes" else "no";

would print first yes and then no. For general expressions test the impart for
checking the value range:

realvalued x,y; w:=(x+i*y); w1:=conj w;
impart(w*w1);

0

impart(w*w);

2*x*y

10.2 SELFCONJUGATE Declaration

The declaration selfconjugate may be used to declare an operator to be self-
conjuate in the sense that conj(f(z)) = f(conj(z)). The syntax is:

selfconjugate f1,...fn;

Such declarations are not needed for the standard elementary functions nor for
the inverses atan, acot, asinh, acsch. The remaining inverse functions
log, asin, acos, atanh, acosh etc. and sqrt fail to be self-conjugate
on their branch cuts (which are all subsets of the real axis).
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10.3 Declaring Complex Conjugates

The argument u of a declaration complex_conjugates should consist of one
or more (comma-separated) lists of two identifiers. This declaration associates the
two identifiers as mutual complex-conjugates. If the first is an operator, the second
is also declared as an operator, if it is not one already. A fancy print symbol is
automatically constructed and installed for the second identifier from that of the
first by adding over-lining. For example:

operator f;
complex_conjugates {f, fbar}, {z, zb};
conj zb -> z
conj(f(z)) -> fbar(zb)

This will associate f & fbar and z & zb as mutual complex conjugates and de-
clare fbar as an operator. On graphical interfaces zb and fbar will be rendered
as z and f respectively. If the first identifier already has a fancy special symbol
defined, this will be over-lined to produce the fancy print symbol for the second
identifier. Should the user not wish to have a fancy print symbol automatically
generated, they may instead use explicit let statements as described in the sub-
section on the operator conj.

10.4 Declaring Expressions Positive or Negative

Detailed knowlege about the sign of expressions allows REDUCE to simplify ex-
pressions involving exponentials or abs. You can express assumptions about the
positivity or negativity of expressions by rules for the operator sign. Examples:

abs(a*b*c);

abs(a*b*c);

let sign(a)=>1,sign(b)=>1; abs(a*b*c);

abs(c)*a*b

on precise; sqrt(x^2-2x+1);

abs(x - 1)

ws where sign(x-1)=>1;
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x - 1

Here factors with known sign are factored out of an abs expression.

on precise; on factor;

(q*x-2q)^w;

w
((x - 2)*q)

ws where sign(x-2)=>1;

w w
q *(x - 2)

In this case the factor (x− 2)w may be extracted from the base of the exponential
because it is known to be positive.

Note that REDUCE knows a lot about sign propagation. For example, with x and y
also x+y, x+y+π and (x+e)/y2 are known as positive. Nevertheless, it is often
necessary to declare additionally the sign of a combined expression. E.g. at present
a positivity declaration of x− 2 does not automatically lead to sign evaluation for
x− 1 or for x.
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Substitution Commands

An important class of commands in REDUCE define substitutions for variables and
expressions to be made during the evaluation of expressions. Such substitutions use
the prefix operator sub, various forms of the command let, and rule sets.

11.1 SUB Operator

Syntax:

sub(〈substitution_list〉, 〈exprn1:algebraic〉) : algebraic

where 〈substitution_list〉 is a list of one or more equations of the form

〈var:kernel〉 = 〈exprn:algebraic〉

or a kernel that evaluates to such a list.

The sub operator gives the algebraic result of replacing every occurrence of the
variable var in the expression exprn1 by the expression exprn. Specifically,
exprn1 is first evaluated using all available rules. Next the substitutions are made,
and finally the substituted expression is reevaluated. When more than one variable
occurs in the substitution list, the substitution is performed by recursively walking
down the tree representing exprn1, and replacing every var found by the ap-
propriate exprn. The exprn are not themselves searched for any occurrences of
the various vars. The trivial case sub(exprn1) returns the algebraic value of
exprn1.

Examples:

sub({x=a+y,y=y+1},x^2+y^2);
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2 2
a + 2*a*y + 2*y + 2*y + 1

and

s := {x=a+y,y=y+1}$

sub(s,x^2+y^2);

2 2
a + 2*a*y + 2*y + 2*y + 1

Note that the global assignments x:=a+y, etc., do not take place.

exprn1 can be any valid algebraic expression whose type is such that a substi-
tution process is defined for it (e.g., scalar expressions, lists and matrices). An
error will occur if an expression of an invalid type for substitution occurs either in
exprn or exprn1.

The braces around the substitution list may also be omitted, as in:

sub(x=a+y,y=y+1,x^2+y^2);

2 2
a + 2*a*y + 2*y + 2*y + 1

11.2 LET Rules

Unlike substitutions introduced via sub, let rules are global in scope and stay in
effect until replaced or cleared.



11.2. LET RULES 197

The simplest use of the let statement is in the form

let 〈substitution list〉

where 〈substitution list〉 is a list of rules separated by commas, each of the form:

〈variable〉 => 〈expression〉

or

〈prefix operator〉(〈argument〉, . . . , 〈argument〉) => 〈expression〉

or

〈argument〉〈infix operator〉, . . . , 〈argument〉 => 〈expression〉

For example,

let {x => y^2,
h(u,v) => u - v,
cos(pi/3) => 1/2,
a*b => c,
l+m => n,
w^3 => 2*z - 3,
z^10 => 0}

An equal sign (=) can be used instead of the “replaceby” sign (=>) and the list
brackets can be left out if preferred. The above rules could also have been entered
as seven separate let statements.

After such let rules have been input, x will always be evaluated as the square of
y, and so on. This is so even if at the time the let rule was input, the variable y
had a value other than y. (In contrast, the assignment x:=y^2 will set x equal to
the square of the current value of y, which could be quite different.)

The rule let a*b=>c means that whenever a and b are both factors in an ex-
pression their product will be replaced by c. For example, a^5*b^7*w would be
replaced by c^5*b^2*w.

The rule for l+m will not only replace all occurrences of l+m by n, but will also
normally replace l by n-m, but not m by n-l. A more complete description of this
case is given in Section 11.2.5.

The rule pertaining to w^3 will apply to any power of w greater than or equal to
the third.
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Note especially the last example, let z^10=>0. This declaration means, in
effect: ignore the tenth or any higher power of z. Such declarations, when appro-
priate, often speed up a computation to a considerable degree. (See Section 11.4
for more details.)

Any new operators occurring in such let rules will be automatically declared
operator by the system, if the rules are being read from a file. If they are being
entered interactively, the system will ask Declare . . . operator? (Y or
N). Answer Y or N and hit Return .

In each of these examples, substitutions are only made for the explicit expressions
given; i.e., none of the variables may be considered arbitrary in any sense. For
example, the command

let h(u,v) => u - v;

will cause h(u,v) to evaluate to u - v, but will not affect h(u,z) or h with
any arguments other than precisely the symbols u,v.

These simple let rules are on the same logical level as assignments made with
the := operator. An assignment x := p+q cancels a rule let x => y^2 made
earlier, and vice versa.

CAUTION: A recursive rule such as

let x => x + 1;

is erroneous, since any subsequent evaluation of x would lead to a non-terminating
chain of substitutions:

x -> x + 1
-> (x + 1) + 1
-> ((x + 1) + 1) + 1
-> ...

Similarly, coupled substitutions such as

let l => m + n, n => l + r;

would lead to the same error. As a result, if you try to evaluate an x, l or n defined
as above, you will get an error such as

x improperly defined in terms of itself

Array and matrix elements can appear on the left-hand side of a let statement.
However, because of their instant evaluation property, it is the value of the element



11.2. LET RULES 199

that is substituted for, rather than the element itself. E.g.,

array a(5);
a(2) := b;
let a(2) => c;

results in b being substituted by c; the assignment for a(2) does not change.

Finally, if an error occurs in any equation in a let statement (including generalized
statements involving for all and such that), the remaining rules are not
evaluated.

11.2.1 FOR ALL . . . LET

If a substitution for all possible values of a given argument of an operator is re-
quired, the declaration for all may be used. The syntax of such a command
is

for all 〈variable〉, . . . , 〈variable〉 〈let statement〉〈terminator〉

e.g.,

for all x,y let h(x,y) => x-y;
for all x let k(x,y) => x^y;

The first of these declarations would cause h(a,b) to be evaluated as a-b,
h(u+v,u+w) as v-w, etc. If the operator symbol h is used with more or fewer
arguments, not two, the let would have no effect, and no error would result.

The second declaration would cause k(a,y) to be evaluated as a^y, but would
have no effect on k(a,z) since the rule didn’t say for all y . . . .

As with simple let rules for backward compatibility with earlier versions of RE-
DUCE, an equals sign may be used instead of => in for all commands and rule
lists (see below).

Where we used x and y in the examples, any variables could have been used. This
use of a variable doesn’t affect the value it may have outside the let statement.
However, you should remember what variables you actually used. If you want
to delete the rule subsequently, you must use the same variables in the clear
command.

It is possible to use more complicated expressions as a template for a let state-
ment, as explained in the section on substitutions for general expressions. In nearly
all cases, the rule will be accepted, and a consistent application made by the sys-
tem. However, if there is a sole constant or a sole free variable on the left-hand side
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of a rule (e.g., let 2 => 3 or for all x let x => 2), then the system
is unable to handle the rule, and the error message

Substitution for ... not allowed

will be issued. Any variable listed in the for all part will have its symbol
preceded by an equal sign: x in the above example will appear as =x. An error
will also occur if a variable in the for all part is not properly matched on both
sides of the let equation.

11.2.2 FOR ALL . . . SUCH THAT . . . LET

If a substitution is desired for more than a single value of a variable in an operator
or other expression, but not all values, a conditional form of the for all ...
let declaration can be used.

Example:

for all x such that numberp x and x<0 let h(x)=>0;

will cause h(-5) to be evaluated as 0, but h of a positive integer, or of an argument
that is not an integer at all, would not be affected. Any boolean expression can
follow the such that keywords.

11.2.3 Removing Assignments and Substitution Rules

The user may remove all assignments and substitution rules from any expression
by the command clear, in the form

clear 〈expression〉, . . . , 〈expression〉〈terminator〉

e.g.

clear x, h(x,y);

Because of their instant evaluation property, array and matrix elements cannot be
cleared with clear. For example, if a is an array, you must say

a(3) := 0;

rather than

clear a(3);
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to “clear” element a(3).

On the other hand, a whole array (or matrix) a can be cleared by the command
clear a; This means much more than resetting to 0 all the elements of a. The
fact that a is an array, and what its dimensions are, are forgotten, so a can be
redefined as another type of object, for example an operator.

If you need to clear a variable whose name must be computed, see the unset
statement.

The more general types of let declarations can also be deleted by using clear.
Simply repeat the let rule to be deleted, using clear in place of let, and omit-
ting the equal sign and right-hand part. The same dummy variables must be used
in the for all part, and the boolean expression in the such that part must be
written the same way. (The placing of blanks doesn’t have to be identical.)

Example: The let rule

for all x such that numberp x and x<0 let h(x)=>0;

can be erased by the command

for all x such that numberp x and x<0 clear h(x);

11.2.4 Overlapping LET Rules

clear is not the only way to delete a let rule. A new let rule identical to
the first, but with a different expression after the equal sign, replaces the first.
Replacements are also made in other cases where the existing rule would be in
conflict with the new rule. For example, a rule for x^4 would replace a rule for
x^5. The user should however be cautioned against having several let rules in
effect that relate to the same expression. No guarantee can be given as to which
rules will be applied by REDUCE or in what order. It is best to clear an old rule
before entering a new related let rule.

11.2.5 Substitutions for General Expressions

The examples of substitutions discussed in other sections have involved very sim-
ple rules. However, the substitution mechanism used in REDUCE is very general,
and can handle arbitrarily complicated rules without difficulty.
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The general substitution mechanism used in REDUCE is discussed in [Hea68],
and [Hea69]. For the reasons given in these references, REDUCE does not attempt
to implement a general pattern matching algorithm. However, the present system
uses far more sophisticated techniques than those discussed in the above papers. It
is now possible for the rules appearing in arguments of let to have the form

〈substitution expression〉 => 〈expression〉

where any rule to which a sensible meaning can be assigned is permitted. How-
ever, this meaning can vary according to the form of 〈substitution expression〉. The
semantic rules associated with the application of the substitution are completely
consistent, but somewhat complicated by the pragmatic need to perform such sub-
stitutions as efficiently as possible. The following rules explain how the majority
of the cases are handled.

To begin with, the 〈substitution expression〉 is first partly simplified by collecting
like terms and putting identifiers (and kernels) in the system order. However, no
substitutions are performed on any part of the expression with the exception of
expressions with the instant evaluation property, such as array and matrix elements,
whose actual values are used. It should also be noted that the system order used is
not changeable by the user, even with the korder command. Specific cases are
then handled as follows:

1. If the resulting simplified rule has a left-hand side that is an identifier, an
expression with a top-level algebraic operator or a power, then the rule is
added without further change to the appropriate table.

2. If the operator * appears at the top level of the simplified left-hand side, then
any constant arguments in that expression are moved to the right-hand side
of the rule. The remaining left-hand side is then added to the appropriate
table. For example,

let 2*x*y => 3

becomes

let x*y => 3/2

so that x*y is added to the product substitution table, and when this rule is
applied, the expression x*y becomes 3/2, but neither x nor y by themselves
are replaced.

3. If the operators +, - or / appear at the top level of the simplified left-hand
side, all but the first term is moved to the right-hand side of the rule. Thus
the rules
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let l+m=>n, x/2=>y, a-b=>c

become

let l=>n-m, x=>2*y, a=>c+b.

One problem that can occur in this case is that if a quantified expression is moved
to the right-hand side, a given free variable might no longer appear on the left-hand
side, resulting in an error because of the unmatched free variable. E.g.,

for all x,y let f(x)+f(y)=>x*y

would become

for all x,y let f(x)=>x*y-f(y)

which no longer has y on both sides.

The fact that array and matrix elements are evaluated in the left-hand side of rules
can lead to confusion at times. Consider for example the statements

array a(5); let x+a(2)=>3; let a(3)=>4;

The left-hand side of the first rule will become x, and the second 0. Thus the first
rule will be instantiated as a substitution for x, and the second will result in an
error.

The order in which a list of rules is applied is not easily understandable without
a detailed knowledge of the system simplification protocol. It is also possible for
this order to change from release to release, as improved substitution techniques
are implemented. Users should therefore assume that the order of application of
rules is arbitrary, and program accordingly.

After a substitution has been made, the expression being evaluated is reexamined
in case a new allowed substitution has been generated. This process is continued
until no more substitutions can be made.

As mentioned elsewhere, when a substitution expression appears in a product, the
substitution is made if that expression divides the product. For example, the rule

let a^2*c => 3*z;

would cause a^2*c*x to be replaced by 3*z*x and a^2*c^2 by 3*z*c. If the
substitution is desired only when the substitution expression appears in a product
with the explicit powers supplied in the rule, the command match should be used
instead..

For example,
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match a^2*c => 3*z;

would cause a^2*c*x to be replaced by 3*z*x, but a^2*c^2 would not be
replaced. match can also be used with the for all constructions described
above.

To remove substitution rules of the type discussed in this section, the clear com-
mand can be used, combined, if necessary, with the same for all clause with
which the rule was defined, for example:

for all x clear log(e^x),e^log(x),cos(w*t+theta(x));

Note, however, that the arbitrary variable names in this case must be the same as
those used in defining the substitution.

11.3 Rule Lists

Rule lists offer an alternative approach to defining substitutions that is different
from either sub or let. In fact, they provide the best features of both, since
they have all the capabilities of let, but the rules can also be applied locally as
is possible with sub. In time, they will be used more and more in REDUCE.
However, since they are relatively new, much of the REDUCE code you see uses
the older constructs.

A rule list is a list of rules that have the syntax

〈expression〉 => 〈expression〉 (when 〈boolean expression〉)

For example,

{cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(~n*pi) => (-1)^n when remainder(n,2)=0}

The tilde preceding a variable marks that variable as free for that rule, much as a
variable in a for all clause in a let statement. The first occurrence of that
variable in each relevant rule must be so marked on input, otherwise inconsistent
results can occur. For example, the rule list

{cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(x)^2 => (1+cos(2x))/2}

designed to replace products of cosines, would not be correct, since the second
rule would only apply to the explicit argument x. Later occurrences in the same
rule may also be marked, but this is optional (internally, all such rules are stored
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with each relevant variable explicitly marked). The optional when clause allows
constraints to be placed on the application of the rule, much as the such that
clause in a let statement.

A rule list may be named, for example

trig1 := {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2,
cos(~x)^2 => (1+cos(2*x))/2,
sin(~x)^2 => (1-cos(2*x))/2};

Such named rule lists may be inspected as needed. E.g., the command trig1;
would cause the above list to be printed.

Rule lists may be used in two ways. They can be globally instantiated by means of
the command let. For example,

let trig1;

would cause the above list of rules to be globally active from then on until cancelled
by the command clearrules, as in

clearrules trig1;

clearrules has the syntax

clearrules 〈rule list〉 | 〈name of rule list〉(,. . . )

The second way to use rule lists is to invoke them locally by means of a where
clause. For example

cos(a)*cos(b+c)
where {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2};

or

cos(a)*sin(b) where trigrules;

The syntax of an expression with a where clause is:

〈expression〉 where 〈rule list〉 | 〈rule list〉(,〈rule list〉 | 〈rule list〉 . . . )

so the first example above could also be written

cos(a)*cos(b+c)
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where cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2;

The effect of this construct is that the rule list(s) in the where clause only apply to
the expression on the left of where. They have no effect outside the expression. In
particular, they do not affect previously defined where clauses or let statements.
For example, the sequence

let a=>2;
a where a=>4;
a;

would result in the output

4

2

Although where has a precedence less than any other infix operator, it still binds
higher than keywords such as else, then, do, repeat and so on. Thus the
expression

if a=2 then 3 else a+2 where a=>3

will parse as

if a=2 then 3 else (a+2 where a=>3)

where may be used to introduce auxiliary variables in symbolic mode expres-
sions, as described in Section 21.4. However, the symbolic mode use has different
semantics, so expressions do not carry from one mode to the other.

Compatibility Note: In order to provide compatibility with older versions of rule
lists released through the Network Library, it is currently possible to use an equal
sign interchangeably with the replacement sign => in rules and let statements.
However, since this will change in future versions, the replacement sign is prefer-
able in rules and the equal sign in non-rule-based let statements. When an equal
sign is used in rules a warning

** Please use => instead of = in rules

will be printed.



11.3. RULE LISTS 207

Advanced Use of Rule Lists

Some advanced features of the rule list mechanism make it possible to write more
complicated rules than those discussed so far, and in many cases to write more
compact rule lists. These features are:

• Free operators

• Double slash operator

• Double tilde variables.

A free operator in the left hand side of a pattern will match any operator with the
same number of arguments. The free operator is written in the same style as a
variable. For example, the implementation of the product rule of differentiation
can be written as:

operator diff, !~f, !~g;

prule := {diff(~f(~x) * ~g(~x),x) =>
diff(f(x),x) * g(x) + diff(g(x),x) * f(x)};

let prule;

diff(sin(z)*cos(z),z);

cos(z)*diff(sin(z),z) + diff(cos(z),z)*sin(z)

The double slash operator may be used as an alternative to a single slash (quotient)
in order to match quotients properly. E.g., in the example of the Gamma function
above, one can use:

gammarule :=
{gamma(~z)//(~c*gamma(~zz)) =>

gamma(z)/(c*gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0,

gamma(~z)//gamma(~zz) =>
gamma(z)/(gamma(zz-1)*zz)

when fixp(zz -z) and (zz -z) >0};

let gammarule;

gamma(z)/gamma(z+3);
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1
----------------------

3 2
z + 6*z + 11*z + 6

The above example suffers from the fact that two rules had to be written in order
to perform the required operation. This can be simplified by the use of double tilde
variables. E.g. the rule list

GGrule := {
gamma(~z)//(~~c*gamma(~zz)) =>

gamma(z)/(c*gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0};

will implement the same operation in a much more compact way. In general, dou-
ble tilde variables are bound to the neutral element with respect to the operation in
which they are used.

Pattern given Argument used Binding

~z + ~~y x z=x; y=0
~z + ~~y x+3 z=x; y=3 or z=3; y=x

~z * ~~y x z=x; y=1
~z * ~~y x*3 z=x; y=3 or z=3; y=x

~z / ~~y x z=x; y=1
~z / ~~y x/3 z=x; y=3

Remarks: A double tilde variable as the numerator of a pattern is not allowed.
Also, using double tilde variables may lead to recursion errors when the zero case
is not handled properly.

let f(~~a * ~x,x) => a * f(x,x) when freeof (a,x);

f(z,z);

***** f(z,z) improperly defined in terms of itself

% BUT:

let ff(~~a * ~x,x)
=> a * ff(x,x) when freeof (a,x) and a neq 1;
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ff(z,z);
ff(z,z)

ff(3*z,z);
3*ff(z,z)

Displaying Rules Associated with an Operator

The operator showrules takes a single identifier as argument, and returns in
rule-list form the operator rules associated with that argument. For example:

showrules log;

1
{df(log(~x),~x) => ---,

x

~x
df(log(----),~z) => df(log(x),z) - df(log(y),z)}

~y

Such rules can then be manipulated further as with any list. For example rhs
first ws; has the value 1. Note that an operator may have other properties that
cannot be displayed in such a form, such as the fact it is an odd function, or has a
definition defined as a procedure.

Order of Application of Rules

If rules have overlapping domains, their order of application is important. In gen-
eral, it is very difficult to specify this order precisely, so that it is best to assume
that the order is arbitrary. However, if only one operator is involved, the order of
application of the rules for this operator can be determined from the following:

1. Rules containing at least one free variable apply before all rules without free
variables.

2. Rules activated in the most recent let command are applied first.

3. let with several entries generate the same order of application as a corre-
sponding sequence of commands with one rule or rule set each.

4. Within a rule set, the rules containing at least one free variable are applied in
their given order. In other words, the first member of the list is applied first.
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5. Consistent with the first item, any rule in a rule list that contains no free
variables is applied after all rules containing free variables.

Example: The following rule set enables the computation of exact values of the
Gamma function:

operator gamma,gamma_error;
gamma_rules :=
{gamma(~x)=>sqrt(pi)/2 when x=1/2,
gamma(~n)=>factorial(n-1) when fixp n and n>0,
gamma(~n)=>gamma_error(n) when fixp n,
gamma(~x)=>(x-1)*gamma(x-1) when fixp(2*x) and x>1,
gamma(~x)=>gamma(x+1)/x when fixp(2*x)};

Here, rule by rule, cases of known or definitely uncomputable values are sorted out;
e.g. the rule leading to the error expression will be applied for negative integers
only, since the positive integers are caught by the preceding rule, and the last rule
will apply for negative odd multiples of 1/2 only. Alternatively the first rule could
have been written as

gamma(1/2) => sqrt(pi)/2,

but then the case x = 1/2 should be excluded in the when part of the last rule
explicitly because a rule without free variables cannot take precedence over the
other rules.

11.4 Asymptotic Commands

In expansions of polynomials involving variables that are known to be small, it is
often desirable to throw away all powers of these variables beyond a certain point
to avoid unnecessary computation. The command let may be used to do this. For
example, if only powers of x up to x^7 are needed, the command

let x^8 => 0;

will cause the system to delete all powers of x higher than 7.

CAUTION: This particular simplification works differently from most substitu-
tion mechanisms in REDUCE in that it is applied during polynomial manipulation
rather than to the whole evaluated expression. Thus, with the above rule in effect,
x^10/x^5would give the result zero, since the numerator would simplify to zero.
Similarly x^20/x^10 would give a Zero divisor error message, since both
numerator and denominator would first simplify to zero.
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The method just described is not adequate when expressions involve several vari-
ables having different degrees of smallness. In this case, it is necessary to supply
an asymptotic weight to each variable and count up the total weight of each product
in an expanded expression before deciding whether to keep the term or not. There
are two associated commands in the system to permit this type of asymptotic con-
straint. The command weight takes a list of equations of the form

〈kernel form〉 = 〈number〉

where 〈number〉 must be a positive integer (not just evaluate to a positive integer).
This command assigns the weight 〈number〉 to the relevant kernel form. A check
is then made in all algebraic evaluations to see if the total weight of the term is
greater than the weight level assigned to the calculation. If it is, the term is deleted.
To compute the total weight of a product, the individual weights of each kernel
form are multiplied by their corresponding powers and then added.

The weight level of the system is initially set to 1. The user may change this setting
by the command

wtlevel 〈number〉;

which sets 〈number〉 as the new weight level of the system. 〈number〉 must evaluate
to a positive integer. wtlevel will also allow nil as an argument, in which case
the current weight level is returned.
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Chapter 12

File Handling Commands

In many applications, it is desirable to load previously prepared REDUCE files
into the system, or to write output on other files. REDUCE offers five main com-
mands for this purpose, namely, in, out, shut, load, and load_package.
The first three are described here; load and load_package are discussed in
Section 23.2.

12.1 IN Command

This command takes a list of file names as argument and directs the system to
input each file (that should contain REDUCE statements and commands) into the
system. File names can either be an identifier or a string. The explicit format of
these will be system dependent and, in many cases, site dependent. The explicit
instructions for the implementation being used should therefore be consulted for
further details. For example:

in f1,"ggg.rr.s";

will first load file f1, then ggg.rr.s. When a semicolon is used as the terminator
of the in statement, the statements in the file are echoed on the terminal or written
on the current output file. If $ is used as the terminator, the input is not shown.
Echoing of all or part of the input file can be prevented, even if a semicolon was
used, by placing an off echo; command in the input file.

Files to be read using in should end with ;end;. Note the two semicolons! First
of all, this is protection against obscure difficulties the user will have if there are,
by mistake, more begins than ends on the file. Secondly, it triggers some file
control book-keeping which may improve system efficiency. If end is omitted, an
error message "End-of-file read" will occur.
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While a file is being loaded, the special identifier !__line__ is replaced by the
number of the current line in the file currently being read. Similarly, !__file__
is replaced by the name of the file currently being read.

12.2 IN_TEX Command

This is a variant of the in command. Its purpose is to document a REDUCE ses-
sion by interspersing a LATEX document with REDUCE commands to be executed.

When a file is input into REDUCE with this command, every line is simply echoed
to the output except those enclosed by \begin{reduce}...\end{reduce},
which are processed as usual.

The effect is to produce a LATEX document with REDUCE output.

12.3 OUT Command

This command takes a single file name as argument, and directs output to that
file from then on, until another out changes the output file, or shut closes it.
Output can go to only one file at a time, although many can be open. If the file
has previously been used for output during the current job, and not shut, the new
output is appended to the end of the file. Any existing file is erased before its first
use for output in a job, or if it had been shut before the new out.

To output on the terminal without closing the output file, the reserved file name t
(for terminal) may be used. For example, out ofile; will direct output to the
file ofile and out t; will direct output to the user’s terminal.

The output sent to the file will be in the same form that it would have on the
terminal. In particular x^2 would appear on two lines, an x on the lower line and
a 2 on the line above. If the purpose of the output file is to save results to be read
in later, this is not an appropriate form. We first must turn off the nat switch that
specifies that output should be in standard mathematical notation.

Example: To create a file abcd from which it will be possible to read – using in
– the value of the expression xyz:

off echo$ % needed if your input is from a file.
off nat$ % output in IN-readable form. Each

% expression printed will end with a $ .
out abcd$ % output to new file
linelength 72$ % for systems with fixed input

% line length.
xyz:=xyz; % will output "xyz := " followed by
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% the value of xyz
write ";end"$ % standard for ending files for in
shut abcd$ % save abcd, return to terminal output
on nat$ % restore usual output form

12.4 SHUT Command

This command takes a list of names of files that have been previously opened via
an out statement and closes them. Most systems require this action by the user
before he ends the REDUCE job (if not sooner), otherwise the output may be lost.
If a file is shut and a further out command issued for the same file, the file is
erased before the new output is written.

If it is the current output file that is shut, output will switch to the terminal. At-
tempts to shut files that have not been opened by out, or an input file, will lead to
errors.

12.5 Using Variables as Filenames

The commands in, out and shut treat their arguments as constants, but you can
use variables if you make them into group expressions by enclosing them between
<< and >> symbols, e.g.

filename := "something/long/and/complicated.red";
out <<filename>>;
% perform some computation...
shut <<filename>>;

12.6 Accessing the Operating System

REDUCE provides limited access to the operating system via the operator
system, which takes one argument that must evaluate to a string. It passes the
content of this string to the default shell and returns a number, which will be 0 if
it succeeds and non-zero if it fails. The output from the shell is displayed on the
default output device, which is normally the terminal. There is no straightforward
way to process this output within REDUCE. The operator system can be useful
for operations such as copying, moving, renaming and deleting files, or for listing
a directory interactively. It is used within a few of the REDUCE packages, such as
GNUPLOT.

The correct shell syntax to use with system depends on your operating system.
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On Microsoft Windows, system invokes the cmd.exe shell (not PowerShell);
on other operating systems it probably invokes bash. Note that backslash (\) is
not an escape character in REDUCE and so can be included in the argument to
system without any special precautions. However, to include a double-quote
character (") within a REDUCE string it must be doubled.

For example, on Windows, you could use the following to delete a file called
“C:\long dir name\file.red”

system "del ""C:\long dir name\file.red""";

whereas, on most other platforms, you could use the following to delete a file called
“/long dir name/file.red”

system "rm ’/long dir name/file.red’";

More sophisticated use of system is possible, but requires symbolic-mode pro-
gramming. See the REDUCE source code for examples.

12.7 REDUCE Startup File

At the start of a REDUCE session, the system checks for the existence of a user’s
startup file, and executes the REDUCE statements in it. This is equivalent to in-
putting the file with the in command.

To find the directory/folder where the file resides, the system checks the existence
of the following environment variables:

1. HOME,

2. HOMEDRIVE and HOMEPATH together (Windows).

If none of these are set, the current directory is used. The file itself must be named
either .reducerc or reduce.rc1.

1If none of these exist, the system checks for a file called reduce.INI in the current directory.
This is historical and may be removed in future.
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Commands for Interactive Use

REDUCE is designed as an interactive system, but naturally it can also operate in
a batch processing or background mode by taking its input command by command
from the relevant input stream. There is a basic difference, however, between in-
teractive and batch use of the system. In the former case, whenever the system
discovers an ambiguity at some point in a calculation, such as a forgotten type as-
signment for instance, it asks you for the correct interpretation. In batch operation,
it is not practical to terminate the calculation at such points and require resubmis-
sion of the job, so the system makes the most obvious guess of your intentions and
continues the calculation.

13.1 Error Handling: errcont, retry

There is also a difference in the handling of errors. In the former case, the compu-
tation can continue since you have the opportunity to correct the mistake. In batch
mode, the error may lead to consequent erroneous (and possibly time consuming)
computations. So in the default case, no further evaluation occurs, although the
remainder of the input is checked for syntax errors. A message "Continuing
with parsing only" informs you that this is happening. On the other hand,
the switch errcont, if on, will cause the system to continue evaluating expres-
sions after such errors occur.

When a syntactical error occurs, the place where the system detected the error is
marked with three dollar signs ($$$). In interactive mode, you can then use ed to
correct the error, or retype the command. When a non-syntactical error occurs in
interactive mode, the command being evaluated at the time the last error occurred
is saved, and may later be reevaluated by the command retry.
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13.2 Referencing Previous Results: input, ws, display

It is often useful to be able to reference results of previous computations during
a REDUCE session; see also 8.2. For this purpose, REDUCE maintains a his-
tory of all interactive inputs and the results of all interactive computations during a
given session. These results are referenced by the command number that REDUCE
prints automatically in interactive mode. To use a previous input expression in a
new computation, write input(n), where n is the command number. To use a
previous output expression, write ws(n) (where WS stands for WorkSpace). ws
used as a variable (rather than a function) references the previous output expres-
sion. For example:

1: int(x-1, x);

x*(x - 2)
-----------

2

...

7: (x^2-1)/(x+1);

x - 1

...

15: 2*input(1)-ws(7)^2;

-1

16: 2*ws(1)-ws(7)^2;

-1

17: x := 101;

x := 101

18: ws(7);

100

Inputs 15 and 16 above yield the same result, but input 16 does so without re-
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computing the integral. However, an output expression referenced using ws is
re-evaluated in the current context, as shown by the last two statements above.

Note that input that causes an error, and some commands such as let statements,
file handling and mode changing, do not produce an output expression, so the out-
put from such input cannot be accessed. ws used as a variable returns the last
output expression, which does not necessarily correspond to the last input, and ws
used as a function reports an error if you try to access non-existent output. For
example:

1: 6*7;

42

2: 0/0;

***** 0/0 formed

3: ws;

42

4: ws 2;

***** Entry 2 not found

5: let x => 0;

6: ws;

42

7: ws 5;

***** Entry 5 not found

The operator display is available to display previous inputs. If its argument
is a positive integer, n say, then the previous n inputs are displayed. If its argu-
ment is all (or in fact any non-numerical expression), then all previous inputs are
displayed.
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13.3 Interactive Editing: ed, editdef

It is possible when working interactively to edit any REDUCE input that comes
from your terminal, and also some user-defined procedure definitions. At the top
level, you can access any previous command string by the command ed(n), where
n is the desired command number as prompted by the system in interactive mode.
The command ed (with no argument) accesses the previous command.

After ed has been called, you can now edit the displayed string using a string editor
with the following commands:

b move pointer to beginning
c〈character〉 replace next character by 〈character〉
d delete next character
e end editing and reread text
f〈character〉 move pointer to next occurrence of

〈character〉
i〈string〉〈escape〉 insert 〈string〉 in front of pointer
k〈character〉 delete all characters until 〈character〉
p print string from current pointer
q give up with error exit
s〈string〉〈escape〉 search for first occurrence of 〈string〉,

positioning pointer just before it
space or x move pointer right one character.

The above table can be displayed online by typing a question mark followed by a
carriage return to the editor. The editor prompts with an angle bracket. Commands
can be combined on a single line, and all command sequences must be followed by
a carriage return to become effective.

Thus, to change the command x := a+1; to x := a+2; and cause it to be
executed, the following edit command sequence could be used:

f1c2e<return>

You can also use the interactive editor to edit a user-defined procedure that has not
been compiled. To do this, use:

editdef 〈id〉;

where 〈id〉 is the name of the procedure. The procedure definition will then be
displayed in editing mode, and may then be edited and redefined on exiting from
the editor.

Some versions of REDUCE include input editing that uses the capabilities of mod-
ern window systems. Please consult your system dependent documentation to see
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if this is possible. Such editing techniques are usually much easier to use then ed
or editdef.

13.4 Interactive File Control: int, pause, cont

If input is coming from an external file, the system treats it as a batch processed
calculation. If you desire interactive response in this case, you can include the
command on int; in the file. Likewise, you can issue the command off int;
in the main program if you do not desire continual questioning from the system.
Regardless of the setting of the switch int, input commands from a file are not
kept in the system, and so cannot be referenced using input or ws, or edited using
ed. However, an implementation of REDUCE may provide a link to an external
system editor that can be used for such editing. The specific instructions for the
particular implementation should be consulted for information on this.

Two commands are available in REDUCE for interactive use of files. pause; may
be inserted at any point in an input file. When this command is encountered on
input, the system prints the message Cont? (Y or N) on your terminal and
halts. If you respond y (for yes), the calculation continues from that point in the
file. If you respond n (for no), control is returned to the terminal, and you can input
further statements and commands. Later on you can use the command cont; to
transfer control back to the point in the file following the last pause; encountered.
A top-level pause; from the terminal has no effect.
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Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix calculations
can be performed. To extend our syntax to this class of calculations we need to add
another prefix operator, mat, and a further variable and expression type as follows:

14.1 MAT Operator

This prefix operator is used to represent n × m matrices. mat has n arguments
interpreted as rows of the matrix, each of which is a list of m expressions repre-
senting elements in that row. For example, the matrix(

a b c
d e f

)
would be written as mat((a,b,c),(d,e,f)).

Note that the single column matrix (
x
y

)
becomes mat((x),(y)). The inside parentheses are required to distinguish it
from the single row matrix (

x y
)

that would be written as mat((x,y)).

14.2 Matrix Variables

An identifier may be declared a matrix variable by the declaration matrix. The
size of the matrix may be declared explicitly in the matrix declaration, or by default
in assigning such a variable to a matrix expression. For example,
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matrix x(2,1),y(3,4),z;

declares x to be a 2 x 1 (column) matrix, y to be a 3 x 4 matrix and z a matrix
whose size is to be declared later.

Matrix declarations can appear anywhere in a program. Once a symbol is declared
to name a matrix, it can not also be used to name an array, operator or a procedure,
or used as an ordinary variable. It can however be redeclared to be a matrix, and
its size may be changed at that time. Note however that matrices once declared
are global in scope, and so can then be referenced anywhere in the program. In
other words, a declaration within a block (or a procedure) does not limit the scope
of the matrix to that block, nor does the matrix go away on exiting the block (use
clear instead for this purpose). An element of a matrix is referred to in the
expected manner; thus x(1,1) gives the first element of the matrix x defined
above. References to elements of a matrix whose size has not yet been declared
leads to an error. All elements of a matrix whose size is declared are initialized to
0. As a result, a matrix element has an instant evaluation property and cannot stand
for itself. If this is required, then an operator should be used to name the matrix
elements as in:

matrix m; operator x; m := mat((x(1,1),x(1,2));

14.3 Matrix Expressions

These follow the normal rules of matrix algebra as defined by the following syntax:

〈matrix expression〉 −→ mat〈matrix description〉 | 〈matrix variable〉 |
〈scalar expression〉*〈matrix expression〉 |
〈matrix expression〉*〈matrix expression〉 |
〈matrix expression〉+〈matrix expression〉 |
〈matrix expression〉^〈integer〉 |
〈matrix expression〉/〈matrix expression〉

Sums and products of matrix expressions must be of compatible size; otherwise an
error will result during their evaluation. Similarly, only square matrices may be
raised to a power. A negative power is computed as the inverse of the matrix raised
to the corresponding positive power. a/b is interpreted as a*b^(-1).

Examples:

Assuming x and y have been declared as matrices, the following are matrix ex-
pressions

y
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y^2*x-3*y^(-2)*x
y + mat((1,a),(b,c))/2

The computation of the quotient of two matrices normally uses a two-step elimina-
tion method due to Bareiss. An alternative method using Cramer’s method is also
available. This is usually less efficient than the Bareiss method unless the matrices
are large and dense, although we have no solid statistics on this as yet. To use
Cramer’s method instead, the switch cramer should be turned on.

14.4 Operators with Matrix Arguments

The operator length applied to a matrix returns a list of the number of rows and
columns in the matrix. Other operators useful in matrix calculations are defined in
the following subsections. Attention is also drawn to the LINALG (section 20.33)
and NORMFORM (section 20.40) packages.

14.4.1 DET Operator

Syntax:

det(〈exprn:matrix_expression〉) : algebraic .

The operator det is used to represent the determinant of a square matrix expres-
sion. E.g.,

det(y^2)

is a scalar expression whose value is the determinant of the square of the matrix Y,
and

det mat((a,b,c),(d,e,f),(g,h,j));

is a scalar expression whose value is the determinant of the matrix a b c
d e f
g h j


Determinant expressions have the instant evaluation property. In other words, the
statement

let det mat((a,b),(c,d)) = 2;
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sets the value of the determinant to 2, and does not set up a rule for the determinant
itself.

14.4.2 MATEIGEN Operator

Syntax:

mateigen(〈exprn:matrix_expression,id〉) : 〈list〉 .

mateigen calculates the eigenvalue equation and the corresponding eigenvectors
of a matrix, using the variable id to denote the eigenvalue. A square free decom-
position of the characteristic polynomial is carried out. The result is a list of lists
of 3 elements, where the first element is a square free factor of the characteristic
polynomial, the second its multiplicity and the third the corresponding eigenvector
(as an n by 1 matrix). If the square free decomposition was successful, the product
of the first elements in the lists is the minimal polynomial. In the case of degener-
acy, several eigenvectors can exist for the same eigenvalue, which manifests itself
in the appearance of more than one arbitrary variable in the eigenvector. To extract
the various parts of the result use the operations defined on lists.

Example: The command

mateigen(mat((2,-1,1),(0,1,1),(-1,1,1)),eta);

gives the output

{{eta - 1,2,

[arbcomplex(1)]
[ ]
[arbcomplex(1)]
[ ]
[ 0 ]

},

{eta - 2,1,

[ 0 ]
[ ]
[arbcomplex(2)]
[ ]
[arbcomplex(2)]
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}}

14.4.3 TP Operator

Syntax:

tp(〈exprn:matrix_expression〉) : 〈matrix〉 .

This operator takes a single matrix argument and returns its transpose.

14.4.4 Trace Operator

Syntax:

trace(〈exprn:matrix_expression〉) : 〈algebraic〉.

The operator trace is used to represent the trace of a square matrix.

14.4.5 Matrix Cofactors

Syntax:

cofactor(〈exprn:matrix_expression〉,〈row:integer〉,〈column:integer〉) : al-
gebraic

The operator cofactor returns the cofactor of the element in row row and col-
umn column of the matrix matrix. Errors occur if row or column do not
simplify to integer expressions or if matrix is not square.

14.4.6 NULLSPACE Operator

Syntax:

nullspace(〈exprn:matrix_expression〉) : 〈list〉

nullspace calculates for a matrixA a list of linear independent vectors (a basis)
whose linear combinations satisfy the equation Ax = 0. The basis is provided in a
form such that as many upper components as possible are isolated.

Note that with b := nullspace a the expression length b is the nullity of
A, and that second length a - length b calculates the rank of A. The
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rank of a matrix expression can also be found more directly by the rank operator
described below.

Example: The command

nullspace mat((1,2,3,4),(5,6,7,8));

gives the output

{
[ 1 ]
[ ]
[ 0 ]
[ ]
[ - 3]
[ ]
[ 2 ]
,
[ 0 ]
[ ]
[ 1 ]
[ ]
[ - 2]
[ ]
[ 1 ]
}

In addition to the REDUCE matrix form, nullspace accepts as input a matrix
given as a list of lists, that is interpreted as a row matrix. If that form of input
is chosen, the vectors in the result will be represented by lists as well. This addi-
tional input syntax facilitates the use of nullspace in applications different from
classical linear algebra.

14.4.7 RANK Operator

Syntax:

rank(〈exprn:matrix_expression〉) : 〈integer〉 .

rank calculates the rank of its argument, that, like nullspace can either be a
standard matrix expression, or a list of lists, that can be interpreted either as a row
matrix or a set of equations.

Example:
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rank mat((a,b,c),(d,e,f));

returns the value 2.

14.5 Matrix Assignments

Matrix expressions may appear in the right-hand side of assignment statements. If
the left-hand side of the assignment, which must be a variable, has not already been
declared a matrix, it is declared by default to the size of the right-hand side. The
variable is then set to the value of the right-hand side.

Such an assignment may be used very conveniently to find the solution of a set of
linear equations. For example, to find the solution of the following set of equations

a11*x(1) + a12*x(2) = y1
a21*x(1) + a22*x(2) = y2

we simply write

x := 1/mat((a11,a12),(a21,a22))*mat((y1),(y2));

14.6 Evaluating Matrix Elements

Once an element of a matrix has been assigned, it may be referred to in standard
array element notation. Thus y(2,1) refers to the element in the second row and
first column of the matrix y.

The easiest way to access an element of a matrix-valued expression is to assign the
expression to a variable and then use the syntax described above. Another way is
to use the part operator: if M is either a matrix or a matrix-valued expression
then part(M, i) evaluates to row i represented as a list, and (hence) part(M,
i, j) evaluates to the matrix element in row i and column j.
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Procedures

It is often useful to name a statement for repeated use in calculations with varying
parameters, or to define a complete evaluation procedure for an operator. REDUCE
offers a procedural declaration for this purpose. Its general syntax is:

[〈procedural type〉] procedure 〈name〉[〈varlist〉]; 〈statement〉;

where

〈varlist〉 −→ (〈variable〉, . . ., 〈variable〉)

This will be explained more fully in the following sections.

In the algebraic mode of REDUCE the 〈procedural type〉 can be omitted, since
the default is algebraic. Procedures of type integer or real may also be
used. In the former case, the system checks that the value of the procedure is
an integer. At present, such checking is not done for a real procedure, although
this will change in the future when a more complete type checking mechanism is
installed. Users should therefore only use these types when appropriate. An empty
variable list may also be omitted.

All user-defined procedures are automatically declared to be operators.

In order to allow users relatively easy access to the whole REDUCE source pro-
gram, system procedures are not protected against user redefinition. If a procedure
is redefined, a message

*** <procedure name> redefined

is printed. If this occurs, and the user is not redefining his own procedure, he is
well advised to rename it, and possibly start over (because he has already redefined
some internal procedure whose correct functioning may be required for his job!)
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All required procedures should be defined at the top level, since they have global
scope throughout a program. In particular, an attempt to define a procedure within
a procedure will cause an error to occur.

15.1 Procedure Heading

Each procedure has a heading consisting of the word procedure (optionally
preceded by the word algebraic), followed by the name of the procedure to be
defined, and followed by its formal parameters – the symbols that will be used in
the body of the definition to illustrate what is to be done. There are three cases:

1. No parameters. Simply follow the procedure name with a terminator (semi-
colon or dollar sign).

procedure abc;

When such a procedure is used in an expression or command, abc(), with
empty parentheses, must be written.

2. One parameter. Enclose it in parentheses or just leave at least one space,
then follow with a terminator.

procedure abc(x);

or

procedure abc x;

3. More than one parameter. Enclose them in parentheses, separated by com-
mas, then follow with a terminator.

procedure abc(x,y,z);

Referring to the last example, if later in some expression being evaluated the sym-
bols abc(u,p*q,123) appear, the operations of the procedure body will be
carried out as if x had the same value as u does, y the same value as p*q does,
and z the value 123. The values of x, y, z, after the procedure body operations are
completed are unchanged. So, normally, are the values of u, p, q, and (of course)
123. (This is technically referred to as call by value.)

The reader will have noted the word normally a few lines earlier. The call by value
protections can be bypassed if necessary, as described elsewhere.
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15.2 Procedure Body

Following the delimiter that ends the procedure heading must be a single statement
defining the action to be performed or the value to be delivered. A terminator must
follow the statement. If it is a semicolon, the name of the procedure just defined is
printed. It is not printed if a dollar sign is used.

If the result wanted is given by a formula of some kind, the body is just that for-
mula, using the variables in the procedure heading.

Simple Example:

If f(x) is to mean (x+5)*(x+6)/(x+7), the entire procedure definition could
read

procedure f x; (x+5)*(x+6)/(x+7);

Then f(10) would evaluate to 240/17, f(a-6) to a*(a-1)/(a+1), and so
on.

More Complicated Example:

Suppose we need a function p(n,x) that, for any positive integer n, is the Legen-
dre polynomial of order n. We can define this operator using the textbook formula
defining these functions:

pn(x) =
1

n!

dn

dyn
1

(y2 − 2xy + 1)
1
2

∣∣∣∣∣
y=0

Put into words, the Legendre polynomial pn(x) is the result of substituting y = 0
in the nth partial derivative with respect to y of a certain fraction involving x and
y, then dividing that by n!.

This verbal formula can easily be written in REDUCE:

procedure p(n,x);
sub(y=0,df(1/(y^2-2*x*y+1)^(1/2),y,n))

/(for i:=1:n product i);

Having input this definition, the expression evaluation

2p(2,w);

would result in the output

2
3*w - 1 .
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If the desired process is best described as a series of steps, then a group or com-
pound statement can be used.

Example:

The above Legendre polynomial example can be rewritten as a series of steps in-
stead of a single formula as follows:

procedure p(n,x);
begin scalar seed,deriv,top,fact;

seed:=1/(y^2 - 2*x*y +1)^(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

Procedures may also be defined recursively. In other words, the procedure body can
include references to the procedure name itself, or to other procedures that them-
selves reference the given procedure. As an example, we can define the Legendre
polynomial through its standard recurrence relation:

procedure p(n,x);
if n<0 then rederr "Invalid argument to P(N,X)"
else if n=0 then 1
else if n=1 then x
else ((2*n-1)*x*p(n-1,x)-(n-1)*p(n-2,x))/n;

The operator rederr in the above example provides for a simple error exit from
an algebraic procedure (and also a block). It can take a string as argument.

It should be noted however that all the above definitions of p(n,x) are quite
inefficient if extensive use is to be made of such polynomials, since each call ef-
fectively recomputes all lower order polynomials. It would be better to store these
expressions in an array, and then use say the recurrence relation to compute only
those polynomials that have not already been derived. We leave it as an exercise
for the reader to write such a definition.

15.3 Matrix- and List-valued Procedures

Normally, procedures can only return scalar values. In order for a procedure to
return a matrix, it has to be declared of type matrixproc:

matrixproc SkewSym1 (w);
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mat((0,-w(3,1),w(2,1)),
(w(3,1),0,-w(1,1)),
(-w(2,1), w(1,1), 0));

Following this declaration, the call to SkewSym1 can be used as a matrix, e.g.

X := SkewSym1(mat((qx),(qy),(qz)));

[ 0 - qz qy ]
[ ]

x := [ qz 0 - qx]
[ ]
[ - qy qx 0 ]

X * mat((rx),(ry),(rz));

[ qy*rz - qz*ry ]
[ ]
[ - qx*rz + qz*rx]
[ ]
[ qx*ry - qy*rx ]

Similarly, by using the keyword listproc, an algebraic procedure can be declared
to return a list. For example, the following procedure returns a normalized version
of the vector provided as its argument, represented as a list (i.e. the returned vector
has unit Euclidean norm):

listproc normalize v;
begin scalar n := sqrt for each vi in v sum vi^2;

return for each vi in v collect vi/n
end;

(Note that the LISTVECOPS package provides elegant vector operations on lists,
which allow the above procedure to be written much more succinctly; see the ver-
sion at the end of the LISTVECOPS section.)

15.4 Using LET Inside Procedures

By using let instead of an assignment in the procedure body it is possible to
bypass the call-by-value protection. If x is a formal parameter or local variable
of the procedure (i.e. is in the heading or in a local declaration), and let is used
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instead of := to make an assignment to x, e.g.

let x => 123;

then it is the variable that is the value of x that is changed. This effect also occurs
with local variables defined in a block. If the value of x is not a variable, but a
more general expression, then it is that expression that is used on the left-hand side
of the let statement. For example, if x had the value p*q, it is as if let p*q
=> 123 had been executed.

15.5 LET Rules as Procedures

The let statement offers an alternative syntax and semantics for procedure defi-
nition.

In place of

procedure abc(x,y,z); <procedure body>;

one can write

for all x,y,z let abc(x,y,z) => <procedure body>;

There are several differences to note.

If the procedure body contains an assignment to one of the formal parameters, e.g.

x := 123;

in the procedure case it is a variable holding a copy of the first actual argument
that is changed. The actual argument is not changed.

In the let case, the actual argument is changed. Thus, if abc is defined using
let, and abc(u,v,w) is evaluated, the value of u changes to 123. That is, the
let form of definition allows the user to bypass the protections that are enforced
by the call by value conventions of standard procedure definitions.

Example: We take our earlier factorial procedure and write it as a let state-
ment.

for all n let factorial n =>
begin scalar m,s;
m:=1; s:=n;

l1: if s=0 then return m;
m:=m*s;
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s:=s-1;
go to l1

end;

The reader will notice that we introduced a new local variable, s, and set it equal
to n. The original form of the procedure contained the statement n:=n-1;. If the
user asked for the value of factorial(5) then n would correspond to, not just
have the value of, 5, and REDUCE would object to trying to execute the statement
5 := 5− 1.

If pqr is a procedure with no parameters,

procedure pqr;
<procedure body>;

it can be written as a let statement quite simply:

let pqr => <procedure body>;

To call procedure pqr, if defined in the latter form, the empty parentheses would
not be used: use pqr not pqr() where a call on the procedure is needed.

The two notations for a procedure with no arguments can be combined. pqr can
be defined in the standard procedure form. Then a let statement

let pqr => pqr();

would allow a user to use pqr instead of pqr() in calling the procedure.

A feature available with let-defined procedures and not with procedures defined
in the standard way is the possibility of defining partial functions.

for all x such that numberp x
let uvw(x) => <procedure body>;

Now uvw of an integer would be calculated as prescribed by the procedure body,
while uvw of a general argument, such as z or p+q (assuming these evaluate to
themselves) would simply stay uvw(z) or uvw(p+q) as the case may be.



238 CHAPTER 15. PROCEDURES

15.6 REMEMBER Statement

Setting the remember option for an algebraic procedure by

remember (〈procname:procedure〉);

saves all intermediate results of such procedure evaluations, including recursive
calls. Subsequent calls to the procedure can then be determined from the saved
results, and thus the number of evaluations (or the complexity) can be reduced.
This mode of evalation costs extra memory, of course. In addition, the procedure
must be free of side–effects.

The following examples show the effect of the remember statement on two well–
known examples.

procedure H(n); % Hofstadter’s function
if numberp n then
<< cnn := cnn +1; % counts the calls
if n < 3 then 1 else H(n-H(n-1))+H(n-H(n-2))>>;

remember h;

<< cnn := 0; H(100); cnn>>;

100

% H has been called 100 times only.

procedure A(m,n); % Ackermann function

if m=0 then n+1 else
if n=0 then A(m-1,1) else
A(m-1,A(m,n-1));

remember a;

A(3,3);



Chapter 16

Series Expansion

Expanding an algebraic expression into a series can be done by standard REDUCE
operators, namely df, sub, and possibly limit. Nevertheless, there are many
cases where this straightforward method fails. REDUCE offers two different oper-
ators for this purpose:

taylor computes a truncated power series.

ps computes extendible power series.

fps computes formal power series.

16.1 Taylor Expansion

This package carries out the Taylor expansion of an expression in one or more
variables and efficient manipulation of the resulting Taylor series. Capabilities
include basic operations (addition, subtraction, multiplication and division) and
also application of certain algebraic and transcendental functions.1

The most important operator is taylor. It is used as follows:

taylor(〈exp:algebraic〉,
〈var:kernel〉,〈var0:algebraic〉,〈order:integer〉[,. . . ]) : algebraic.

where exp is the expression to be expanded. It can be any REDUCE object, even
an expression containing other Taylor kernels. var is the kernel with respect to
which exp is to be expanded. var0 denotes the expansion point about which and
order the order up to which expansion is to take place. If more than one (var,

1This code was written by Rainer Schöpf.

239
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var0, order) triple is specified taylor will expand its first argument inde-
pendently with respect to each variable in turn. For example,

taylor(e^(x^2+y^2),x,0,2,y,0,2);

will calculate the Taylor expansion up to order X2 ∗ Y 2:

2 2 2 2 3 3
1 + y + x + y *x + O(x ,y )

Note that once the expansion has been done it is not possible to calculate higher
orders. Instead of a kernel, varmay also be a list of kernels. In this case expansion
will take place in a way so that the sum of the degrees of the kernels does not exceed
order. If var0 evaluates to the special identifier infinity, expansion is done
in a series in 1/var instead of var.

The expansion is performed variable per variable, i.e. in the example above by first
expanding exp(x2 + y2) with respect to x and then expanding every coefficient
with respect to y.

There are two extra operators to compute the Taylor expansions of implicit and
inverse functions:

implicit_taylor(〈f:algebraic〉,
〈var:kernel〉,〈depvar:kernel〉,
〈var0:algebraic〉,〈depvar0:algebraic〉,
〈order:integer〉) : algebraic.

takes a function f depending on two variables var and depvar and computes the Tay-
lor series of the implicit function depvar(var) given by the equation f(var,depvar) =
0, around the point var0. (Violation of the necessary condition f(var0,depvar0)=0
causes an error.) For example,

implicit_taylor(x^2 + y^2 - 1,x,y,0,1,5);

gives the output

1 2 1 4 6
1 - ---*x - ---*x + O(x )

2 8
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The operator

inverse_taylor(〈f:algebraic〉,
〈var:kernel〉,〈depvar:kernel〉,
〈var0:algebraic〉,〈order:integer〉)

: algebraic.

takes a function f depending on var and computes the Taylor series of the inverse
of f with respect to var0. For example,

inverse_taylor(exp(x)-1,x,y,0,8);

yields

1 2 1 3 1 4 1 5
y - ---*y + ---*y - ---*y + ---*y + (3 terms)

2 3 4 5

9
+ O(y )

When a Taylor kernel is printed, only a certain number of (non-zero) coeffi-
cients are shown. If there are more, an expression of the form (n terms)
is printed to indicate how many non-zero terms have been suppressed. The
number of terms printed is given by the value of the shared algebraic variable
taylorprintterms. Allowed values are integers and the special identifier
ALL. The latter setting specifies that all terms are to be printed. The default setting
is 5.

The part operator can be used to extract subexpressions of a Taylor expansion in
the usual way. All terms can be accessed, irregardless of the value of the variable
taylorprintterms.

If the switch taylorkeeporiginal is set to on the original expression exp is
kept for later reference. It can be recovered by means of the operator

taylororiginal(exp:exprn):exprn

An error is signalled if exp is not a Taylor kernel or if the original expression was
not kept, i.e. if taylorkeeporiginal was off during expansion. The tem-
plate of a Taylor kernel, i.e. the list of all variables with respect to which expansion
took place together with expansion point and order can be extracted using .

taylortemplate(exp:exprn):list

This returns a list of lists with the three elements (var,var0,order). As with
taylororiginal, an error is signalled if exp is not a Taylor kernel.
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taylorcoefflist(exp:exprn):list

This returns a list of two element lists (list of exponents,coefficient). Each expo-
nent corresponds to a variable in the template. For homogenous expansion, each
exponent is replaced by a list of exponents, as the template has a list of variables
instead of a single one. Again, an error is signalled if exp is not a Taylor kernel.

See the test file for examples.

The operator
taylortostandard(exp:exprn):exprn

converts all Taylor kernels in exp into standard form and resimplifies the result.

The boolean operator
taylorseriesp(exp:exprn):boolean

may be used to determine if exp is a Taylor kernel. (Note that this operator is
subject to the same restrictions as, e.g., ordp or numberp, i.e. it may only be
used in boolean expressions in if or let statements.

Finally there is

taylorcombine(exp:exprn):exprn

which tries to combine all Taylor kernels found in exp into one. Operations
currently possible are:

• Addition, subtraction, multiplication, and division.

• Roots, exponentials, and logarithms.

• Trigonometric and hyperbolic functions and their inverses.

Application of unary operators like log and atan will nearly always succeed.
For binary operations their arguments have to be Taylor kernels with the same
template. This means that the expansion variable and the expansion point must
match. Expansion order is not so important, different order usually means that one
of them is truncated before doing the operation.

If taylorkeeporiginal is set to on and if all Taylor kernels in exp have their
original expressions kept taylorcombine will also combine these and store the
result as the original expression of the resulting Taylor kernel. There is also the
switch taylorautoexpand (see below).

There are a few restrictions to avoid mathematically undefined expressions: it is
not possible to take the logarithm of a Taylor kernel which has no terms (i.e. is
zero), or to divide by such a beast. There are some provisions made to detect
singularities during expansion: poles that arise because the denominator has zeros
at the expansion point are detected and properly treated, i.e. the Taylor kernel will
start with a negative power. (This is accomplished by expanding numerator and
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denominator separately and combining the results.) Essential singularities of the
known functions (see above) are handled correctly.

Differentiation of a Taylor expression is possible. If you differentiate with respect
to one of the Taylor variables the order will decrease by one.

Substitution is a bit restricted: Taylor variables can only be replaced by other ker-
nels. There is one exception to this rule: you can always substitute a Taylor variable
by an expression that evaluates to a constant. Note that REDUCE will not always
be able to determine that an expression is constant.

Only simple taylor kernels can be integrated. More complicated expressions that
contain Taylor kernels as parts of themselves are automatically converted into a
standard representation by means of the taylortostandard operator. In this
case a suitable warning is printed.

It is possible to revert a Taylor series of a function f , i.e., to compute the first terms
of the expansion of the inverse of f from the expansion of f . This is done by the
operator

taylorrevert(exp:exprn,oldvar:kernel, NEWVAR:kernel):exprn

EXP must evaluate to a Taylor kernel with OLDVAR being one of its expansion
variables. Example:

taylor (u - u**2, u, 0, 5)$
taylorrevert (ws, u, x);

gives

2 3 4 5 6
x + x + 2*x + 5*x + 14*x + O(x )

This package introduces a number of new switches:

taylorautocombine causes Taylor expressions to be automatically com-
bined during the simplification process. This is equivalent to applying
taylorcombine to every expression that contains Taylor kernels. Default
is on.

taylorautoexpand makes Taylor expressions “contagious” in the sense that
taylorcombine tries to Taylor expand all non-Taylor subexpressions and
to combine the result with the rest. Default is off.

taylorkeeporiginal forces the package to keep the original expression, i.e.
the expression that was Taylor expanded. All operations performed on the
Taylor kernels are also applied to this expression which can be recovered
using the operator taylororiginal. Default is off.
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taylorprintorder causes the remainder to be printed in big-O notation.
Otherwise, three dots are printed. Default is on.

verboseload will cause REDUCE to print some information when the Taylor
package is loaded. This switch is already present in PSL systems. Default
is off.

16.1.1 Caveats

taylor should always detect non-analytical expressions in its first argument. As
an example, consider the function xy/(x + y) that is not analytical in the neigh-
borhood of (x, y) = (0, 0): Trying to calculate

taylor(x*y/(x+y),x,0,2,y,0,2);

causes an error

***** Not a unit in argument to QUOTTAYLOR

Note that it is not generally possible to apply the standard REDUCE operators
to a Taylor kernel. For example, coeff or coeffn cannot be used. In-
stead, the expression at hand has to be converted to standard form first using the
taylortostandard operator.

16.1.2 Warning messages

*** Cannot expand further... truncation done
You will get this warning if you try to expand a Taylor kernel to a higher
order.

*** Converting Taylor kernels to standard representation
This warning appears if you try to integrate an expression containing Taylor
kernels.

16.1.3 Error messages

***** Branch point detected in ...
This occurs if you take a rational power of a Taylor kernel and raising the
lowest order term of the kernel to this power yields a non analytical term (i.e.
a fractional power).
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***** Cannot replace part ... in Taylor kernel
The part operator can only be used to either replace the template of a Taylor
kernel (part 2) or the original expression that is kept for reference (part 3).

***** Computation loops (recursive definition?): ...
Most probably the expression to be expanded contains an operator whose
derivative involves the operator itself.

***** Error during expansion (possible singularity)
The expression you are trying to expand caused an error. As far as I know
this can only happen if it contains a function with a pole or an essential
singularity at the expansion point. (But one can never be sure.)

***** Essential singularity in ...
An essential singularity was detected while applying a special function to a
Taylor kernel.

***** Expansion point lies on branch cut in ...
The only functions with branch cuts this package knows of are (natural) log-
arithm, inverse circular and hyperbolic tangent and cotangent. The branch
cut of the logarithm is assumed to lie on the negative real axis. Those of
the arc tangent and arc cotangent functions are chosen to be compatible with
this: both have essential singularities at the points ±i. The branch cut of
arc tangent is the straight line along the imaginary axis connecting +1 to
−1 going through∞ whereas that of arc cotangent goes through the origin.
Consequently, the branch cut of the inverse hyperbolic tangent resp. cotan-
gent lies on the real axis and goes from −1 to +1, that of the latter across 0,
the other across∞.

The error message can currently only appear when you try to calculate the
inverse tangent or cotangent of a Taylor kernel that starts with a negative
degree. The case of a logarithm of a Taylor kernel whose constant term is a
negative real number is not caught since it is difficult to detect this in general.

***** Input expression non-zero at given point
Violation of the necessary condition f(var0,depvar0)=0 for the arguments of
implicit_taylor.

***** Invalid substitution in Taylor kernel: ...
You tried to substitute a variable that is already present in the Taylor kernel
or on which one of the Taylor variables depend.

***** Not a unit in ...
This will happen if you try to divide by or take the logarithm of a Taylor
series whose constant term vanishes.

***** Not implemented yet (...)
Sorry, but this feature is not implemented, although it is possible to do so.
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***** Reversion of Taylor series not possible: ...
You tried to call the taylorrevert operator with inappropriate argu-

ments. The second half of this error message tells you why this operation is
not possible.

***** Taylor kernel doesn’t have an original part
The Taylor kernel upon which you try to use taylororiginal was cre-

ated with the switch taylorkeeporiginal set to off and does there-
fore not keep the original expression.

***** Wrong number of arguments to TAYLOR
You try to use the operator taylor with a wrong number of arguments.

***** Zero divisor in TAYLOREXPAND
A zero divisor was found while an expression was being expanded. This
should not normally occur.

***** Zero divisor in Taylor substitution
That’s exactly what the message says. As an example consider the case of a
Taylor kernel containing the term 1/x and you try to substitute x by 0.

***** ... invalid as kernel
You tried to expand with respect to an expression that is not a kernel.

***** ... invalid as order of Taylor expansion
The order parameter you gave to taylor is not an integer.

***** ... invalid as Taylor kernel
You tried to apply taylororiginal or taylortemplate to an ex-
pression that is not a Taylor kernel.

***** ... invalid as Taylor Template element
You tried to substitute the taylortemplate part of a Taylor kernel with
a list of incorrect form. For the correct form see the description of the
taylortemplate operator.

***** ... invalid as Taylor variable
You tried to substitute a Taylor variable by an expression that is not a kernel.

***** ... invalid as value of TaylorPrintTerms
You have assigned an invalid value to taylorprintterms. Allowed

values are: an integer or the special identifier all.

TAYLOR PACKAGE (...): this can’t happen ...
This message shows that an internal inconsistency was detected. This is not
your fault, at least as long as you did not try to work with the internal data
structures of REDUCE. Send input and output to the REDUCE developers
mailing list, together with the version information that is printed out.
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16.1.4 Comparison to other packages

At the moment there is only one REDUCE package that I know of: the extendible
power series package by Alan Barnes and Julian Padget. In my opinion there are
two major differences:

• The interface. They use the domain mechanism for their power series, I de-
cided to invent a special kind of kernel. Both approaches have advantages
and disadvantages: with domain modes, it is easier to do certain things auto-
matically, e.g., conversions.

• The concept of an extendible series: their idea is to remember the original
expression and to compute more coefficients when more of them are needed.
My approach is to truncate at a certain order and forget how the unexpanded
expression looked like. I think that their method is more widely usable,
whereas mine is more efficient when you know in advance how many terms
you need.

16.2 TPS: Extendible Power Series

16.2.1 Introduction

This package implements formal Laurent power series expansions in one variable
using the domain mechanism of REDUCE. This means that power series objects
can be added, multiplied, differentiated etc. like other first class objects in the sys-
tem. A lazy evaluation scheme is used in the package and thus terms of the series
are not evaluated until they are required for printing or for use in calculating terms
in other power series. The series are extendible giving the user the impression that
the full infinite series is being manipulated. The errors that can sometimes occur
using series that are truncated at some fixed depth (for example when a term in the
required series depends on terms of an intermediate series beyond the truncation
depth) are thus avoided.

The package was originally based on an earlier truncated power series package
developed by Julian Padget in the 1980’s. The name of the original package was
TPS and this was never changed. The alternative (more accurate) name EPS was
perhaps rejected because of possible confusion with the acronym for encapsulated
PostScript.

In the first subsection below a brief description of the main operators available for
series expansion are given together with some examples of their use.
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16.2.2 Basic Use

The most important operator is ps which is used as follows:

ps(EXP:algebraic, VAR:kernel,
ABOUT:algebraic):algebraic.

The ps operator returns a Laurent power series object (a tagged domain element)
representing the univariate formal Laurent power series expansion of EXP with
respect to the dependent variable VAR about the expansion point ABOUT. EXP
may itself contain power series objects. If the function has a pole at the expansion
point then the correct Laurent series expansion will be produced.

The algebraic expression ABOUT should simplify to an expression which is inde-
pendent of the dependent variable VAR, otherwise an error will result. If ABOUT is
the identifier infinity then the power series expansion about∞ is obtained in
ascending powers of 1/VAR.

Examples

a := ps(sin x, x, 0);
ps(sin a, x, 0);
ps(cos x/x^2, x, 0);
ps(x/(1+x),x,infinity);

Operations on Power Series

As power series objects are domain elements they may be added, subtracted, mul-
tiplied and divided in the normal way. For example if A and B are power series
objects with the same expansion variable and expansion point:

a+b; a*b;
1/b; a/b;

will produce power series objects representing the sum, product, reciprocal, and
quotient of the power series objects A and B respectively.

Differentiation

Similarly, if A is a power series object depending on X then the input df(a, x);
will produce the power series expansion of the derivative of A with respect to X.

Integration

The power series expansion of an integral may also be obtained (even if REDUCE
cannot evaluate the integral in closed form). An example of this is

ps(int(exp(exp x),x),x,0);
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Note that if the integration variable is the same as the expansion variable, the inte-
gration package is not called. If on the other hand the two variables are different
the integrator is called to integrate each of the coefficients in the power series ex-
pansion of the integrand. The constant of integration is zero by default.

Note that the Laurent series domain is not closed under integration with respect to
the expansion variable; if the term of degree -1 is non-zero a logarithmic singularity
error will occur on integration.

Exponentiation The Laurent series domain is closed under exponentiation by an
integer power. Thus, with respect to integer exponentiation, power series are first
class objects and for example the following results in automatic expansion of the
final result:

a:= ps(cos x,x,0);
b:= ps(sin x,x,0);
a^2+b^(-2);

However, for more general exponents automatic expansion does not occur. For
example given power series a and b defined as above, the following commands are
necessary:

ps(a^(1/2),x,0);
ps(a^pi,x,0);
ps(a^b,x,0);

Note any power of a power series of order zero (that is with a non-zero term of
degree zero) can be expanded as a power series (again of order zero) provided only
that the power is non-singular at the expansion point. As the third example above
shows the exponent may itself be a power series.

However in general the Laurent series domain is not closed under exponentiation.
If the result is to be a Laurent series some restrictions on the allowed values of the
exponent and order of the original series are necessary. Namely, if the order of the
power series is non-zero (σ say) and the exponent is rational with denominator q
say, then σq must be integral. If the exponent is rational, but σq is not an integer,
a branch point error is generated. For other exponents a logarithmic singularity
error is usually generated. For example,

a := ps(1-cos x,x,0); % series has order 2
ps(a^(1/2),x,0); % series has order 1
ps(a^(2/3),x,0); % branch point error
ps(a^pi,x,0); % logarithmic singularity error

Power series of user defined functions
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New user-defined functions may be expanded provided the user provides a rule
or rule list defining the derivative of the function and optionally its value at the
expansion point. For example

operator u;
let df(u(~x),~x)= exp(e^x);
let u(0) = e;
ps(u(sin x),x,0);

Of course the rules defined must be such that the function actually has a Taylor
series expansion about the specified point.

Restrictions and Known Bugs

Currently automatic expansion of quotients with an integer denominator does not
normally occur. One must use:

a:=ps(sin x,x,0);
ps(a/5,x,0);

or
on rational; % or on rounded;
a/5;

Currently the following does not produce a power series object (although the result
is formally valid):

a := ps(cos x, x, 0);
ps(2^a,x,0);

% instead use:
ps(2^cos x,x,0);

If A is a power series object and X is a variable which evaluates to itself then ex-
pressions such as a*x or int(a, x); do not automtically expand to a single
power series object (although the result returned is formally valid). Instead expres-
sions such as ps(a*x,x,0) and ps(int(a,x),x,0 should be used.

Currently the handling of essential sigularities is rather erratic; sometimes an Es-
sential Singularity or Logarithmic Singularity error message is output, but often
the system fails rather ungracefully.

There is no simple way to write the results of power series calculation to a file and
read them back into REDUCE at a later stage.

Taylor Series Expansion

The operator pstaylor may be used as follows:
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pstaylor(EXP:algebraic, VAR:kernel,
ABOUT:algebraic):algebraic.

which uses the classic Taylor series algorithm for expanding EXP and returning an
extendible Taylor series object.

The pstaylor operator may be useful in contexts where the operator ps fails to
build a suitable recurrence relation automatically and reports too deep a recursion
in ps!:unknown!-crule. A typical example is the expansion of the Γ function
about an expansion point which is not a non-positive integer 2.

Note, however, that pstaylor always returns a Taylor series whose order is non-
negative. Attempting to use pstaylor to expand a function about a pole will fail
with a zero divisor error message.

Also in many cases the use of an automatically generated recurrence relation built
by ps is more efficient than using pstaylor, particularly if a large number of
terms is required; expansion of tan is a typical example where the number of
terms in the nth derivative grows exponentially.

16.2.3 Printing Power Series

If the command ps or pstaylor is terminated by a semi-colon, a power series
object is compiled and then a number of terms of the power series expansion are
evaluated and printed.

psexplim Operator

The expansion is carried out as far as the value specified by an internal vari-
able (with a default value of 6). This variable can be accessed via the operator
psexplim.

psexplim(UPTO:integer):integer.
or

psexplim():integer

If psexplim is called with an integer value, the internal variable is updated to the
value of UPTO and its previous value is returned. If psexplim is called with no
argument the current value is unaltered and that value is returned.

If psexplim is used to increase the expansion limit, sufficient information is
stored in the power series object to enable the additional terms to be calculated
without recalculating the terms already obtained.

If the command is terminated by a dollar symbol, a power series object is compiled
2Actually the TPS code now detects this case and automatically uses pstaylor where appro-

priate.
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and the first term is calculated, but no output is printed.

psprintorder Switch

When the switch psprintorder is ON the trailing terms of power series beyond
psexplim are represented in print by a big-O notation, otherwise, three dots are
printed. This switch is ON by default. However, if expression being expanded is a
polynomial in the expansion variable and all non-zero terms have been output then
the big-O or trailing dots are omitted to indicate that the series is complete.

16.2.4 Accessor Functions

In this section a number of accessor functions which allow the user to extract in-
formation such as the dependent variable, expansion point, a particular term etc. of
a power series object.

psdepvar Operator

psdepvar(TPS:power series object):identifier.

The operator psdepvar returns the expansion variable of the power series object
TPS. TPS should evaluate to a power series object or an integer, otherwise an error
results. If TPS is an integer, the identifier undefined is returned.

psexpansionpt operator

psexpansionpt(TPS:power-series-object):algebraic.

The operator psexpansionpt returns the expansion point of the power series
object TPS. TPS should evaluate to a power series object or an integer, otherwise
an error results. If TPS is an integer, the identifier undefined is returned. If the
expansion is about infinity, the identifier infinity is returned.

psfunction Operator

psfunction(TPS:power-series-object):algebraic.

The operator psfunction returns the function whose expansion gave rise to the
power series object TPS. TPS should evaluate to a power series object or an integer,
otherwise an error results.

psterm Operator

psterm(TPS:power-series-object,
NTH:integer):algebraic.

The operator psterm returns the NTH term of the existing power series object
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TPS. If NTH does not evaluate to an integer or TPS to a power series object an
error results. It should be noted that an integer is treated as a power series.

psorder Operator

psorder(TPS:power-series-object):integer.

The operator psorder returns the order, that is the degree of the first non-zero
term, of the power series object TPS. TPS should evaluate to a power series object
or an error results. If TPS is zero, the identifier undefined is returned.

pstruncate Operator

pstruncate(TPS:power-series-object,
POWER:integer):algebraic.

This procedure truncates the power series TPS discarding terms of order higher
than POWER. The series is extended automatically if the value of POWER is greater
than the order of last term calculated to date. For example

a := ps(sin x, x, 0);
pstruncate(a, 11);

will output the eleventh order polynomial resulting in truncating the series for sinx
after the term involving x11.

If POWER is less than the order of the series then 0 is returned. If POWER does not
simplify to an integer or if TPS is not a power series object then a Reduce error
result.

16.2.5 Power Series Reversion

In order to functionally invert a power series the operator psreverse is used.

psreverse(TPS:power-series-object)
:power-series-object

Four cases arise:

1. If the order of the series is 1, then the expansion point of the inverted series
is 0.

2. If the order is 0 and if the first order term in TPS is non-zero, then the
expansion point of the inverted series is taken to be the coefficient of the
zeroth order term in TPS.
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3. If the order is -1 the expansion point of the inverted series is the point at
infinity. In all other cases a REDUCE error is reported because the series
cannot be inverted as a power series. Puiseux expansion would be required
to handle these cases.

4. If the expansion point of TPS is finite it becomes the zeroth order term in the
inverted series. For expansion about 0 or the point at infinity the order of the
inverted series is one.

If TPS is not a power series object after evaluation an error results.

Some examples:

ps(sin x,x,0);
psreverse(ws); % produces series for asin x about x=0.
ps(exp x,x,0);
psreverse ws; % produces series for log x about x=1.
ps(sin(1/x),x,infinity);
psreverse(ws); % series for 1/asin(x) about x=0.

16.2.6 Power Series Composition

In order to functionally compose two power series the operator pscompose is
used.

pscompose(TPS1:power-series-object,
TPS2:power-series-object)
:power-series-object

The power series TPS1 and TPS2 are functionally composed; that is to say that
TPS2 is substituted for the expansion variable in TPS1 and the result expressed as
a power series. The dependent variable and expansion point of the result coincide
with those of TPS2. The following conditions apply to power series composition:

1. If the expansion point of TPS1 is 0 then the order of the TPS2 must be at
least 1.

2. If the expansion point of TPS1 is finite, it should coincide with the coefficient
of the zeroth order term in TPS2. The order of TPS2 should also be non-
negative in this case.

3. If the expansion point of TPS1 is the point at infinity then the order of TPS2
must be less than or equal to -1.
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If these conditions do not hold the series cannot be composed (with the current
algorithm terms of the inverted series would involve infinite sums) and a REDUCE
error occurs.

Some examples:

a:=ps(exp y,y,0); b:=ps(sin x,x,0);
pscompose(a,b);
% Produces the power series expansion of exp(sin x)
% about x=0.

a:=ps(exp z,z,1); b:=ps(cos x,x,0);
pscompose(a,b);
% Produces the power series expansion of exp(cos x)
% about x=0.

a:=ps(cos(1/x),x,infinity); b:=ps(1/sin x,x,0);
pscompose(a,b);
% Produces the power series expansion of cos(sin x)
% about x=0.

16.2.7 pssum Operator

If an expression is known for the nth term of a power series, an extendible power
series object may be constructed by the operator pssum

pssum(J:kernel = LOWLIM:integer,
COEFF:algebraic, X:kernel,
ABOUT:algebraic, POWER:algebraic)
:power-series-object

The formal power series sum for J from LOWLIM to infinity of

COEFF*(X-ABOUT)**POWER

when ABOUT is finite or zero, whereas if ABOUT is infinity

COEFF*(1/X)**POWER

is constructed and returned. This enables power series whose general term is
known to be constructed and manipulated using the other procedures of the power
series package.

J and X should be distinct simple kernels. The algebraics ABOUT, COEFF and
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POWER should not depend on the expansion variable X, similarly the algebraic
ABOUT should not depend on the summation variable J. The algebraic POWER
should be a strictly increasing integer-valued function of J for J in the range
LOWLIM to infinity.

Some examples:

pssum(n=0,1,x,0,n*n);
% Produces the power series summation for n=0 to
% infinity of x**(n*n).

pssum(n=1,n,x,0,n);
% Produces the power series summation for n=1 to
% infinity of n*x**n.

pssum(m=1,(-1)**(m-1)/(2m-1),y,1,2m-1);
% Produces a power series which is actually the
% expansion of atan(y-1) about y=1.

pssum(j=1,-1/j,x,infinity,j);
% Produces a power series which is actually the
% expansion of log(1-1/x) about the point at infinity.

pssum(n=0,1,x,0,2n**2+3n) + pssum(n=1,1,x,0,2n**2-3n);
% Produces the power series summation for n=-infinity
% to +infinity of x**(2n**2+3n).

It should be noted that a formal power series is produced which may not have a
non-zero radius of convergence; the second example above illustrates this. Never-
theless these formal series may be added, multiplied, differentiated etc. by the TPS
package. Of course, in general the result may also have a zero radius of conver-
gence.

16.2.8 Miscellaneous Operators

pscopy Operator

pscopy(TPS:power-series-object):power-series-object

This procedure returns a copy of the power series TPS. The copy has no shared
sub-structures in common with the original series. This enables substitutions to be
performed on the series without side-effects on previously computed objects. For
example:
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clear a;
b := ps(sin(a*x)), x, 0);
b where a => 1;

will result in a being set to 1 in each of the terms of the power series and the
resulting expressions being simplified. Owing to the way power series objects
are implemented using Lisp vectors, this has the side-effect that the value of b
is changed. This may be avoided by copying the series with pscopy before
applying the substitution, thus:

b := ps(sin(a*x)), x, 0);
pscopy b where a => 1;

pschangevar Operator

pschangevar(TPS:power-series-object,
X:kernel):power-series-object

The operator pschangevar changes the dependent variable of the power series
object TPS to the variable X. TPS should evaluate to a power series object and X
to a kernel, otherwise an error results. Also X should not appear as a parameter in
TPS. The power series with the new dependent variable is returned.

psordlim Operator

psordlim(UPTO:integer):integer
or

psordlim():integer

An internal variable is set to the value of UPTO (which should evaluate to an inte-
ger). The value returned is the previous value of the variable. The default value is
100. If psordlim is called with no argument, the current value is returned.

The significance of this control is that the system attempts to find the order of the
power series required, that is the order is the degree of the first non-zero term in the
power series. If the order is greater than the value of this variable an error message
is given and the computation aborts. This prevents infinite loops in certain cases,
for example:

a:=ps(1-(cos x)^2,x,0);
b :=ps((sin x)^2,x,0);
b-a;

This will also occur in the rather unlikely situation where the expression being
expanded is
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1. identically zero, but is not recognized as such by REDUCE;

2. and its derivatives are not recognized as identically zero by Reduce;

3. but the values of all derivatives at the expansion point are simplified to zero
by REDUCE.
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16.3 FPS: Automatic Calculation of Formal Power Series

This package can expand a specific class of functions into their corresponding
Laurent-Puiseux series.3

16.3.1 Introduction

This package can expand functions of certain type into their corresponding
Laurent-Puiseux series as a sum of terms of the form

∞∑
k=0

ak(x− x0)mk/n+s

where m is the ‘symmetry number’, s is the ‘shift number’, n is the ‘Puiseux
number’, and x0 is the ‘point of development’. The following types are supported:

• textbffunctions of ‘rational type’, which are either rational or have a rational
derivative of some order;

• functions of ‘hypergeometric type’ where a(k+m)/a(k) is a rational func-
tion for some integer m;

• functions of ‘explike type’ which satisfy a linear homogeneous differential
equation with constant coefficients.

The FPS package is an implementation of the method presented in [Koe92]. The
implementations of this package for MAPLE (by D. Gruntz) and MATHEMATICA

(by W. Koepf) served as guidelines for this one.

Numerous examples can be found in [Koe93b, Koe93a], most of which are con-
tained in the test file fps.tst. Many more examples can be found in the extensive
bibliography of Hansen [Han75].

16.3.2 REDUCE operator FPS

fps(f,x,x0) tries to find a formal power series expansion for f with respect
to the variable x at the point of development x0. It also works for formal Lau-
rent (negative exponents) and Puiseux series (fractional exponents). If the third
argument is omitted, then x0:=0 is assumed.

Examples: fps(asin(x)^2,x) results in
3This package was written by Wolfram Koepf and Winfried Neun.
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2*k 2*k 2 2
x *2 *factorial(k) *x

infsum(----------------------------,k,0,infinity)
factorial(2*k + 1)*(k + 1)

fps(sin x,x,pi) gives

2*k k
( - pi + x) *( - 1) *( - pi + x)

infsum(------------------------------------,k,0,
factorial(2*k + 1)

infinity)

and fps(sqrt(2-x^2),x) yields

2*k
- x *sqrt(2)*factorial(2*k)

infsum(--------------------------------,k,0,infinity)
k 2
8 *factorial(k) *(2*k - 1)

Note: The result contains one or more infsum terms such that it does not interfere
with the REDUCE operator sum. In graphical oriented REDUCE interfaces this
operator results in the usual

∑
notation.

If possible, the output is given using factorials. In some cases, the use of the
Pochhammer symbol pochhammer(a,k):= a(a+1) · · · (a+k−1) is necessary.

The operator fps uses the operator SimpleDE of the next section.

If an error message of type

Could not find the limit of:

occurs, you can set the corresponding limit yourself and try a recalculation. In the
computation of fps(atan(cot(x)),x,0), REDUCE is not able to find the
value for the limit limit(atan(cot(x)),x,0) since the atan function is
multi-valued. One can choose the branch of atan such that this limit equals π/2
so that we may set

let limit(atan(cot(~x)),x,0)=>pi/2;

and a recalculation of fps(atan(cot(x)),x,0) yields the output pi -
2*x which is the correct local series representation.
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16.3.3 REDUCE operator SimpleDE

SimpleDE(f,x) tries to find a homogeneous linear differential equation with
polynomial coefficients for f with respect to x. Make sure that y is not a used
variable. The setting factor df; is recommended to receive a nicer output
form.

Examples: SimpleDE(asin(x)^2,x) then results in

2
df(y,x,3)*(x - 1) + 3*df(y,x,2)*x + df(y,x)

SimpleDE(exp(x^(1/3)),x) gives

2
27*df(y,x,3)*x + 54*df(y,x,2)*x + 6*df(y,x) - y

and SimpleDE(sqrt(2-x^2),x) yields

2
df(y,x)*(x - 2) - x*y

The depth for the search of a differential equation for f is controlled by the variable
fps_search_depth; A higher value for fps_search_depth will increase
the chance to find the solution, but increases the complexity as well. The default
value for fps_search_depth is 5. E. g., for fps(sin(xˆ(1/3)),x), or
SimpleDE(sin(xˆ(1/3)),x) a setting fps_search_depth:=6 is nec-
essary.

The output of the FPS package can be influenced by the switch tracefps. Setting
on tracefps causes various prints of intermediate results.

16.3.4 Problems in the current version

The handling of logarithmic singularities is not yet implemented.

The rational type implementation is not yet complete.

The support of special functions [Koe94a] will be part of the next version.
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Chapter 17

Solving Numerical Problems

The NUMERIC package implements some numerical (approximative) algorithms
for REDUCE, based on the REDUCE rounded mode arithmetic.1 These algorithms
are implemented for standard cases:

This package implements basic algorithms of numerical analysis. These include:

• solution of algebraic equations by Newton’s method

num_solve({sin x=cos y, x + y = 1},{x=1,y=2})

• solution of ordinary differential equations

num_odesolve(df(y,x)=y,y=1,x=(0 .. 1),
iterations=5)

• bounds of a function over an interval

bounds(sin x+x,x=(1 .. 2));

• minimizing a function (Fletcher Reeves steepest descent)

num_min(sin(x)+x/5, x);

• Chebyshev curve fitting

chebyshev_fit(sin x/x,x=(1 .. 3),5);

• numerical quadrature

num_int(sin x,x=(0 .. pi));

They should not be called for ill-conditioned problems; please use standard math-
ematical libraries for these.

1This code was written by Herbert Melenk.

263
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17.1 Syntax

17.1.1 Intervals, Starting Points

Intervals are generally coded as lower bound and upper bound connected by the
operator ‘..’, usually associated to a variable in an equation. E.g.

x= (2.5 .. 3.5)

means that the variable x is taken in the range from 2.5 up to 3.5. Note, that the
bounds can be algebraic expressions, which, however, must evaluate to numeric
results. In cases where an interval is returned as the result, the lower and upper
bounds can be extracted by the part operator as the first and second part respec-
tively. A starting point is specified by an equation with a numeric righthand side,
e.g.

x=3.0

If for multivariate applications several coordinates must be specified by intervals or
as a starting point, these specifications can be collected in one parameter (which is
then a list) or they can be given as separate parameters alternatively. The list form is
more appropriate when the parameters are built from other REDUCE calculations
in an automatic style, while the flat form is more convenient for direct interactive
input.

17.1.2 Accuracy Control

The keyword parameters accuracy=〈a〉 and iterations=〈i〉, where 〈a〉 and
〈i〉 must be positive integer numbers, control the iterative algorithms: the iteration
is continued until the local error is below 10−a; if that is impossible within 〈i〉
steps, the iteration is terminated with an error message. The values reached so far
are then returned as the result.

17.1.3 Tracing

Normally the algorithms produce only a minimum of printed output during their
operation. In cases of an unsuccessful or unexpected long operation a trace of the
iteration can be printed by setting

on trnumeric;
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17.2 Minima

The Fletcher Reeves version of the steepest descent algorithms is used to find the
minimum of a function of one or more variables. The function must have continu-
ous partial derivatives with respect to all variables. The starting point of the search
can be specified; if not, random values are taken instead. The steepest descent
algorithms in general find only local minima.

Syntax:

num_min (〈exp〉, 〈var1〉 [=val1] [,var2[=val2] . . . ]
[,accuracy=〈a〉][,iterations=〈i〉])

or
num_min (〈exp〉, {〈var1〉 [=val1] [,var2[=val2] . . . ]}

[,accuracy=〈a〉][,iterations=〈i〉])

where 〈exp〉 is a function expression, 〈var1〉, 〈var2〉, . . . are the variables in 〈exp〉
and 〈val1〉, 〈val2〉, . . . are the (optional) start values.

num_min tries to find the next local minimum along the descending path starting
at the given point. The result is a list with the minimum function value as first
element followed by a list of equations, where the variables are equated to the
coordinates of the result point.

Examples:

num_min(sin(x)+x/5, x);

{-0.0775896851944,{x=4.51103102502}}

num_min(sin(x)+x/5, x=0);

{-1.33422674662,{x=-1.77215826714}}

% Rosenbrock function (well known as hard to minimize).
fktn := 100*(x1**2-x2)**2 + (1-x1)**2;
num_min(fktn, x1=-1.2, x2=1, iterations=200);

{0.000000218702254529,{x1=0.999532844959,x2

=0.99906807243}}
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17.3 Roots of Functions / Solutions of Equations

An adaptively damped Newton iteration is used to find an approximative zero of
a function, a function vector or the solution of an equation or an equation sys-
tem. Equations are internally converted to a difference of lhs and rhs such that
the Newton method (=zero detection) can be applied. The expressions must have
continuous derivatives for all variables. A starting point for the iteration can be
given. If not given, random values are taken instead. If the number of forms is not
equal to the number of variables, the Newton method cannot be applied. Then the
minimum of the sum of absolute squares is located instead.

With on complex solutions with imaginary parts can be found, if either the ex-
pression(s) or the starting point contain a nonzero imaginary part.

Syntax:

num_solve (〈exp1〉,〈var1〉[=val1][,accuracy=a][,iterations=i])

or

num_solve ({exp1, . . . , expn}, var1[= val1], . . . , varn[= valn]

[, accuracy = a][, iterations = i])

or

num_solve ({exp1, . . . , expn}, {var1[= val1], . . . , varn[= valn]}

[, accuracy = a][, iterations = i])

where exp1, . . . , expn are function expressions,

var1, . . . , varn are the variables,

val1, . . . , valn are optional start values.

num_solve tries to find a zero/solution of the expression(s). Result is a list
of equations, where the variables are equated to the coordinates of the result
point.

The Jacobian matrix is stored as a side effect in the shared variable
jacobian.

Example:

num_solve({sin x=cos y, x + y = 1},{x=1,y=1});

{x= - 1.85619449019,y=2.85619449019}

jacobian;
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[cos(x) sin(y)]
[ ]
[ 1 1 ]

17.4 Integrals

For the numerical evaluation of univariate integrals over a finite interval the fol-
lowing strategy is used:

1. If the function has an antiderivative in close form which is bounded in the
integration interval, this is used.

2. Otherwise a Chebyshev approximation is computed, starting with order 20,
eventually up to order 80. If that is recognized as sufficiently convergent
it is used for computing the integral by directly integrating the coefficient
sequence.

3. If none of these methods is successful, an adaptive multilevel quadrature
algorithm is used.

For multivariate integrals only the adaptive quadrature is used. This algorithm tol-
erates isolated singularities. The value iterations here limits the number of local
interval intersection levels. Accuracy is a measure for the relative total discretiza-
tion error (comparison of order 1 and order 2 approximations).

Syntax:

num_int (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .]

[, accuracy = a][, iterations = i])

where exp is the function to be integrated,

var1, var2, . . . are the integration variables,

l1, l2, . . . are the lower bounds,

u1, u2, . . . are the upper bounds.

Result is the value of the integral.

Example:

num_int(sin x,x=(0 .. pi));

2.0
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17.5 Ordinary Differential Equations

A Runge-Kutta method of order 3 finds an approximate graph for the solution of a
ordinary differential equation real initial value problem.

Syntax:

num_odesolve (exp,depvar = dv,indepvar=(from..to)

[, accuracy = a][, iterations = i])

where

exp is the differential expression/equation,

depvar is an identifier representing the dependent variable (function to be
found),

indepvar is an identifier representing the independent variable,

exp is an equation (or an expression implicitly set to zero) which contains
the first derivative of depvar wrt indepvar,

from is the starting point of integration,

to is the endpoint of integration (allowed to be below from),

dv is the initial value of depvar in the point indepvar = from.

The ODE exp is converted into an explicit form, which then is used for a
Runge Kutta iteration over the given range. The number of steps is controlled
by the value of i (default: 20). If the steps are too coarse to reach the desired
accuracy in the neighborhood of the starting point, the number is increased
automatically.

Result is a list of pairs, each representing a point of the approximate solution
of the ODE problem.

Remarks:

– Note that the dependent variable must be explicitly declared using a
depend statement, e.g., depend y,x.

– The REDUCE package SOLVE is used to convert the form into an
explicit ODE. If that process fails or has no unique result, the evaluation
is stopped with an error message.

Example:

depend y,x;

num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5);
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{{x,y},

{0.0,1.0},

{0.2,1.22140275816},

{0.4,1.49182469764},

{0.6,1.82211880039},

{0.8,2.22554092849},

{1.0,2.71828182846}}

17.6 Bounds of a Function

Upper and lower bounds of a real valued function over an interval or a rectangular
multivariate domain are computed by the operator bounds. The algorithmic basis
is the computation with inequalities: starting from the interval(s) of the variables,
the bounds are propagated in the expression using the rules for inequality compu-
tation. Some knowledge about the behavior of special functions like ABS, SIN,
COS, EXP, LOG, fractional exponentials etc. is integrated and can be evaluated
if the operator bounds is called with rounded mode on (otherwise only algebraic
evaluation rules are available).

If bounds finds a singularity within an interval, the evaluation is stopped with an
error message indicating the problem part of the expression.

Syntax:

bounds (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .])

bounds (exp, {var1 = (l1..u1)[, var2 = (l2..u2) . . .]})
where exp is the function to be investigated,

var1, var2, . . . are the variables of exp,

l1, l2, . . . and u1, u2, . . . specify the area (intervals).

bounds computes upper and lower bounds for the expression in the given
area. An interval is returned.

Example:
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bounds(sin x,x=(1 .. 2));

- 1 .. 1

on rounded;
bounds(sin x,x=(1 .. 2));

0.841470984808 .. 1

bounds(x**2+x,x=(-0.5 .. 0.5));

- 0.25 .. 0.75

17.7 Chebyshev Curve Fitting

The operator family Chebyshev_ . . . implements approximation and evaluation of
functions by the Chebyshev method. Let T (a,b)

n (x) be the Chebyshev polynomial
of order n transformed to the interval (a, b). Then a function f(x) can be approxi-
mated in (a, b) by a series

f(x) ≈
N∑
i=0

ciT
(a,b)
i (x)

The operator chebyshev_fit computes this approximation and returns a
list, which has as first element the sum expressed as a polynomial and as
second element the sequence of Chebyshev coefficients ci. chebyshev_df
and chebyshev_int transform a Chebyshev coefficient list into the coeffi-
cients of the corresponding derivative or integral respectively. For evaluating
a Chebyshev approximation at a given point in the basic interval the operator
chebyshev_eval can be used. Note that Chebyshev_eval is based on a
recurrence relation which is in general more stable than a direct evaluation of the
complete polynomial.

chebyshev_fit (fcn, var = (lo..hi), n)

chebyshev_eval (coeffs, var = (lo..hi), var = pt)

chebyshev_df (coeffs, var = (lo..hi))

chebyshev_int (coeffs, var = (lo..hi))
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where 〈fcn〉 is an algebraic expression (the function to be fitted), 〈var〉 is
the variable of 〈fcn〉, 〈lo〉 and 〈hi〉 are numerical real values which describe
an interval (lo < hi), 〈n〉 is the approximation order, a positive integer,
set to 20 if missing, 〈pt〉 is a numerical value in the interval and 〈coeffs〉
is a series of Chebyshev coefficients, computed by one of the operators
chebyshev_coeff, chebyshev_df, or chebyshev_int.

Example:

on rounded;

w:=chebyshev_fit(sin x/x,x=(1 .. 3),5);

w := {0.0382345446975*x - 0.239802588672*x

+ 0.0651206939005*x + 0.977836217464,

{0.899091895826,-0.406599215895,

-0.00519766024352,0.00946374143079,

-0.0000948947435876}}

chebyshev_eval(second w, x=(1 .. 3), x=2.1);

0.411091086819

17.8 General Curve Fitting

The operator num_fit finds for a set of points the linear combination of a given
set of functions (function basis) which approximates the points best under the ob-
jective of the least squares criterion (minimum of the sum of the squares of the
deviation). The solution is found as zero of the gradient vector of the sum of
squared errors.

Syntax:

num_fit (vals, basis, var = pts)

where vals is a list of numeric values,

var is a variable used for the approximation,

pts is a list of coordinate values which correspond to var,
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basis is a set of functions varying in var which is used for the approxima-
tion.

The result is a list containing as first element the function which approximates the
given values, and as second element a list of coefficients which were used to build
this function from the basis.

Example:

% approximate a set of factorials by a polynomial
pts:=for i:=1 step 1 until 5 collect i$
vals:=for i:=1 step 1 until 5 collect

for j:=1:i product j$

num_fit(vals,{1,x,x**2},x=pts);

2
{14.5714285714*x - 61.4285714286*x + 54.6,{54.6,

- 61.4285714286,14.5714285714}}

num_fit(vals,{1,x,x**2,x**3,x**4},x=pts);

{2.20833333343*x - 20.2500000011*x

+ 67.7916666713*x - 93.7500000077*x

+ 45.0000000042,

{45.0000000042, - 93.7500000077,67.7916666713,

- 20.2500000011,2.20833333343}}



Chapter 18

Graphical Display

18.1 GNUPLOT: Display of Functions and Surfaces

Graphical display of functions and data is done via an interface, the REDUCE
GNUPLOT1 package, to the popular gnuplot2 graphing utility. It allows you to
display functions in 2D and surfaces in 3D on a variety of output devices including
X terminals, PC monitors, and postscript and LATEX printer files.

The binary distribution of REDUCE for Microsoft Windows includes gnuplot
version 5.4, which has its own documentation. Web REDUCE also includes
gnuplot version 5.4. On other platforms, REDUCE uses whatever version of
gnuplot is available.

The GNUPLOT package provides easy to use graphics output for curves or surfaces
which are defined by formulas and/or data sets, and supports a variety of output
devices such as VGA screen, postscript, picTEX, MS Windows. It lets
you generate gnuplot graphical output directly from inside REDUCE, either for
the interactive display of curves/surfaces or for the production of pictures on paper.

18.1.1 Command plot

Under the REDUCE GNUPLOT package, gnuplot is used as a graphical output
server, invoked by the command plot(. . . ). This command can have a variable
number of parameters:

• A function to plot, which can be

– an expression with one unknown, e.g., u*sin(u)^2;
1This interface, together with the code for plotting data, was written by Herbert Melenk.
2https://gnuplot.sourceforge.net/
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– a list of expressions with one (identical) unknown, e.g., {sin(u),
cos(u)};

– an expression with two unknowns, e.g., u*sin(u)^2+sqrt(v);

– a list of expressions with two (identical) unknowns, e.g.,
{x^2+y^2,x^2-y^2};

– a parametic expression of the form point(<u>,<v>) (for 2D plots)
or point(<u>,<v>,<w>) (for 3D plots) where <u>,<v>,<w>
are expressions which depend of one or two parameters; if there is
one parameter, the object describes a curve in the plane (only <u> and
<v>) or in 3D space; if there are two parameters, the object describes
a surface in 3D. The parameters are treated as independent variables.
Example: point(sin t,cos t,t/10);

– an equation with a symbol on the left-hand side and an expres-
sion with one or two unknowns on the right-hand side, e.g., dome=
1/(x^2+y^2);

– an equation with an expression on the left-hand side and a zero on the
right-hand side describing implicitly a one-dimensional variety in the
plane (implicitly given curve), e.g., x^3 + x*y^2 - 9x = 0, or a
two-dimensional surface in three-dimensional Euclidean space;

– an equation with an expression in two variables on the left-hand side
and a list of numbers on the right-hand side; the contour lines corre-
sponding to the given values are drawn, e.g.,
x^3 - y^2 + x*y = {-2,-1,0,1,2};

– a list of points in 2 or 3 dimensions, e.g., {{0,0},{0,1},{1,1}}
representing a curve;

– a list of lists of points in 2 or 3 dimensions, e.g.,
{{{0,0},{0,1},{1,1}}, {{0,0},{0,1},{1,1}}}
representing a family of curves.

• A range for a variable: this has the form <variable>=(<lower_bound>
.. <upper_bound>)where <lower_bound> and <upper_bound>
must be expressions which evaluate to numbers. If no range is specified the
default range for independent variables is (-10 .. 10) and for the de-
pendent variable it is set to the maximum for the gnuplot executable (us-
ing double floats on most IEEE machines). However, each of the variables
plot_xrange, plot_yrange, plot_zrange can be assigned an in-
terval of the form (<lower_bound> .. <upper_bound>) that sets
the default range for the x, y, z direction. The z direction corresponds to the
function values or surface height and setting a z-range flattens the graph at
the range limits, which is especially useful for functions with singularities.

Additionally, the number of interval subdivisions can be assigned as a formal
quotient of the form
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<variable>=(<lower_bound> .. <upper_bound>)/<it>

where <it> is a positive integer; e.g. (1 .. 5)/30 means the interval
from 1 to 5 subdivided into 30 pieces of equal size. A subdivision parameter
overrides the value of the option points for this variable.

• A plot option, either as a fixed keyword, e.g., hidden3d or as an equation
e.g., term=pictex; free text such as titles and labels should be enclosed
in string quotes. Further details are given below.

Please note that a space has to be inserted between a number and a dot when spec-
ifying an interval, otherwise the REDUCE translator will be misled.

If a function is given as an equation, the left-hand side is mainly used as a label for
the axis of the dependent variable.

In two dimensions, plot can be called with more than one explicit function; all
curves are drawn in one picture. However, all these must use the same independent
variable name. One of the functions can be a point set or a point set list. Normally
all functions and point sets are plotted by lines. A point set is drawn by points only
if functions and the point set are drawn in one picture.

The same applies to three dimensions with explicit functions. However, an implic-
itly given curve must be the sole object for one picture.

In 2D implicit and contour plots, as well as 3D surface plots, the ordering of the
two independent variables is by default the standard REDUCE ordering, e.g. x, y
rather than y, x. However, if both independent variables are specified explicitly
via options of the form <variable> = <range> then the option ordering is
used as the variable ordering. In 2D, the first variable is plotted horizontally and
the second vertically, and in 3D the first and second independent variables and the
dependent variable form a right-handed coordinate system. (See the examples at
the end of this section.)

The functional expressions are evaluated in rounded mode. This is done auto-
matically, it is not necessary to turn on rounded mode explicitly.

Examples:

plot(cos x);
plot(s=sin phi, phi=(-3 .. 3));
plot(sin phi, cos phi, phi=(-3 .. 3));
plot (cos sqrt(x^2 + y^2), x=(-3 .. 3), y=(-3 .. 3),

hidden3d);
plot {{0,0},{0,1},{1,1},{0,0},{1,0},{0,1},

{0.5,1.5},{1,1},{1,0}};

% parametric: screw
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on rounded;
w := for j := 1:200 collect

{1/j*sin j, 1/j*cos j, j/200}$
plot w;

% parametric: globe
dd := pi/15$
w := for u := dd step dd until pi-dd collect

for v := 0 step dd until 2pi collect
{sin(u)*cos(v), sin(u)*sin(v), cos(u)}$

plot w;

% implicit: superposition of polynomials
plot((x^2+y^2-9)*x*y = 0);

Piecewise-defined functions

A composed graph can be defined by a rule-based operator. In that case each rule
must contain a clause which restricts the rule application to numeric arguments,
e.g.,

operator my_step1;
let {my_step1(~x) => -1 when numberp x and x<-pi/2,

my_step1(~x) => 1 when numberp x and x>pi/2,
my_step1(~x) => sin x

when numberp x and -pi/2<=x and x<=pi/2};
plot(my_step1(x));

Of course, such a rule may call a procedure:

procedure my_step3(x);
if x<-1 then -1 else if x>1 then 1 else x;

operator my_step2;
let my_step2(~x) => my_step3(x) when numberp x;
plot(my_step2(x));

The direct use of a procedure with a numeric if clause is impossible.

Plot options

The following options are specific to the REDUCE plot command:
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• points=<integer>: the number of unconditionally computed data
points; for a grid, points^2 grid points are used. The default value is
20. The value of points is used only for variables for which no individual
interval subdivision has been included in the range specification.

• refine=<integer>: the maximum depth of adaptive interval intersec-
tions for 2D plots (only). The default is 8. A value of 0 switches any refine-
ment off. Note that a high value may increase the computing time signifi-
cantly.

Additional options

Additional gnuplot options are supported via the following syntax in the plot
command.

The following options are implemented using the gnuplot set (or unset if the
option begins with no) command, which offers far more control than is currently
exposed via this interface. Note that the gnuplot reset command, which clears
the effect of most set commands (not set term or set output) from previ-
ous calls of plot, is always issued before any set commands. See Commands /
Set-show and Commands / Reset in the gnuplot documentation or the gnuplot
Help for details.

• title=<string>: the specified title is put at the top of the picture.

• xlabel=<string>, ylabel=<string>, and zlabel=<string>
for surfaces: the specified axis labels are displayed. If omitted the axes are
labeled by the independent and dependent variable names from the expres-
sion. Note that xlabel, ylabel, and zlabel here are used in the usual
sense, x for the horizontal and y for the vertical axis in 2D, and z for the
perpendicular axis in 3D – these names do not refer to the variable names
used in the expressions.

plot(1,x,(4*x^2-1)/2,(x*(12*x^2-5))/3, x=(-1 .. 1),
ylabel="L(x,n)", title="Legendre Polynomials");

• terminal=name: prepare output for device type name. Every instal-
lation uses a default terminal as output device; some installations support
additional devices such as printers; consult the gnuplot documentation or
the gnuplot Help for details.

• output="filename": redirect the output to a file.

• size=<string>: set the size of the plot via the gnuplot command set
size <string>, for example. . .
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– size="s_x,s_y": rescale the graph (not the window) where sx and
sy are scaling factors for the x- and y-sizes, e.g.

plot(1/(x^2+y^2), x=(0.1 .. 5), y=(0.1 .. 5),
size="0.7,1");

Defaults are sx = 1, sy = 1. Note that scaling factors greater than 1
will often cause the picture to be too big for the window.

– size="ratio -1": set the scales so that the unit has the same
length on both the x and y axes, which is essential for geometrical
plots to look correct, e.g.

plot(x^2+y^2-1=0, x=(-2 .. 2), y=(-2 .. 2),
size="ratio -1");

• view="r_x,r_z": set the viewpoint in 3 dimensions by turning the object
around the x or z axis; the values are degrees (integers). Defaults are rx =
60, rz = 30.

plot(1/(x^2+y^2), x=(0.1 .. 5), y=(0.1 .. 5),
view="30,130");

• logscale: set all axes to use logarithmic scales.

• contour resp. nocontour: in 3 dimensions an additional contour map
is drawn (default: nocontour). Note that contour is an option which is
executed by gnuplot by interpolating the precomputed function values. If
you want to draw contour lines of a delicate formula, you had better use the
contour form of the REDUCE plot command as described above.

• surface resp. nosurface: in 3 dimensions the surface is drawn, resp.
suppressed (default: surface).

• hidden3d: apply hidden line removal in 3 dimensions.

• pm3d: draw a solid coloured (palette-mapped 3d) surface in 3 dimensions.

The following option is implemented using the gnuplot command with
<style>, which offers far more control than is currently exposed via this in-
terface. See Plotting styles in the gnuplot documentation or the gnuplot Help
for details.

• style= one of lines, points, linespoints, impulses,
dots, errorbars, boxes, boxerrorbars, boxxyerrorbars,
candlesticks, financebars, fsteps, histeps, steps,
vector, xerrorbars, xyerrorbars, yerrorbars: set the display
style.
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18.1.2 Paper output

The following example works for a PostScript printer. If your printer uses a differ-
ent communication, please find the correct setting for the terminal variable in
the gnuplot documentation.

For a PostScript output, you need to add the options terminal=postscript
and output="filename" to your plot command, e.g.,

plot(sin x, x=(0 .. 10), terminal=postscript,
output="sin.ps");

18.1.3 Mesh generation for implicit curves

The basic mesh for finding an implicitly-given curve, the x, y plane is subdivided
into an initial set of triangles. Those triangles which have an explicit zero point or
which have two points with different signs are refined by subdivision. A further re-
finement is performed for triangles which do not have exactly two zero neighbours
because such places may represent crossings, bifurcations, turning points or other
difficulties. The initial subdivision and the refinements are controlled by the option
points which is initially set to 20: the initial grid is refined unconditionally until
approximately points * points equally-distributed points in the x, y plane
have been generated.

The final mesh can be visualized in the picture by setting

on show_grid;

18.1.4 Mesh generation for surfaces

By default the functions are computed at predefined mesh points: the ranges are
divided by the number associated with the option points in both directions.

For two dimensions the given mesh is adaptively smoothed when the curves are
too coarse, especially if singularities are present. On the other hand refinement can
be rather time-consuming if used with complicated expressions. You can control it
with the option refine. At singularities the graph is interrupted.

In three dimensions no refinement is possible as gnuplot supports surfaces only
with a fixed regular grid. In the case of a singularity the near neighborhood is
tested; if a point there allows a function evaluation, its clipped value is used instead,
otherwise a zero is inserted.

When plotting surfaces in three dimensions you have the option of hidden line
removal. Because of an error in Gnuplot 3.2 the axes cannot be labeled correctly
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when hidden3d is used ; therefore they aren’t labelled at all. Hidden line removal
is not available with point lists.

18.1.5 gnuplot operation

The command plotreset; deletes the current gnuplot output window. The
next call to plot will then open a new one.

If gnuplot is invoked directly by an output pipe (UNIX and Windows), an even-
tual error in the gnuplot data transmission might cause gnuplot to quit. As
REDUCE is unable to detect the broken pipe, you have to reset the plot system by
calling the command plotreset; explicitly. Afterwards new graphics output
can be produced.

Under Windows 3.1 and Windows NT, gnuplot has a text and a graph window.
If you don’t want to see the text window, iconify it and activate the option update
wgnuplot.ini from the graph window system menu – then the present screen
layout (including the graph window size) will be saved and the text windows will
come up iconified in future. You can also select some more features there and so
tailor the graphic output. Before you terminate REDUCE you should terminate
the graphic window by calling plotreset;. If you terminate REDUCE without
deleting the gnuplot windows, use the command button from the gnuplot text
window – it offers an exit function.

18.1.6 Saving gnuplot command sequences

If you want to use the internal gnuplot command sequence more than once (e.g.,
for producing a picture for a publication), you may set

on trplot, plotkeep;

trplot causes all gnuplot commands to be written additionally to the actual
REDUCE output. Normally the data files are erased after calling gnuplot, how-
ever with plotkeep on the files are not erased.

18.1.7 Direct Call of gnuplot

gnuplot has a lot of facilities which are not accessed by the operators and pa-
rameters described above. Therefore genuine gnuplot commands can be sent by
REDUCE. Please consult the gnuplot manual for the available commands and
parameters. The general syntax for a gnuplot call inside REDUCE is

gnuplot(<cmd>,<p_1>,<p_2> ...)
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where cmd is a command name and p1, p2, . . . are the parameters, inside REDUCE
separated by commas. The parameters are evaluated by REDUCE and then trans-
mitted to gnuplot in gnuplot syntax. Usually a drawing is built by a sequence
of commands which are buffered by REDUCE or the operating system. For termi-
nating and activating them use the REDUCE command plotshow. Example:

gnuplot(set,polar);
gnuplot(unset,parametric);
gnuplot(set,dummy,x);
gnuplot(plot, x*sin x);
plotshow;

In this example the function expression is transferred literally to gnuplot, while
REDUCE is responsible for computing the function values when plot is called.
Note that gnuplot restrictions with respect to variable and function names have
to be taken into account when using this type of operation. Important: String
quotes are not transferred to the gnuplot executable; if the gnuplot syntax
needs string quotes, you must add doubled stringquotes inside the argument string,
e.g.,

gnuplot(plot, """mydata""", "using 2:1");

18.1.8 Examples

The following are taken from a collection of sample plots (gnuplot.tst) and
a set of tests for plotting special functions. The pictures are made using the qt
gnuplot device and using the menu of the graphics window to export to PDF or
PNG.

A simple plot for sin(1/x):
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plot(sin(1/x), x=(-1 .. 1), y=(-3 .. 3));
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Some implicitly-defined curves:

plot(x^3 + y^3 - 3*x*y = {0,1,2,3},
y=(-5 .. 5), x=(-2.5 .. 2));
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(Note that the y-axis is plotted horizontally since it is specified first among the
options.)
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A test for hidden surfaces:

plot(cos sqrt(x^2 + y^2), y=(-3 .. 3), x=(-3 .. 3),
hidden3d);

REDUCE Plot
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(Note the left-handed coordinate system since y is specified before x among the
options; for a right-handed coordinate system specify x before y.)
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plot(sinh(x*y)/sinh(2*x*y),
y=(-10 .. 10), x=(-10 .. 10), hidden3d);

REDUCE Plot
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(Note the left-handed coordinate system since y is specified before x among the
options; for a right-handed coordinate system specify x before y.)
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on rounded;
w:= {for j:=1 step 0.1 until 20 collect

{1/j*sin j, 1/j*cos j, j},
for j:=1 step 0.1 until 20 collect
{(0.1+1/j)*sin j, (0.1+1/j)*cos j, j} }$

plot w;
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The following example is taken from: Cox, Little, O’Shea, Ideals, Varieties and
Algorithms:

plot(point(3u+3u*v^2-u^3, 3v+3u^2*v-v^3, 3u^2-3v^2),
hidden3d, title="Enneper Surface");

Enneper Surface
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The following examples use the specfn package to draw a collection of Cheby-
shev T polynomials and Bessel Y functions. The special function package has to
be loaded explicitely to make the operator ChebyshevT and BesselY available.

load_package specfn;
plot(chebyshevt(1,x), chebyshevt(2,x), chebyshevt(3,x),

chebyshevt(4,x), chebyshevt(5,x),
x=(-1 .. 1), title="Chebyshev t Polynomials");
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plot(bessely(0,x), bessely(1,x), bessely(2,x),
x=(0.1 .. 10), y=(-1 .. 1),
title="Bessel functions of 2nd kind");
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18.2 Turtle Graphics

18.2.1 Turtle Graphics

Turtle Graphics was originally developed in the 1960’s as part of the LOGO sys-
tem, and used in the classroom as an introduction to graphics and using computers
to help with mathematics.

The LOGO language was created as part of an experiment to test the idea that
programming may be used as an educational discipline to teach children. It was
first intended to be used for problem solving, for illustrating mathematical concepts
usually difficult to grasp, and for creation of experiments with abstract ideas.

At first LOGO had no graphics capabilities, but fast development enabled the in-
corporation of graphics, known as “Turtle Graphics” into the language. “Turtle
Graphics” is regarded by many as the main use of LOGO.

For references, see [PZ97, LM94].

Main Idea: To use simple commands directing a turtle, such as forward, back,
turnleft, in order to construct pictures as opposed to drawing lines connecting carte-
sian coordinate points.

The ‘turtle’ is at all times determined by its state {x,y,a,p} – where x,y determine
its position in the (x,y)-plane, a determines the angle (which describes the direction
the turtle is facing) and p signals whether the pen is up or down (i.e. whether or not
it is drawing on the paper).

Some alterations to the original “Turtle Graphics” commands have been made in
this implementation due to the design of the graphics package gnuplot used in
REDUCE.3

• It is not possible to draw lines individually and to see each separate line as
it is added to the graph since gnuplot automatically replaces the last graph
each time it calls on the plot function.

Thus the whole sequence of commands must be input together if the com-
plete picture is to be seen.

• This implementation does not make use of the standard turtle commands
‘pen-up’ or ‘pen-down’. Instead, ‘set’ commands are included which allow
the turtle to move without drawing a line.

• No facility is provided here to change the pen-colour, but gnuplot does have
the capability to handle a few different colours (which could be included
later).

3The code of the turtle package was written by Caroline Cotter.
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• The user has no control over the range of output that can be seen on the
screen since the gnuplot program automatically adjusts the picture to fit the
window. Hence the size of each specified ‘step’ the turtle takes in any direc-
tion is not a fixed unit of length, rather it is relative to the scale chosen by
gnuplot.

18.2.2 Turtle Functions

As previously mentioned, the turtle is determined at all times by its state {x,y,a}:
its position on the (x,y)-plane and its angle(a) – its heading – which determines
the direction the turtle is facing, in degrees, relative anticlockwise to the positive
x-axis.

User Setting Functions

setheading Takes a number as its argument and resets the heading to this number.
If the number entered is negative or greater than or equal to 360 then it is
automatically checked to lie between 0 and 360.

Returns the turtle position {x,y}

SYNTAX: setheading(θ)

turnleft The turtle is turned anticlockwise through the stated number of degrees.
Takes a number as its argument and resets the heading by adding this number
to the previous heading setting.

Returns the turtle position {x,y}

SYNTAX: turnleft(α)

turnright Similar to turnleft, but the turtle is turned clockwise through the
stated number of degrees. Takes a number as its argument and resets the
heading by subtracting this number from the previous heading setting.

Returns the turtle position {x,y}

SYNTAX: turnright(β)

setx Relocates the turtle in the x direction. Takes a number as its argument and
repositions the state of the turtle by changing its x-coordinate.

Returns {}

SYNTAX: setx(x)

sety Relocates the turtle in the y direction. Takes a number as its argument and
repositions the state of the turtle by changing its y-coordinate.

Returns {}

SYNTAX: sety(y)
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setposition Relocates the turtle from its current position to the new cartesian co-
ordinate position described. Takes a pair of numbers as its arguments and
repositions the state of the turtle by changing the x and y coordinates.

Returns {}

SYNTAX: setposition(x,y)

setheadingtowards Resets the heading so that the turtle is facing towards the
given point, with respect to its current position on the coordinate axes. Takes
a pair of numbers as its arguments and changes the heading, but the turtle
stays in the same place.

Returns the turtle position {x,y}

SYNTAX: setheadingtowards(x,y)

setforward Relocates the turtle from its current position by moving forward (in
the direction of its heading) the number of steps given. Takes a number as
its argument and repositions the state of the turtle by changing the x and y
coordinates.

Returns {}

SYNTAX: setforward(n)

setback As with setforward, but moves back (in the opposite direction of its
heading) the number of steps given.

Returns {}

SYNTAX: setback(n)

Line-Drawing Functions

forward Moves the turtle forward (in the direction its heading) the number of
steps given. Takes a number as its argument and draws a line from its current
position to a new position on the coordinate plane. The x and y coordinates
are reset to the new values.

Returns the list of points { {old x,old y}, {new x,new y} }

SYNTAX: forward(s)

back As with forward except the turtle moves back (in the opposite direction to
its heading) the number of steps given.

Returns the list of points { {old x,old y}, {new x,new y} }

SYNTAX: back(s)
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move Moves the turtle to a specified point on the coordinate plane. Takes a list of
two numbers as its argument and draws a line from its current position to the
position described. The x and y coordinates are set to these new values.

Returns the list of points { {old x,old y}, {new x,new y} }

SYNTAX: move{x,y}

Plotting Functions

draw This is the function the user calls within REDUCE to draw the list of turtle
commands given into a picture. Takes a list as its argument, with each sepa-
rate command being separated by a comma, and returns the graph drawn by
following the commands.

SYNTAX: draw{command(command_args),...,
command(command_args)}

Note: all commands may be entered in either long or shorthand form, and
with a space before the arguments instead of parentheses only if just one
argument is needed. Commands taking more than one argument must be
written with parentheses and arguments separated by a comma.

Other Important Functions

info This function is called on its own in REDUCE to tell user the current state of
the turtle. Takes no arguments but returns a list containing the current values
of the x and y coordinates and the heading variable.

Returns the list {x_coord,y_coord,heading}

SYNTAX: info() or simply info

clearscreen This is also called on its own in REDUCE to get rid of the last gnuplot
window, displaying the last turtle graphics picture, and to reset all the vari-
ables to 0. Takes no arguments and returns no printed output to the screen
but the graphics window is simply cleared.

SYNTAX: clearscreen() or simply clearscreen

or cls

home This is a command which can be called within a plot function as well as out-
side of one. Takes no arguments, and simply resets the x and y coordinates
and the heading variable to 0. When used in a series of turtle commands, it
moves the turtle from its current position to the origin and sets the direction
of the turtle along the x-axis, without drawing a line.

Returns {0,0}

SYNTAX: home() or simply home
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Defining Functions

It is possible to use conditional statements (if . . . then . . . else . . . ) and ‘for’ state-
ments (for i:=. . . collect{. . . }) in calls to draw. However, care must be taken – when
using conditional statements the final else statement must return a point or at least
{x_coord,y_coord} if the picture is to be continued at that point. Also, ‘for’ state-
ments must include ‘collect’ followed by a list of turtle commands (in addition, the
variable must begin counting from 0 if it is to be joined to the previous list of turtle
commands at that point exactly, e.g. for i:=0:10 collect {. . . }).

SYNTAX: (For user-defined Turtle functions)

procedure func_name(func_args);
begin [scalar additional variables];

...
(the procedure body containing some turtle commands)
...
return (a list, or label to a list, of turtle commands

as accepted by draw)
end;

For convenience, it is recommended that all user defined functions, such as
those involving if...then...else... or for i:=...collect{...}
are defined together in a separate file, then called into REDUCE using the in
"filename" command.

18.2.3 Global variables

The following variables are global, so it is advised that these are not altered di-
rectly:

x_coord The current x coordinate.

y_coord The current y coordinate.

heading The current heading, as set by the setheading function.

18.2.4 Examples

The following examples are taken from the turtle.tst file. Examples 1, 2, 5 & 6 are
simple calls to draw. Examples 3 & 4 show how more complicated commands can
be built (which can take their own set of arguments) using procedures. Example 7
shows two graphs drawn together.
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Example 1: Draw 36 rays of length 100

draw {for i:=1:36 collect
{setheading(i*10), forward 100, back 100} };
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Example 2: Draw 12 regular polygons with 12 sides of length 40, each polygon
forming an angle of 360/n degrees with the previous one.

draw {for i:=1:12 collect
{turnleft(30),
for j:=1:12 collect

{forward 40, turnleft(30)}} };
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Example 3: A “peak” pattern - an example of a recursive procedure.

procedure peak(r);
begin;

return for i:=0:r collect
{move{x_coord+5,y_coord-10},
move{x_coord+10,y_coord+60},
move{x_coord+10,y_coord-60},
move{x_coord+5,y_coord+10}};

end;

draw {home(), peak(3)};
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This procedure can then be
part of a longer chain of commands:

draw {home(), move{5,50}, peak(3),
move{x_coord+10,-100}, peak(2),
move{x_coord+10,0}};
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Example 4: Write a recursive procedure which draws "trees" such that every
branch is half the length of the previous branch.
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procedure tree(a,b); %Here: a is the start length,
%b is the number of levels

begin;
return if fixpb and b>0 %checking b is a positive

%integer

then {turnleft(45), forward a,
tree(a/2,b-1), back a,
turnright(90), forward a,
tree(a/2,b-1), back a, turnleft(45)}

else {x_coord,y_coord}; %default:
%Turtle stays still

end;

draw {home(), tree(130,7)};
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Example 5: A 36-point star.

draw {home(), for i:=1:36 collect
{turnleft(10), forward 100,
turnleft(10), back 100} };
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Example 6: Draw 100 equilateral triangles with the leading points equally spaced
on a circular path.

draw {home(), for i:=1:100 collect
{forward 150, turnright(60),
back(150), turnright(60),
forward 150, setheading(i*3.6)} };
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Example 7: Two or more graphs can be drawn together (this is easier if the graphs
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are named). Here we show graphs 2 and 6 on top of one another:

gr2:={home(), for i:=1:12 collect
{turnleft(30),
for j:=1:12 collect

{forward 40, turnleft(30)}} }$

gr6:={home(), for i:=1:100 collect
{forward 150, turnright(60),
back(150), turnright(60),
forward 150, setheading(i*3.6)} }$

draw {gr2, gr6};
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18.3 Logo Turtle Graphics

18.3.1 Introduction

Logo Turtle Graphics4 (henceforth referred to as “LogoTurtle”) is a REDUCE em-
ulation of traditional Logo turtle graphics with one turtle, modelled on Berkeley
Logo by Brian Harvey and FMSLogo by David Costanzo (which is an updated
version of George Mills’ MSWLogo, a multimedia-enhanced version for Microsoft
Windows, which is itself based on Berkeley Logo). This manual section is derived

4The Logo Turtle Graphics package was written by Francis Wright.

https://en.wikipedia.org/wiki/Turtle_graphics
http://people.eecs.berkeley.edu/~bh/logo.html
http://people.eecs.berkeley.edu/~bh/logo.html
https://fmslogo.sourceforge.io/
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primarily from the Graphics chapter of the Berkeley Logo manual available from
GitHub.

This package is inspired by, and related to, the REDUCE Turtle package by Car-
oline Cotter (ZIB, Berlin, 1998), and the word “Turtle” below (with a capital T)
will refer specifically to that package. Both packages are built on the REDUCE
Gnuplot package, which itself uses Gnuplot to display plots. This means that
plotting is not fully interactive as it would be in traditional Logo; a plot is con-
structed invisibly and only displayed when requested. However, turning on the
LOGOTURTLE_AUTODRAW switch makes LogoTurtle as interactive as possible.
This package aims to be more efficient, more authentic, more interactive and more
complete than Turtle.

Note that LogoTurtle and Turtle cannot both be run in the same REDUCE session
because they define some procedures with the same names.

18.3.2 Design

LogoTurtle is entirely functional. It uses “getters” and “setters”, and does not
use any algebraic-mode variables (unlike Turtle). Most command names are as in
Berkeley Logo and/or FMSLogo, and their function is the same or similar. (Iden-
tical behaviour is not always possible.) However, all commands are REDUCE
procedure calls.

Getters (query procedures) return values that are accepted as input by their match-
ing setters (command procedures). If more than one data value is involved then
a list is used. For example, the LABELFONT query returns a list of the current
label font face and size if both are set, which the corresponding SETLABELFONT
command accepts as its argument.

LogoTurtle commands other than queries return nothing (nil) and plotting is
achieved via side effects, not via returned values as for Turtle. A plot is displayed
by calling the (non-traditional) DRAW command as for Turtle. The plot displayed
need not be complete; DRAW displays the plot constructed so far, which allows an
element of interactivity.

LogoTurtle makes essential use of commands to lower and raise the pen (unlike
Turtle; see Pen and Background Control). Lowering the pen begins a “curve”,
namely a sequence of points connected by straight lines, and raising the pen ends
that curve. Each time the pen is lowered, the turtle moved and the pen raised, a
distinct curve is produced.

LogoTurtle uses Lisp floating-point numbers internally and does not require any
particular REDUCE number domain settings. However, all command arguments
and list elements relating to turtle position must be expressions that can be eval-
uated to real numbers. All returned values and list elements relating to turtle po-

https://github.com/jrincayc/ucblogo-code
http://gnuplot.info/
https://en.wikipedia.org/wiki/Logo_(programming_language)
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sition will be floating-point numbers. Note that LogoTurtle lists are REDUCE
algebraic-mode lists delimited by curly braces, { }, not the square brackets used
in traditional Logo, and that REDUCE list elements must be separated by commas.

18.3.3 User Interface

To use LogoTurtle, execute the REDUCE command

load_package logoturtle;

LogoTurtle sets the scaling of the two axes to be the same so that the aspect ratio is
1:1 and geometry is correct (although beware that Gnuplot may not always honour
this). By default, LogoTurtle scales the graphics window so that turtle coordinates
(−100,−100) and (100, 100) fit, and the center of the graphics window is turtle
location (0, 0), i.e. the origin or home position. But this fixed window can be turned
off so that Gnuplot automatically sizes the display to include the whole plot (as for
Turtle). The position of the origin (the turtle home location (0, 0)) is then not fixed
and may be different for different plots. The window size can also be changed; see
Turtle and Window Control for further details.

Positive x is to the right; positive y is up. Headings (angles) are measured in de-
grees clockwise from the positive y axis. (Note that this differs from the common
mathematical convention, also used by Turtle, of measuring angles counterclock-
wise from the positive x axis!) Initially, the turtle is at the origin (Cartesian coor-
dinates (0, 0)) facing up (heading 0 degrees) with the pen up.

LogoTurtle uses by default a white background, and pen, fill and label colours
chosen automatically by Gnuplot, but you can set all these to any colour provided
by Gnuplot.

Note that LogoTurtle command names are shown using upper case letters in the
descriptions after the example below to distinguish them clearly from their argu-
ments, but LogoTurtle is case insensitive, so commands can be entered in either
case.

Commands that never take any arguments use special syntax and need not be fol-
lowed by empty parentheses. Query commands that take no arguments can be used
like (read-only) variables. For example, the following command increments the
x-coordinate of the turtle by 10 steps:

setx(xcor + 10);

Multiple command arguments must be enclosed in parentheses; single or no argu-
ments may be enclosed in parentheses, although parentheses can be, and usually
are, omitted with a single argument or no arguments. However, if a single argument
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is an expression involving infix operators then it must be enclosed in parentheses.

When the switch TRLOGOTURTLE is on, LogoTurtle outputs Cartesian coordi-
nates corresponding to every move of the turtle and DRAW outputs the list of
curves that it is about to draw. When the switch TRPLOT is on, the commands
sent to Gnuplot (but not the actual plot data) are also output. Turning the switch
TRLOGOTURTLE on or off also turns the switch TRPLOT on or off. Both switches
are off by default.

18.3.4 A Simple Example

This example assumes LogoTurtle has just been loaded but not yet used. If this is
not the case then first execute the commands

clearscreen; penup;

The following code draws an equilateral triangle with side length 100 centred on
the origin, with one vertex on the positive Y axis. The sides are coloured red, green
and blue. To make this example as interactive as possible, the plot is displayed after
each side is drawn (but for this effect to be visible each line ending with draw;
must be executed separately; if you input all the commands together then you will
only see the complete triangle).

forward(100/sqrt 3); pendown;
setpencolor red; right 150; forward 100; draw;
setpencolor green; right 120; forward 100; draw;
setpencolor blue; right 120; forward 100; draw;

For more interesting examples, please see the files logoturtle.tst and
mondrian.tst, which can be found online or in the packages/plot direct-
ory in a standard REDUCE distribution.

18.3.5 Turtle

The turtle is optionally displayed as an unfilled isosceles triangle; see Turtle and
Window Control. The turtle is drawn using black default-thickness lines on top of
the current plot; the colour and line thickness cannot currently be changed. The
turtle is never wrapped, although it is clipped if any turtle mode is in effect, i.e. for
drawing the turtle any turtle mode other than false is treated as window.

The turtle looks like an arrow head pointing in the direction of the turtle’s heading.
The height of the isosceles triangle (i.e. the length of the turtle) is ℓ(= 0.1) times
the average of the maximum x and y coordinates set by the window size (even if
windowing is not in effect) and the apex angle (at the head of the turtle) is twice

https://sourceforge.net/p/reduce-algebra/code/HEAD/tree/trunk/packages/plot/logoturtle.tst
https://sourceforge.net/p/reduce-algebra/code/HEAD/tree/trunk/packages/plot/mondrian.tst
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α(= 10◦) (so that the two equal sides are at angles of α to the turtle’s heading).5

The nominal turtle position is at the midpoint of the base (the short side). However,
the turtle is drawn one step behind its nominal position, so that the display of the
base of the turtle’s triangle does not obscure a line drawn perpendicular to it (as
would happen after drawing a square).

18.3.6 Colours

LogoTurtle offers both the traditional Berkeley Logo palette model and some of the
Gnuplot model, which is much more flexible and usually more convenient. Colours
may be input and output in several different formats, but colour numbers and RGB
lists are used only for input and only the formats accepted by Gnuplot are used for
output, since these are the only formats used internally.

A colour number (input only) is an integer between 0 and 15 inclusive. The ini-
tial colour assignments are

0 black 1 blue 2 green 3 cyan
4 red 5 magenta 6 yellow 7 white
8 brown 9 tan 10 forest 11 aqua

12 salmon 13 purple 14 orange 15 grey

but other colours can be assigned to numbers 8–15 by the SETPALETTE
command. Colour numbers are useful for cycling programmatically through
a range of colours.

An RGB list (input only) is a list of three nonnegative numbers not greater than
100 specifying the percent saturation of red, green, and blue in the desired
colour. RGB lists are also easy to use programmatically.

An identifier or string (input and output) can be used to represent a colour in
any way that is acceptable to Gnuplot, such as a colour name or hexadecimal
number, e.g. red, "red" or "#FF0000".

The identifier FALSE (input and output) means that no colour is set. In this
case, Gnuplot uses its own automatic colour-choice algorithm.

5The turtle length relative to the window size ℓ and head half-angle α are respectively the
Lisp float values of the symbolic-mode global variables logoturtle!-rel!-len!* and
logoturtle!-angle!*. These values are used dynamically and in principle you could change
them after LogoTurtle has loaded, but currently there is no algebraic-mode facility to do this.
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18.3.7 Displaying Logo Turtle Graphics

Draw command

DRAW

can be used at any time to display the current plot, i.e. the plot and/or labels con-
structed so far (provided there is something to display). It initially opens a Gnuplot
window and subsequently updates it.

Autodraw switch

When the switch LOGOTURTLE_AUTODRAW is on, making any visible change to
a plot causes it to be redrawn (or drawn) automatically. In this situation it can be
useful to turn on display of the turtle (using SHOWTURTLE), since this makes the
turtle’s heading and position visible even when the pen is up.

When using REDUCE programming constructs (e.g. group or loop statements) to
run multiple LogoTurtle commands, it is best to have the LOGOTURTLE_AUTODRAW
switch off, and instead to execute the DRAW command explicitly once the program-
ming construct has completed, because intermediate changes to the plot will not be
visible and repeatedly redrawing it is pointless.

18.3.8 Turtle Motion

Forward command

FORWARD dist

moves the turtle forward, in the direction that it’s facing, by the specified distance
(measured in turtle steps).

Back command

BACK dist

moves the turtle backward, i.e., exactly opposite to the direction that it’s facing, by
the specified distance. (The heading of the turtle does not change.)

Left command

LEFT degrees
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turns the turtle counterclockwise by the specified angle, measured in degrees. (A
degree is 1/360 of a full circle.)

Right command

RIGHT degrees

turns the turtle clockwise by the specified angle, measured in degrees.

Setpos command

SETPOS position

moves the turtle to an absolute position in the graphics window. The input is a list
of two numbers, the x and y coordinates, e.g. “SETPOS {50, 50}”.

Setxy command

SETXY(xcor, ycor)

moves the turtle to an absolute position in the graphics window. The two inputs are
numbers, the x and y coordinates.

Setx command

SETX xcor

moves the turtle horizontally from its old position to a new absolute horizontal
coordinate. The input is the new x coordinate.

Sety command

SETY ycor

moves the turtle vertically from its old position to a new absolute vertical coordi-
nate. The input is the new y coordinate.

Setheading command

SETHEADING degrees
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turns the turtle to a new absolute heading. The input is a number, the heading in
degrees clockwise from the positive y axis.

Home command

HOME

moves the turtle to its starting position (the origin) and orientation. Equivalent to
“SETPOS {0, 0}; SETHEADING 0”.

Arc command

ARC(angle, radius)

draws a circular arc centred on the turtle with the specified positive radius, start-
ing at the turtle’s heading and extending clockwise through the specified angle
(counter-clockwise if angle is negative). The turtle does not move and the arc is
drawn as if the turtle mode is WINDOW for all modes unless windowing is turned
off.

Circle command

CIRCLE radius

draws a circle centred on the turtle with the positive radius specified. The turtle
does not move and the circle is drawn as if the turtle mode is WINDOW for all
modes unless windowing is turned off. Equivalent to ARC(360, radius).

Arc2 command

ARC2(angle, radius)

moves the turtle around a circular arc that sweeps through the specified angle with
the specified positive radius. The turtle always moves forwards: if angle is positive,
then the turtle moves forwards in a clockwise direction; if angle is negative, then
the turtle moves forwards in a counter-clockwise direction. At the end of the arc,
the turtle’s heading is increased by angle.
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Circle2 command

CIRCLE2 radius

moves the turtle clockwise around a circle with the specified positive radius. The
turtle ends in the same position in which it starts. Equivalent to ARC2(360,
radius).

Ellipticarc command

ELLIPTICARC(range, crosswise, inline, start)

draws an elliptic arc based on the turtle’s position and heading. The turtle does
not move. The center-point of the ellipse is the turtle’s current position. The size
and shape of the ellipse are determined by the specified positive crosswise and
inline semi-axes. The crosswise semi-axis is the distance from the turtle to the
ellipse in the direction perpendicular to the turtle’s current heading. The inline
semi-axis is the distance from the turtle to the ellipse in the direction in which the
turtle is currently heading. Hence the turtle’s heading determines the orientation
of the ellipse. The elliptic arc starts at angle parameter start degrees and the angle
parameter sweeps through range degrees. The elliptic arc is drawn clockwise if
range is positive and counter-clockwise if range is negative.

Ellipse command

ELLIPSE(crosswise, inline)

draws an ellipse based on the turtle’s position and heading. The turtle does not
move. The center-point of the ellipse is the turtle’s current position. The size and
shape of the ellipse are determined by the specified positive crosswise and inline
semi-axes. The crosswise semi-axis is the distance from the turtle to the ellipse
in the direction perpendicular to the turtle’s current heading. The inline semi-axis
is the distance from the turtle to the ellipse in the direction in which the turtle
is currently heading. Hence the turtle’s heading determines the orientation of the
ellipse. Equivalent to ELLIPTICARC(360, crosswise, inline, 0).

18.3.9 Turtle Motion Queries

Pos query

POS
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returns the turtle’s current position, as a list of two numbers, the x and y coordi-
nates.

Xcor query

XCOR

returns a number, the turtle’s x coordinate.

Ycor query

YCOR

returns a number, the turtle’s y coordinate.

Heading query

HEADING

returns a number, the turtle’s heading in degrees.

Towards query

TOWARDS position

returns a number, the heading at which the turtle should be facing so that it would
point from its current position to the position given as the input in the form of a list
of two numbers, the x and y coordinates.

Distance query

DISTANCE position

returns a number, the distance the turtle must travel along a straight line to reach the
position given as input in the form of a list of two numbers, the x and y coordinates.

As an example of using TOWARDS and DISTANCE, here is a somewhat convoluted
way to angle the turtle towards, and then move it to, the position with coordinates
(1, 2):
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setheading towards {1, 2};
forward distance {1, 2};

18.3.10 Turtle and Window Control

Showturtle command

SHOWTURTLE

makes the turtle visible (next time the picture is drawn).

Hideturtle command

HIDETURTLE

makes the turtle invisible (next time the picture is drawn).

Clean command

CLEAN

erases the graphics window. The turtle’s state (position, heading, pen mode, etc.)
is not changed.

Clearscreen command

CLEARSCREEN

erases and closes the graphics window, and sends the turtle to its initial position
and heading. Like HOME and CLEAN together.

Setwindowsize command

SETWINDOWSIZE n
SETWINDOWSIZE(m, n)
SETWINDOWSIZE {m, n}

with a single numerical argument n sets the size of the graphics window so that
−|n| ≤ x, y ≤ |n|; with two numerical arguments m,n or with a single list argu-
ment {m, n} in which m and n are numerical it sets the size of the graphics
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window so that −|m| ≤ x ≤ |m|,−|n| ≤ y ≤ |n|. The default window size is
−|100| ≤ x, y ≤ |100|.

Wrap command

WRAP

tells the turtle to enter wrap mode. From now on, if the turtle is asked to move past
the boundary of the graphics window, it will “wrap around” and reappear at the
opposite edge of the window. The top edge wraps to the bottom edge, while the
left edge wraps to the right edge. (So the window is topologically equivalent to a
torus.) This is the turtle’s initial mode. Compare WINDOW and FENCE.

Window command

WINDOW

tells the turtle to enter window mode. From now on, if the turtle is asked to move
past the boundary of the graphics window, it will move offscreen. The visible
graphics window is considered as just part of an infinite graphics plane; the turtle
can be anywhere on the plane. (If you lose the turtle, HOME will bring it back to
the center of the window.) Compare WRAP and FENCE.

Fence command

FENCE

tells the turtle to enter fence mode. From now on, if the turtle is asked to move past
the boundary of the graphics window, it will move as far as it can and then stop at
the edge with an “out of bounds” error message. Compare WRAP and WINDOW.

Setturtlemode command

SETTURTLEMODE mode

sets the turtle (windowing) mode to one of WRAP, FENCE, WINDOW, with meaning
as above, or FALSE, meaning that (like Turtle) there are no constraints on where
the turtle draws.
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Fill command

FILL

fills the region of the graphics window bounded by the lines that have just been
drawn, i.e. the current curve if the pen is down or the last curve if the pen is up
(or the pen colour or size has been changed). The fill colour is the current pen
colour and the pen size is ignored. The curve is implicitly closed but the turtle is
not moved. For example, the following code draws a filled blue triangle and a filled
green circle:

clearscreen;
setpencolor blue;
pendown; setxy(0, 20); setxy(20, 0); fill;
penup; setxy(50, 50);
setpencolor green;
pendown; circle(20); fill;
draw;

Note that filling may cause the default pen (and hence fill) colour to change, but if
the pen colour has been set explicitly then it will not change.

Filled command

FILLED(colour, commands...)

executes the commands in the order written, remembering all points visited, and
then draws the resulting curve, starting and ending with the turtle’s initial position,
filled with the specified colour; see Colours. The pen size, whether the pen is up
or down, and the pen colour are all ignored. The command arguments should be
commands or lists of commands that move the turtle or draw curves. For example,
the following code draws the same filled blue triangle and filled green circle as in
the previous example:

clearscreen; penup;
filled(blue, setxy(0, 20), setxy(20, 0));
setxy(50, 50);
filled(green, circle(20));
draw;

Note that the sequence of commands used by FILLED cannot be generated di-
rectly using a loop construct such as FOR, whereas with FILL it can. However,
the command arguments to FILLED can be calls of procedures that can contain
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arbitrary code, e.g.

procedure shape;
for i := 1 : 4 do << forward 80; arc2(-90, 40) >>;

clearscreen; penup;
setxy(40, 80); setheading(-90);
filled(false, shape());
draw;

Label command

LABEL text

takes a printable item or list of printable items as input and prints it on the graph-
ics window with the top left-hand corner of the label at the turtle’s position. The
items in a list are concatenated with no additional spacing. Beware that long labels
will just fall off the edge of the graphics window. Multi-line labels can be pro-
duced by including newline characters encoded as \n within the text, e.g. "This
is a\nmulti-line label". (The newline is recognised by Gnuplot, not by
REDUCE.)

Setlabelfont command

SETLABELFONT face
SETLABELFONT size
SETLABELFONT(face, size)
SETLABELFONT {face, size}
SETLABELFONT false

sets the face and/or size of the label font. If the face is specified then it should be
the only or first input and must be an identifier or string, e.g. "Arial". If the
size is specified then it should be the only or second input and must be a positive
integer. If only one of the face and size is set then the other reverts to the default,
not the previous value set. Alternatively, the single input can be a list of the form
{face, size}, or false to revert to the default. The inputs must specify a
font in a way that is accepted by Gnuplot but the details of font setting depend on
the Gnuplot terminal in use. The defaults for the wxt terminal are face Sans and
size 10. For the canvas terminal (and hence on Web REDUCE) setting the label
font face is ignored.
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Setlabelcolor command

SETLABELCOLOR colour

sets the label foreground colour; see Colours.

18.3.11 Turtle and Window Queries

Shownp query

SHOWNP

returns TRUE if the turtle is shown (visible), FALSE if the turtle is hidden. See
SHOWTURTLE and HIDETURTLE.

Note that generally in LogoTurtle TRUE/FALSE values returned by query com-
mands can be used to facilitate programming LogoTurtle by writing code such as
the following:

if shownp = true then ...

Windowsize query

WINDOWSIZE

returns the current size of the graphics window as a list of the form {xmax, ymax}.

Turtlemode query

TURTLEMODE

returns the word WRAP, FENCE, WINDOW or FALSE depending on the current
turtle mode.

Labelfont query

LABELFONT

returns a list of the current label font face and size if both are set, or whichever of
the face or size is set, or false indicating that no label font information is set.
Unset font information reverts to the Gnuplot default.
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Labelcolor query

LABELCOLOR

returns the current label foreground colour; see Colours.

18.3.12 Pen and Background Control

The turtle carries a pen that can draw pictures. At any time the pen can be UP (in
which case moving the turtle does not change what’s on the graphics screen) or
DOWN (in which case the turtle leaves a trace). Initially, the pen is UP.

Pendown command

PENDOWN

sets the pen’s position to DOWN, i.e. lowers it so that the turtle draws when it moves.

Penup command

PENUP

sets the pen’s position to UP, i.e. raises it so that the turtle moves without drawing.

Setpencolor command

SETPENCOLOR colour

sets the pen colour; see Colours.

Setpalette command

SETPALETTE(colournumber, colour)

sets the actual colour corresponding to a given colour number. The first argument
must be an integer n such that 8 ≤ n ≤ 15. (LogoTurtle keeps the first 8 colours
constant.) The second argument may be either an RGB list of three nonnegative
numbers not greater than 100 specifying the percent saturation of red, green, and
blue in the desired colour, or an identifier or string representing a colour in any way
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that is acceptable to Gnuplot, such as a colour name or hexadecimal number, e.g.
red, "red" or "#FF0000". See Colours for further details.

Setpensize command

SETPENSIZE size

sets the thickness of the pen. The input is a positive integer representing a multiple
of the default thickness, or FALSE, meaning unspecified, which is equivalent to 1
but slightly more efficient.

Setbackground command

SETBACKGROUND colour

sets the screen background colour; see Colours. Currently, however, this command
requires the GNUTERM environment variable to be set to the Gnuplot terminal type.
This is because in Gnuplot the background is a property of the terminal, so the
terminal type is required as part of the command to set the background. Unless you
already specify the appropriate Gnuplot terminal type, you can find it by running
Gnuplot interactively, when it will report something like

Terminal type set to ’wxt’

In this case, the correct value to assign to the GNUTERM environment variable
would be wxt (without any quotes).

18.3.13 Pen and Background Queries

Pendownp query

PENDOWNP

returns the identifier TRUE if the pen is down, FALSE if it’s up.

Pencolor query

PENCOLOR

returns the pen colour; see Colours.
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Palette query

PALETTE colournumber

returns the colour associated with the given number; see Colours. Colournumber
must be a nonnegative integer not greater than 15.

Pensize query

PENSIZE

returns a positive integer specifying the thickness of the pen as a multiple of the
default thickness, or false, meaning unspecified, which is equivalent to 1 but
slightly more efficient.

Background query

BACKGROUND

returns the graphics background colour; see Colours.

18.3.14 Saving and Loading Pictures

Savepict command

SAVEPICT identifier

saves the current plot and labels to internal storage under the specified identifier
without changing them. The saved data can be restored as the current plot and
labels using LOADPICT.

Loadpict command

LOADPICT(identifiers)

retrieves the plots and labels saved under the specified identifiers, which must have
been saved by SAVEPICT commands, merges them in the order specified, and
makes the result current. (The order is only significant in that it determines the
colour of each plot if it is set automatically by Gnuplot, and if plots or labels
overlap then later plots and labels overlay earlier ones and so hide them.) The
previous current plot and labels are lost if not saved using SAVEPICT.
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Chapter 19

Tracing in REDUCE

19.1 Introduction

The package rtrace provides portable tracing facilities for REDUCE program-
ming.1 These include

• entry-exit tracing of procedures,

• assignment tracing of procedures,

• tracing of rules when they fire.

In contrast to conventional Lisp-level tracing, values are printed in algebraic style
whenever possible if the switch rtrace is on, which it is by default. The output
has been specially tailored for the needs of algebraic-mode programming. Most
features can be applied without explicitly modifying the target program, and they
can be turned on and off dynamically at run time. If the switch rtrace is turned
off then values are printed in conventional Lisp style, and the result should be
similar to the tracing provided by the underlying Lisp system.

To make the facilities available, load the package using the command

load_package rtrace;

Alternatively, the package can be set up to auto load by putting appropriate code in
your REDUCE initialisation file. An example is provided in the file reduce.rc
in the rtrace source directory.

1This code was written by Herbert Melenk and Francis J. Wright.
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19.2 RTrace versus RDebug

The rtrace package is a modification (by FJW) of the rdebug package (written
by HM, and included in the rtrace source directory). The modifications are
as follows. The procedure-tracing facilities in rdebug rely upon the low-level
tracing facilities in PSL; in rtrace these low-level facilities have been (partly)
re-implemented portably. The names of the tracing commands that have been re-
implemented portably have been changed to avoid conflicting with those provided
by the underlying Lisp system by preceding them with the letter “r”, and they
provide a generalized interface that supports algebraic mode better. An additional
set of rule tracing facilities for inactive rules has been provided. Beware that the
rtrace package is still experimental!

This package is intended to be portable, and has been tested with both CSL- and
PSL-based REDUCE. However, it is intended not as a replacement for rdebug but
as a partial re-implementation of rdebug that works with CSL-REDUCE, and it
is assumed that PSL users will continue to use rdebug. It should, in principle,
be possible to use both. Any rtrace functions with the same names as rdebug
functions should either be identical or compatible; rtrace should be loaded after
rdebug in order to retain any enhancements provided by rtrace. Perhaps at
some future time the two packages should be merged. However, note that rtrace
currently provides only tracing (hence the name) and does not support break points.
(The current version also does not support conditional tracing.)

19.3 Procedure Tracing: RTR, UNRTR

Tracing of one or more procedures is initiated by the command rtr:

rtr <proc1>, <proc2>, ..., <procn>;

and cancelled by the command unrtr:

unrtr <proc1>, <proc2>, ..., <procn>;

Every time a traced procedure is executed, a message is printed when the procedure
is entered or exited. The entry message displays the actual procedure arguments
equated to the dummy parameter names, and the exit message displays the value
returned by the procedure. Recursive calls are marked by a level number. Here is
a (simplistic) example, using first the default algebraic display and second conven-
tional Lisp display:

algebraic procedure power(x, n);
if n = 0 then 1 else x*power(x, n-1)$
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rtr power;

(power)

power(x+1, 2);

Enter (1) power
x: x + 1$
n: 2$

Enter (2) power
x: x + 1$
n: 1$

Enter (3) power
x: x + 1$
n: 0$

Leave (3) power = 1$
Leave (2) power = x + 1$
Leave (1) power = x**2 + 2*x + 1$

2
x + 2*x + 1

off rtrace;

power(x+1, 2);

Enter (1) power
x: (plus x 1)
n: 2

Enter (2) power
x: (plus x 1)
n: 1

Enter (3) power
x: (plus x 1)
n: 0

Leave (3) power = 1
Leave (2) power = (!*sq ((((x . 1) . 1) . 1) . 1)
t)
Leave (1) power = (!*sq ((((x . 2) . 1) ((x . 1) .
2) . 1) . 1) t)

2
x + 2*x + 1
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on rtrace;

unrtr power;

(power)

Many algebraic-mode operators are implemented as internal procedures with dif-
ferent names. If an internal procedure with the specified name does not exist then
rtrace tracing automatically applies to the appropriate internal procedure and
returns a list of the names of the internal procedures, e.g.

rtr int;

(simpint)

This facility is an extension of the rdebug package.

Tracing of compiled procedures by the rtrace package is not completely reliable,
in that recursive calls may not be traced. This is essentially because tracing works
only when the procedure is called by name and not when it is called directly via
an internal compiled pointer. It may not be possible to avoid this restriction in
a portable way. Also, arguments of compiled procedures are not displayed using
the names given to them in the source code, because these names are no longer
available. Instead, they are displayed using the names Arg1, Arg2, etc.

19.4 Assignment Tracing: RTRST, UNRTRST

One often needs information about the internal behaviour of a procedure, especially
if it is a longer piece of code. For an interpreted procedure declared in an rtrst
command:

rtrst <proc1>, <proc2>, ..., <procn>;

all explicit assignments executed (as either the symbolic-mode setq or the
algebraic-mode setk) inside these procedures are displayed during procedure
execution. All procedure tracing (assignment and entry-exit) is removed by the
command unrtrst (or unrtr, for which it is just a synonym):

unrtrst <proc1>, <proc2>, ..., <procn>;

Assignment tracing is not possible if a procedure is compiled, either because it
was loaded from a “fasl” file or image, or because it was compiled as it was read
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in as source code. This is because assignment tracing works by modifying the
interpreted code of the procedure, which must therefore be available.

Applying rtr to a procedure that has been declared in an rtrst command, or
vice versa, toggles the type of tracing applied (and displays an explanatory mes-
sage).

Note that when a program contains a for loop, REDUCE translates this to a se-
quence of Lisp instructions. When using rtrst, the printout is driven by the
“unfolded” code. When the code contains a for each ... in statement, the
name of the control variable is internally used to keep the remainder of the list
during the loop, and you will see the corresponding assignments in the trace rather
than the individual values in the loop steps, e.g.

procedure fold u;
for each x in u sum x$

rtrst fold;

(fold)

fold {z, z*y, y};

produces the following output (using CSL-REDUCE):

Enter (1) fold
u: {z,y*z,y}$

x := [z,y*z,y]$
G0 := 0$
G0 := z$
x := [y*z,y]$
G0 := z*(y + 1)$
x := [y]$
G0 := y*z + y + z$
x := []$
Leave (1) fold = y*z + y + z$

y*z + y + z

unrtrst fold;

(fold)

In this example, the printed assignments for x show the various stages of the loop.
The variable G0 is an internally generated place-holder for the sum, and may have
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a slightly different name depending on the underlying Lisp systems.

19.5 Tracing Active Rules: TRRL, UNTRRL

The command trrl initiates tracing when they fire of individual rules or rule lists
that have been activated using let.

trrl <rl1>, <rl2>, ..., <rln>;

where each of the < rli > is:

• a rule or rule list;

• the name of a rule or rule list (that is, a non-indexed variable which is bound
to a rule or rule list);

• an operator name, representing the rules assigned to this operator.

The specified rules are (re-) activated in REDUCE such that each of them prints
a report every time it fires. The report is composed of the name of the rule or
the name of the rule list together with the number of the rule in the list, the form
matching the left side (“input”) and the resulting right side (“output”). For an
explicitly given rule or rule list, trrl assigns a unique generated name.

Note, however, that trrl does not trace rules with constant expressions on the
left, on the assumption that they are not particularly interesting. [This behaviour
may be made user-controllable in a future version.]

The command untrrl removes the tracing from rules:

untrrl <rl1>, <rl2>, ..., <rln>;

where each of the < rli > is:

• a rule or rule list;

• the name of a rule or rule list (that is, a non-indexed variable which is bound
to a rule or rule list or a unique name generated by trrl);

• an operator name, representing the rules assigned to this operator.

The rules are reactivated in their original form. Alternatively you can use the com-
mand clearrules to remove the rules totally from the system. Please do not
modify the rules between trrl and untrrl – the result may be unpredictable.

Here are two simple examples that show tracing via the rule name and via the
operator name:
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trigrules := {sin(~x)^2 => 1 - cos(x)^2};

2 2
trigrules := {sin(~x) => 1 - cos(x) }

let trigrules;
trrl trigrules;

1 - sin(x)^2;

Rule trigrules.1: sin(x)**2 => 1 - cos(x)**2$

2
cos(x)

untrrl trigrules;
trrl sin;

1 - sin(x)^2;

Rule sin.23: sin(x)**2 => 1 - cos(x)**2$

2
cos(x)

untrrl sin;
clearrules trigrules;

19.6 Tracing Inactive Rules: TRRLID, UNTRRLID

The command trrlid initiates tracing of individual rule lists that have been as-
signed to variables, but have not been activated using let:

trrlid <rlid1>, <rlid2>, ..., <rlidn>;

where each of the < rlidi > is an identifier of a rule list (that is, a non-indexed
variable which is bound to a rule list). It is assumed that they will be activated
later, either via a let command or by using the where operator. When they are
activated and fire, tracing output will be as if they had been traced using trrl.
The command untrrlid clears the tracing. This facility is an extension of the
rdebug package.

Here is a simple example that continues the example above:
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trrlid trigrules;

1 - sin(x)^2 where trigrules;

Rule trigrules.1: sin(x)**2 => 1 - cos(x)**2$

2
cos(x)

untrrlid trigrules;

19.7 Output Control: RTROUT

The trace output (only) can be redirected to a separate file by using the command
rtrout, followed by a file name in string quotes. A second call of rtrout closes
any current output file and opens a new one. The file name NIL (without string
quotes) closes any current output file and causes the trace output to be redirected
to the standard output device.

The rdebug variables trlimit and trprinter!* are not implemented in
rtrace. If you want to select Lisp-style tracing then turn off the switch rtrace:

off rtrace;



Chapter 20

User Contributed Packages

The complete REDUCE system includes a number of packages contributed by
users that are provided as a service to the user community. Questions regarding
these packages should be directed to their individual authors.

All such packages have been precompiled as part of the installation process. How-
ever, many must be specifically loaded before they can be used. (Those that are
loaded automatically are so noted in their description.) You should also consult the
user notes for your particular implementation for further information on whether
this is necessary. If it is, the relevant command is load_package, which takes a
list of one or more package names as argument, for example:

load_package algint;

although this syntax may vary from implementation to implementation.

Nearly all these packages come with separate documentation and test files (except
those noted here that have no additional documentation), which is included, along
with the source of the package, in the REDUCE system distribution. These items
should be studied for any additional details on the use of a particular package.

The packages available in the current release of REDUCE are as follows:
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20.1 APPLYSYM: Infinitesimal Symmetries of Differen-
tial Equations

This package provides programs APPLYSYM, QUASILINPDE and DETRAFO
for applying infinitesimal symmetries of differential equations, the generalization
of special solutions and the calculation of symmetry and similarity variables. They
use the package CRACK.

Author: Thomas Wolf

In this paper the programs APPLYSYM, QUASILINPDE and DETRAFO are de-
scribed which aim at the utilization of infinitesimal symmetries of differential
equations. The purpose of QUASILINPDE is the general solution of quasilinear
PDEs. This procedure is used by APPLYSYM for the application of point symme-
tries for either

• calculating similarity variables to perform a point transformation which low-
ers the order of an ODE or effectively reduces the number of explicitly oc-
curing independent variables in a PDE(-system) or for

• generalizing given special solutions of ODEs / PDEs with new constant pa-
rameters.

The program DETRAFO performs arbitrary point- and contact transformations of
ODEs / PDEs and is applied if similarity and symmetry variables have been found.
The program APPLYSYM is used in connection with the program LIEPDE for
formulating and solving the conditions for point- and contact symmetries. The
procedure LIEPDE is also described below (see also [Wol93]). The actual problem
solving is done in all these programs through a call to the package CRACK for
solving overdetermined PDE-systems.

Before using the procedures LIEPDE, APPLYSYM, QUASILINPDE and DETRAFO,
it is necessary to load the packages:

load_package liepde, applysym;

20.1.1 Introduction and overview of the symmetry method

The investigation of infinitesimal symmetries of differential equations (DEs) with
computer algebra programs attrackted considerable attention over the last years.
Corresponding programs are available in all major computer algebra systems. In
a review article by W. Hereman [Her95] about 200 references are given, many of
them describing related software.

One reason for the popularity of the symmetry method is the fact that Sophus Lie’s
method [Lie75, Lie67] is the most widely used method for computing exact solu-
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tions of non-linear DEs. Another reason is that the first step in this method, the
formulation of the determining equation for the generators of the symmetries, can
already be very cumbersome, especially in the case of PDEs of higher order and/or
in case of many dependent and independent variables. Also, the formulation of
the conditions is a straight forward task involving only differentiations and basic
algebra - an ideal task for computer algebra systems. Less straight forward is the
automatic solution of the symmetry conditions which is the strength of the program
LIEPDE (for a comparison with another program see [Wol93]).

The novelty described in this paper are programs aiming at the final third step:
Applying symmetries for

• calculating similarity variables to perform a point transformation which low-
ers the order of an ODE or effectively reduces the number of explicitly oc-
curing independent variables of a PDE(-system) or for

• generalizing given special solutions of ODEs/PDEs with new constant pa-
rameters.

Programs which run on their own but also allow interactive user control are indis-
pensible for these calculations. On one hand the calculations can become quite
lengthy, like variable transformations of PDEs (of higher order, with many vari-
ables). On the other hand the freedom of choosing the right linear combination
of symmetries and choosing the optimal new symmetry- and similarity variables
makes it necessary to ‘play’ with the problem interactively.

The focus in this paper is directed on questions of implementation and efficiency,
no principally new mathematics is presented.

In the following subsections a review of the first two steps of the symmetry method
is given as well as the third, i.e. the application step is outlined. Each of the re-
maining sections is devoted to one procedure.

The first step: Formulating the symmetry conditions

To obey classical Lie-symmetries, differential equations

HA = 0 (20.1)

for unknown functions yα, 1 ≤ α ≤ p of independent variables xi, 1 ≤ i ≤ q
must be forminvariant against infinitesimal transformations

x̃i = xi + εξi, ỹα = yα + εηα (20.2)

in first order of ε. To transform the equations (20.1) by (20.2), derivatives of yα

must be transformed, i.e. the part linear in ε must be determined. The correspond-
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ing formulas are (see e.g. [Olv86, Ste89])

ỹαj1...jk = yαj1...jk + εηαj1...jk +O(ε2)

ηαj1...jk−1jk
=
Dηαj1...jk−1

Dxk
− yαij1...jk−1

Dξi

Dxk
(20.3)

where D/Dxk means total differentiation w.r.t. xk and from now on lower latin
indices of functions yα, (and later uα) denote partial differentiation w.r.t. the inde-
pendent variables xi, (and later vi). The complete symmetry condition then takes
the form

XHA = 0 mod HA = 0 (20.4)

X = ξi
∂

∂xi
+ ηα

∂

∂yα
+ ηαm

∂

∂yαm
+ ηαmn

∂

∂yαmn

+ . . .+ ηαmn...p

∂

∂yαmn...p

.

(20.5)

where mod HA = 0 means that the original PDE-system is used to replace some
partial derivatives of yα to reduce the number of independent variables, because
the symmetry condition (20.4) must be fulfilled identically in xi, yα and all partial
derivatives of yα.

For point symmetries, ξi, ηα are functions of xj , yβ and for contact symmetries
they depend on xj , yβ and yβk . We restrict ourself to point symmetries as those are
the only ones that can be applied by the current version of the program APPLYSYM
(see below). For literature about generalized symmetries see [Her95].

Though the formulation of the symmetry conditions (20.4), (20.5), (20.3) is
straightforward and handled in principle by all related programs [Her95], the com-
putational effort to formulate the conditions (20.4) may cause problems if the num-
ber of xi and yα is high. This can partially be avoided if at first only a few condi-
tions are formulated and solved such that the remaining ones are much shorter and
quicker to formulate.

A first step in this direction is to investigate one PDE HA = 0 after another, as
done in [CHW91]. Two methods to partition the conditions for a single PDE are
described by Bocharov/Bronstein [BB89] and Stephani [Ste89].

In the first method only those terms of the symmetry condition XHA = 0 are
calculated which contain at least a derivative of yα of a minimal order m. Setting
coefficients of these u-derivatives to zero provides symmetry conditions. Lowering
the minimal orderm successively then gradually provides all symmetry conditions.

The second method is even more selective. If HA is of order n then only terms of
the symmetry condition XHA = 0 are generated which contain n′th order deriva-
tives of yα. Furthermore these derivatives must not occur in HA itself. They can
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therefore occur in the symmetry condition (20.4) only in ηαj1...jn , i.e. in the terms

ηαj1...jn
∂HA

∂yαj1...jn
.

If only coefficients of n′th order derivatives of yα need to be accurate to formulate
preliminary conditions then from the total derivatives to be taken in (20.3) only
that part is performed which differentiates w.r.t. the highest yα-derivatives. This
means, for example, to form only yαmnk∂/∂y

α
mn if the expression, which is to be

differentiated totally w.r.t. xk, contains at most second order derivatives of yα.

The second method is applied in LIEPDE. Already the formulation of the remain-
ing conditions is speeded up considerably through this iteration process. These
methods can be applied if systems of DEs or single PDEs of at least second order
are investigated concerning symmetries.

The second step: Solving the symmetry conditions

The second step in applying the whole method consists in solving the determining
conditions (20.4), (20.5), (20.3) which are linear homogeneous PDEs for ξi, ηα.
The complete solution of this system is not algorithmic any more because the so-
lution of a general linear PDE-system is as difficult as the solution of its non-linear
characteristic ODE-system which is not covered by algorithms so far.

Still algorithms are used successfully to simplify the PDE-system by calculating its
standard normal form and by integrating exact PDEs if they turn up in this simpli-
fication process [Wol93]. One problem in this respect, for example, concerns the
optimization of the symbiosis of both algorithms. By that we mean the ranking of
priorities between integrating, adding integrability conditions and doing simplifi-
cations by substitutions - all depending on the length of expressions and the overall
structure of the PDE-system. Also the extension of the class of PDEs which can be
integrated exactly is a problem to be pursuit further.

The program LIEPDE which formulates the symmetry conditions calls the pro-
gram CRACK to solve them. This is done in a number of successive calls in order
to formulate and solve some first order PDEs of the overdetermined system first and
use their solution to formulate and solve the next subset of conditions as described
in the previous subsection. Also, LIEPDE can work on DEs that contain paramet-
ric constants and parametric functions. An ansatz for the symmetry generators can
be formulated. For more details see [Wol93] or [BW92].

The procedure LIEPDE is called through
LIEPDE(problem,symtype,flist,inequ);
All parameters are lists.

The first parameter specifies the DEs to be investigated:
problem has the form {equations, ulist, xlist} where



330 CHAPTER 20. USER CONTRIBUTED PACKAGES

equations is a list of equations, each has the form df(ui,..)=... where the
LHS (left hand side) df(ui,..) is selected such that

• The RHS (right h.s.) of an equations must not include the derivative on
the LHS nor a derivative of it.

• Neither the LHS nor any derivative of it of any equation may occur in
any other equation.

• Each of the unknown functions occurs on the LHS of exactly one equat-
ion.

ulist is a list of function names, which can be chosen freely.

xlist is a list of variable names, which can be chosen freely.

Equations can be given as a list of single differential expressions and then the
program will try to bring them into the ‘solved form’ df(ui,..)=... auto-
matically. If equations are given in the solved form then the above conditions are
checked and execution is stopped it they are not satisfied. An easy way to get the
equations in the desired form is to use

FIRST SOLVE({eq1,eq2,...},{one highest derivative for each function
u})
(see the example of the Karpman equations in LIEPDE.TST). The example of the
Burgers equation in LIEPDE.TST demonstrates that the number of symmetries
for a given maximal order of the infinitesimal generators depends on the derivative
chosen for the LHS.

The second parameter symtype of LIEPDE is a list { } that specifies the symmetry
to be calculated. symtype can have the following values and meanings:

{"point"} Point symmetries with ξi = ξi(xj , uβ), ηα = ηα(xj , uβ) are deter-
mined.

{"contact"} Contact symmetries with ξi = 0, η = η(xj , u, uk) are deter-
mined (uk = ∂u/∂xk), which is only applicable if a single equation (20.1)
with an order > 1 for a single function u is to be investigated. (The sym-
type {"contact"} is equivalent to {"general", 1} (see below) apart
from the additional checks done for {"contact"}.)

{"general", order} where order is an integer > 0. Generalized symmetries
ξi = 0, ηα = ηα(xj , uβ, . . . , uβK) of a specified order are determined (where
K is a multiple index representing order many indices.)
NOTE: Characteristic functions of generalized symmetries (= ηα if ξi =
0) are equivalent if they are equal on the solution manifold. Therefore, all
dependences of characteristic functions on the substituted derivatives and
their derivatives are dropped. For example, if the heat equation is given as
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ut = uxx (i.e. ut is substituted by uxx) then {"general", 2} would not
include characteristic functions depending on utx or uxxx.
THEREFORE:
If you want to find all symmetries up to a given order then either

• avoid using HA = 0 to substitute lower order derivatives by expres-
sions involving higher derivatives, or

• increase the order specified in symtype.

For an illustration of this effect see the two symmetry determinations of the
Burgers equation in the file LIEPDE.TST.

{xi!_x1 =...,..., eta!_u1 =...,...} It is possible to specify an
ansatz for the symmetry. Such an ansatz must specify all ξi for all indepen-
dent variables and all ηα for all dependent variables in terms of differential
expressions which may involve unknown functions/constants. The depen-
dences of the unknown functions have to be declared in advance by using
the DEPEND command. For example,

DEPEND f, t, x, u$
specifies f to be a function of t, x, u. If one wants to have f as a function of
derivatives of u(t, x), say f depending on utxx, then one cannot write

DEPEND f, df(u,t,x,2)$
but instead must write

DEPEND f, u!‘1!‘2!‘2$
assuming xlist has been specified as {t,x}. Because t is the first variable
and x is the second variable in xlist and u is differentiated oncs wrt. t and
twice wrt. xwe therefore use u!‘1!‘2!‘2. The character ! is the escape
character to allow special characters like ‘ to occur in an identifier.

For generalized symmetries one usually sets all ξi = 0. Then the ηα are
equal to the characteristic functions.

The third parameter flist of LIEPDE is a list { } that includes

• all parameters and functions in the equations which are to be determined
such that symmetries exist (if any such parameters/functions are specified in
flist then the symmetry conditions formulated in LIEPDE become non-linear
conditions which may be much harder for CRACK to solve with many cases
and subcases to be considered.)

• all unknown functions and constants in the ansatz xi!_.. and eta!_..
if that has been specified in symtype.

The fourth parameter inequ of LIEPDE is a list { } that includes all non-vanishing
expressions which represent inequalities for the functions in flist.
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The result of LIEPDE is a list with 3 elements, each of which is a list:

{{con1, con2, . . .}, {xi_... = . . . , . . . ,eta_... = . . . , . . .}, {flist}}.

The first list contains remaining unsolved symmetry conditions coni. It is the empty
list {} if all conditions have been solved. The second list gives the symmetry
generators, i.e. expressions for ξi and ηj . The last list contains all free constants
and functions occuring in the first and second list.

The third step: Application of infinitesimal symmetries

If infinitesimal symmetries have been found then the program APPLYSYM can use
them for the following purposes:

1. Calculation of one symmetry variable and further similarity variables. After
transforming the DE(-system) to these variables, the symmetry variable will
not occur explicitly any more. For ODEs this has the consequence that their
order has effectively been reduced.

2. Generalization of a special solution by one or more constants of integration.

Both methods are described in the following section.

20.1.2 Applying symmetries with APPLYSYM

The first mode: Calculation of similarity and symmetry variables

In the following we assume that a symmetry generatorX , given in (20.5), is known
such that ODE(s)/PDE(s) HA = 0 satisfy the symmetry condition (20.4). The aim
is to find new dependent functions uα = uα(xj , yβ) and new independent variables
vi = vi(xj , yβ), 1 ≤ α, β ≤ p, 1 ≤ i, j ≤ q such that the symmetry generator
X = ξi(xj , yβ)∂xi + ηα(xj , yβ)∂yα transforms to

X = ∂v1 . (20.6)

Inverting the above transformation to xi = xi(vj , uβ), yα = yα(vj , uβ) and setting
HA(x

i(vj , uβ), yα(vj , uβ), . . .) = hA(v
j , uβ, . . .) this means that

0 = XHA(x
i, yα, yβj , . . .) mod HA = 0

= XhA(v
i, uα, uβj , . . .) mod hA = 0

= ∂v1hA(v
i, uα, uβj , . . .) mod hA = 0.

Consequently, the variable v1 does not occur explicitly in hA. In the case of
an ODE(-system) (v1 = v) the new equations 0 = hA(v, u

α, duβ/dv, . . .) are
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then of lower total order after the transformation z = z(u1) = du1/dv with now
z, u2, . . . up as unknown functions and u1 as independent variable.

The new form (20.6) of X leads directly to conditions for the symmetry variable
v1 and the similarity variables vi|i̸=1, u

α (all functions of xk, yγ):

Xv1 = 1 = ξi(xk, yγ)∂xiv1 + ηα(xk, yγ)∂yαv
1 (20.7)

Xvj |j ̸=1 = Xuβ = 0 = ξi(xk, yγ)∂xiuβ + ηα(xk, yγ)∂yαu
β (20.8)

The general solutions of (20.7), (20.8) involve free functions of p+q−1 arguments.
From the general solution of equation (20.8), p + q − 1 functionally independent
special solutions have to be selected (v2, . . . , vp and u1, . . . , uq), whereas from
(20.7) only one solution v1 is needed. Together, the expressions for the symmetry
and similarity variables must define a non-singular transformation x, y → u, v.

Different special solutions selected at this stage will result in different resulting
DEs which are equivalent under point transformations but may look quite differ-
ently. A transformation that is more difficult than another one will in general only
complicate the new DE(s) compared with the simpler transformation. We therefore
seek the simplest possible special solutions of (20.7), (20.8). They also have to be
simple because the transformation has to be inverted to solve for the old variables
in order to do the transformations.

The following steps are performed in the corresponding mode of the program
APPLYSYM:

• The user is asked to specify a symmetry by selecting one symmetry from all
the known symmetries or by specifying a linear combination of them.

• Through a call of the procedure QUASILINPDE (described in a later sec-
tion) the two linear first order PDEs (20.7), (20.8) are investigated and, if
possible, solved.

• From the general solution of (20.7) 1 special solution is selected and from
(20.8) p+ q − 1 special solutions are selected which should be as simple as
possible.

• The user is asked whether the symmetry variable should be one of the inde-
pendent variables (as it has been assumed so far) or one of the new functions
(then only derivatives of this function and not the function itself turn up in
the new DE(s)).

• Through a call of the procedure DETRAFO the transformation xi, yα →
vj , uβ of the DE(s) HA = 0 is finally done.

• The program returns to the starting menu.
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The second mode: Generalization of special solutions

A second application of infinitesimal symmetries is the generalization of a known
special solution given in implicit form through 0 = F (xi, yα). If one knows a
symmetry variable v1 and similarity variables vr, uα, 2 ≤ r ≤ p then v1 can
be shifted by a constant c because of ∂v1HA = 0 and therefore the DEs 0 =
HA(v

r, uα, uβj , . . .) are unaffected by the shift. Hence from

0 = F (xi, yα) = F (xi(vj , uβ), yα(vj , uβ)) = F̄ (vj , uβ)

follows that

0 = F̄ (v1 + c, vr, uβ) = F̄ (v1(xi, yα) + c, vr(xi, yα), uβ(xi, yα))

defines implicitly a generalized solution yα = yα(xi, c).

This generalization works only if ∂v1F̄ ̸= 0 and if F̄ does not already have a
constant additive to v1.

The method above needs to know xi = xi(uβ, vj), yα = yα(uβ, vj) and uα =
uα(xj , yβ), vα = vα(xj , yβ) which may be practically impossible. Better is, to
integrate xi, yα along X:

dx̄i

dε
= ξi(x̄j(ε), ȳβ(ε)),

dȳα

dε
= ηα(x̄j(ε), ȳβ(ε)) (20.9)

with initial values x̄i = xi, ȳα = yα for ε = 0. (This ODE-system is the character-
istic system of (20.8).)

Knowing only the finite transformations

x̄i = x̄i(xj , yβ, ε), ȳα = ȳα(xj , yβ, ε) (20.10)

gives immediately the inverse transformation x̄i = x̄i(xj , yβ, ε), ȳα =
ȳα(xj , yβ, ε) just by ε→ −ε and renaming xi, yα ↔ x̄i, ȳα.

The special solution 0 = F (xi, yα) is generalized by the new constant ε through

0 = F (xi, yα) = F (xi(x̄j , ȳβ, ε), yα(x̄j , ȳβ, ε))

after dropping the .̄

The steps performed in the corresponding mode of the program APPLYSYM show
features of both techniques:

• The user is asked to specify a symmetry by selecting one symmetry from all
the known symmetries or by specifying a linear combination of them.

• The special solution to be generalized and the name of the new constant have
to be put in.
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• Through a call of the procedure QUASILINPDE, the PDE (20.7) is solved
which amounts to a solution of its characteristic ODE system (20.9) where
v1 = ε.

• QUASILINPDE returns a list of constant expressions

ci = ci(x
k, yβ, ε), 1 ≤ i ≤ p+ q (20.11)

which are solved for xj = xj(ci, ε), yα = yα(ci, ε) to obtain the general-
ized solution through

0 = F (xj , yα) = F (xj(ci(x
k, yβ, 0), ε), yα(ci(x

k, yβ, 0), ε)).

• The new solution is availabe for further generalizations w.r.t. other symme-
tries.

If one would like to generalize a given special solution with m new constants be-
cause m symmetries are known, then one could run the whole program m times,
each time with a different symmetry or one could run the program once with a lin-
ear combination of m symmetry generators which again is a symmetry generator.
Running the program once adds one constant but we have in addition m − 1 arbi-
trary constants in the linear combination of the symmetries, som new constants are
added. Usually one will generalize the solution gradually to make solving (20.9)
gradually more difficult.

Syntax

The call of APPLYSYM is APPLYSYM({de, fun, var}, {sym, cons});

• de is a single DE or a list of DEs in the form of a vanishing expression or in
the form . . . = . . . .

• fun is the single function or the list of functions occuring in de.

• var is the single variable or the list of variables in de.

• sym is a linear combination of all symmetries, each with a different constant
coefficient, in form of a list of the ξi and ηα: {xi_. . . =. . . ,. . . ,eta_. . . =. . . ,. . . },
where the indices after ‘xi_’ are the variable names and after ‘eta_’ the func-
tion names.

• cons is the list of constants in sym, one constant for each symmetry.

The list that is the first argument of APPLYSYM is the same as the first argument of
LIEPDE and the second argument is the list that LIEPDE returns without its first
element (the unsolved conditions). An example is given below.
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What APPLYSYM returns depends on the last performed modus. After modus 1
the return is
{{newde, newfun, newvar}, trafo}
where

• newde lists the transformed equation(s)

• newfun lists the new function name(s)

• newvar lists the new variable name(s)

• trafo lists the transformations xi = xi(vj , uβ), yα = yα(vj , uβ)

After modus 2, APPLYSYM returns the generalized special solution.

Example: A second order ODE

Weyl’s class of solutions of Einsteins field equations consists of axialsymmetric
time independent metrics of the form

ds2 = e−2U
[
e2k
(
dρ2 + dz2

)
+ ρ2dφ2

]
− e2Udt2, (20.12)

where U and k are functions of ρ and z. If one is interested in generalizing these
solutions to have a time dependence then the resulting DEs can be transformed such
that one longer third order ODE for U results which contains only ρ derivatives
[Kub]. Because U appears not alone but only as derivative, a substitution

g = dU/dρ (20.13)

lowers the order and the introduction of a function

h = ρg − 1 (20.14)

simplifies the ODE to

0 = 3ρ2hh′′ − 5ρ2 h′2 + 5ρ hh′ − 20ρ h3h′ − 20h4 + 16h6 + 4h2. (20.15)

where ′ = d/dρ. Calling LIEPDE through

depend h,r;
prob:={{-20*h**4+16*h**6+3*r**2*h*df(h,r,2)+5*r*h*df(h,r)

-20*h**3*r*df(h,r)+4*h**2-5*r**2*df(h,r)**2},
{h}, {r}};

sym:=liepde(prob, {"point"},{},{});

gives
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sym := {{},

3 2
{xi_r= - c10*r - c11*r, eta_h=c10*h*r },

{c10,c11}}.

All conditions have been solved because the first element of sym is {}. The two
existing symmetries are therefore

−ρ3∂ρ + hρ2 ∂h and ρ∂ρ. (20.16)

Corresponding finite transformations can be calculated with APPLYSYM through

newde:=applysym(prob,rest first sym);

The interactive session is given below with the user input following the prompt ‘?’.
(Empty lines have been deleted.)

Do you want to find similarity and symmetry variables (1)
or generalize a special solution with new parameters (2)
or exit the program (3) ?1

We enter ‘1’ because we want to reduce dependencies by finding similarity vari-
ables and one symmetry variable and then doing the transformation such that the
symmetry variable does not explicitly occur in the DE.

---------------------- The 1. symmetry is:
3

xi_r= - r
2

eta_h=h*r
---------------------- The 2. symmetry is:
xi_r= - r
----------------------
Which single symmetry or linear combination of symmetries
do you want to apply?
Enter an expression with ‘sy_(i)’ for the i’th
symmetry. Terminate input with ‘$’ or ‘;’.
sy_(1);

We could have entered ‘sy_(2);’ or a combination of both as well with the calcula-
tion running then differently.

The symmetry to be applied in the following is
3 2

{xi_r = - r ,eta_h = h*r }
Terminate the following input with $ or ; .
Enter the name of the new dependent variable
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(which will get an index attached): u;
Enter the name of the new independent variables:
(which will get an index attached): v;

This was the input part, now the real calculation starts.

The ODE/PDE (-system) under investigation is :
2 2 2 3

0 = 3*df(h,r,2)*h*r - 5*df(h,r) *r - 20*df(h,r)*h *r
6 4 2

+ 5*df(h,r)*h*r + 16*h - 20*h + 4*h
for the function(s) : h.
It will be looked for a new dependent variable u
and an independent variable v such that the transformed
de(-system) does not depend on u or v.
1. Determination of the similarity variable

2
The quasilinear PDE: 0 = r *(df(u_,h)*h - df(u_,r)*r).
The equivalent characteristic system:

3
0= - df(u_,r)*r

2
0= - r *(df(h,r)*r + h)
for the functions: h(r) u_(r).

The PDE is equation (20.8).

The general solution of the PDE is given through
0 = ff(u_,h*r)
with arbitrary function ff(..).
A suggestion for this function ff provides:
0 = - h*r + u_
Do you like this choice? (Y or N) y

For the following calculation only a single special solution of the PDE is neces-
sary and this has to be specified from the general solution by choosing a special
function ff. (This function is called ff to prevent a clash with names of user
variables/functions.) In principle any choice of ff would work, if it defines a non-
singular coordinate transformation, i.e. here r must be a function of u_. If we have
q independent variables and p functions of them then ff has p + q arguments.
Because of the condition 0 =ff one has essentially the freedom of choosing a
function of p + q − 1 arguments freely. This freedom is also necessary to select
p+ q − 1 different functions ff and to find as many functionally independent so-
lutions u_ which all become the new similarity variables. q of them become the
new functions uα and p − 1 of them the new variables v2, . . . , vp. Here we have
p = q = 1 (one single ODE).

Though the program could have done that alone, once the general solution ff(..)
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is known, the user can interfere here to enter a simpler solution, if possible.

2. Determination of the symmetry variable
2 3

The quasilinear PDE: 0 = df(u_,h)*h*r - df(u_,r)*r - 1.
The equivalent characteristic system:

3
0=df(r,u_) + r

2
0=df(h,u_) - h*r
for the functions: r(u_) h(u_) .
New attempt with a different independent variable
The equivalent characteristic system:

2
0=df(u_,h)*h*r - 1

2
0=r *(df(r,h)*h + r)
for the functions: r(h) u_(h) .
The general solution of the PDE is given through

2 2 2
- 2*h *r *u_ + h

0 = ff(h*r,--------------------)
2

with arbitrary function ff(..).
A suggestion for this function ff(..) yields:

2 2
h *( - 2*r *u_ + 1)

0 = ---------------------
2

Do you like this choice? (Y or N) y

Similar to above.

The suggested solution of the algebraic system which will
do the transformation is:

sqrt(v)*sqrt(2)
{h=sqrt(v)*sqrt(2)*u,r=-----------------}

2*v
Is the solution ok? (Y or N) y
In the intended transformation shown above the dependent
variable is u and the independent variable is v.
The symmetry variable is v, i.e. the transformed expression
will be free of v.
Is this selection of dependent and independent variables ok?

(Y or N) n

We so far assumed that the symmetry variable is one of the new variables, but,
of course we also could choose it to be one of the new functions. If it is one
of the functions then only derivatives of this function occur in the new DE, not
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the function itself. If it is one of the variables then this variable will not occur
explicitly.

In our case we prefer (without strong reason) to have the function as symmetry vari-
able. We therefore answered with ‘no’. As a consequence, u and v will exchange
names such that still all new functions have the name u and the new variables have
name v:

Please enter a list of substitutions. For example, to
make the variable, which is so far call u1, to an
independent variable v2 and the variable, which is
so far called v2, to an dependent variable u1,
enter: ‘{u1=v2, v2=u1};’{u=v,v=u};

The transformed equation which should be free of u:
3 6 2 3

0=3*u *v - 16*u *v - 20*u *v + 5*u
2v v v v

Do you want to find similarity and symmetry variables (1)
or generalize a special solution with new parameters (2)
or exit the program (3) :

We stop here. The following is returned from our APPLYSYM call:

3 6
{{{3*df(u,v,2)*v - 16*df(u,v) *v

2 3
- 20*df(u,v) *v + 5*df(u,v)},

{u},

{v}},

1 2*u*v
{r=-----------------,h=-----------------

sqrt(u)*sqrt(2) sqrt(u)*sqrt(2)

}}

The use of APPLYSYM effectively provided us the finite transformation

ρ = (2u)−1/2, h = (2u)1/2 v. (20.17)

and the new ODE

0 = 3u′′v − 16u′3v6 − 20u′2v3 + 5u′ (20.18)

where u = u(v) and ′ = d/dv. Using one symmetry we reduced the 2. order ODE
(20.15) to a first order ODE (20.18) for u′ plus one integration. The second symme-
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try can be used to reduce the remaining ODE to an integration too by introducing
a variable w through v3d/dv = d/dw, i.e. w = −1/(2v2). With

p = du/dw (20.19)

the remaining ODE is

0 = 3w
dp

dw
+ 2 p (p+ 1)(4 p+ 1)

with solution

c̃w−2/4 = c̃v4 =
p3(p+ 1)

(4 p+ 1)4
, c̃ = const.

Writing (20.19) as p = v3(du/dp)/(dv/dp) we get u by integration and with
(20.17) further a parametric solution for ρ, h:

ρ =

(
3c21(2p− 1)

p1/2(p+ 1)1/2
+ c2

)−1/2

(20.20)

h =
(c2p

1/2(p+ 1)1/2 + 6c21p− 3c21)
1/2p1/2

c1(4p+ 1)
(20.21)

where c1, c2 = const. and c1 = c̃1/4. Finally, the metric function U(p) is obtained
as an integral from (20.13),(20.14).

Limitations of APPLYSYM

Restrictions of the applicability of the program APPLYSYM result from limita-
tions of the program QUASILINPDE described in a section below. Essentially this
means that symmetry generators may only be polynomially non-linear in xi, yα.
Though even then the solvability can not be guaranteed, the generators of Lie-
symmetries are mostly very simple such that the resulting PDE (20.22) and the
corresponding characteristic ODE-system have good chances to be solvable.

Apart from these limitations implied through the solution of differential equations
with CRACK and algebraic equations with SOLVE the program APPLYSYM itself
is free of restrictions, i.e. if once new versions of CRACK, SOLVEwould be avail-
able then APPLYSYM would not have to be changed.

Currently, whenever a computational step could not be performed the user is in-
formed and has the possibility of entering interactively the solution of the unsolved
algebraic system or the unsolved linear PDE.
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20.1.3 Solving quasilinear PDEs

The content of QUASILINPDE

The generalization of special solutions of DEs as well as the computation of sim-
ilarity and symmetry variables involve the general solution of single first order
linear PDEs. The procedure QUASILINPDE is a general procedure aiming at the
general solution of PDEs

a1(wi, ϕ)ϕw1 + a2(wi, ϕ)ϕw2 + . . .+ an(wi, ϕ)ϕwn = b(wi, ϕ) (20.22)

in n independent variables wi, i = 1 . . . n for one unknown function ϕ = ϕ(wi).

1. The first step in solving a quasilinear PDE (20.22) is the formulation of the
corresponding characteristic ODE-system

dwi

dε
= ai(wj , ϕ) (20.23)

dϕ

dε
= b(wj , ϕ) (20.24)

for ϕ,wi regarded now as functions of one variable ε.

Because the ai and b do not depend explicitly on ε, one of the equations
(20.23),(20.24) with non-vanishing right hand side can be used to divide all
others through it and by that having a system with one less ODE to solve. If
the equation to divide through is one of (20.23) then the remaining system
would be

dwi

dwk
=
ai
ak
, i = 1, 2, . . . k − 1, k + 1, . . . n (20.25)

dϕ

dwk
=

b

ak
(20.26)

with the independent variable wk instead of ε. If instead we divide through
equation (20.24) then the remaining system would be

dwi

dϕ
=
ai
b
, i = 1, 2, . . . n (20.27)

with the independent variable ϕ instead of ε.

The equation to divide through is chosen by a subroutine with a heuristic to
find the “simplest” non-zero right hand side (ak or b), i.e. one which

• is constant or

• depends only on one variable or

• is a product of factors, each of which depends only on one variable.
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One purpose of this division is to reduce the number of ODEs by one. Sec-
ondly, the general solution of (20.23), (20.24) involves an additive constant
to ε which is not relevant and would have to be set to zero. By dividing
through one ODE we eliminate ε and lose the problem of identifying this
constant in the general solution before we would have to set it to zero.

2. To solve the system (20.25), (20.26) or (20.27), the procedure CRACK is
called. Although being designed primarily for the solution of overdeter-
mined PDE-systems, CRACK can also be used to solve simple not overdeter-
mined ODE-systems. This solution process is not completely algorithmic.
Improved versions of CRACK could be used, without making any changes of
QUASILINPDE necessary.

If the characteristic ODE-system can not be solved in the form (20.25),
(20.26) or (20.27) then successively all other ODEs of (20.23), (20.24) with
non-vanishing right hand side are used for division until one is found such
that the resulting ODE-system can be solved completely. Otherwise the PDE
can not be solved by QUASILINPDE.

3. If the characteristic ODE-system (20.23), (20.24) has been integrated com-
pletely and in full generality to the implicit solution

0 = Gi(ϕ,wj , ck, ε), i, k = 1, . . . , n+ 1, j = 1, . . . , n (20.28)

then according to the general theory for solving first order PDEs, ε has to be
eliminated from one of the equations and to be substituted in the others to
have left n equations. Also the constant that turns up additively to ε is to be
set to zero. Both tasks are automatically fulfilled, if, as described above, ε is
already eliminated from the beginning by dividing all equations of (20.23),
(20.24) through one of them.

On either way one ends up with n equations

0 = gi(ϕ,wj , ck), i, j, k = 1 . . . n (20.29)

involving n constants ck.

The final step is to solve (20.29) for the ci to obtain

ci = ci(ϕ,w1, . . . , wn) i = 1, . . . n. (20.30)

The final solution ϕ = ϕ(wi) of the PDE (20.22) is then given implicitly
through

0 = F (c1(ϕ,wi), c2(ϕ,wi), . . . , cn(ϕ,wi))

where F is an arbitrary function with n arguments.
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Syntax

The call of QUASILINPDE is
QUASILINPDE(de, fun, varlist);

• de is the differential expression which vanishes due to the PDE de = 0 or,
de may be the differential equation itself in the form . . . = . . . .

• fun is the unknown function.

• varlist is the list of variables of fun.

The result of QUASILINPDE is a list of general solutions

{sol1, sol2, . . .}.

If QUASILINPDE can not solve the PDE then it returns {}. Each solution soli is a
list of expressions

{ex1, ex2, . . .}

such that the dependent function (ϕ in (20.22)) is determined implicitly through an
arbitrary function F and the algebraic equation

0 = F (ex1, ex2, . . .).

Examples

Example 1:
To solve the quasilinear first order PDE

1 = xu,x+uu,y −zu,z

for the function u = u(x, y, z), the input would be

depend u,x,y,z;
de:=x*df(u,x)+u*df(u,y)-z*df(u,z) - 1;
varlist:={x,y,z};
QUASILINPDE(de,u,varlist);

In this example the procedure returns

{{x/eu, zeu, u2 − 2y}},

i.e. there is one general solution (because the outer list has only one element which
itself is a list) and u is given implicitly through the algebraic equation

0 = F (x/eu, zeu, u2 − 2y)
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with arbitrary function F.
Example 2:
For the linear inhomogeneous PDE

0 = yz,x+xz,y −1, for z = z(x, y)

QUASILINPDE returns the result that for an arbitrary function F, the equation

0 = F

(
x+ y

ez
, ez(x− y)

)
defines the general solution for z.
Example 3:
For the linear inhomogeneous PDE (3.8) from [Kam59]

0 = xw,x+(y + z)(w,y −w,z ), for w = w(x, y, z)

QUASILINPDE returns the result that for an arbitrary function F, the equation

0 = F (w, y + z, ln(x)(y + z)− y)

defines the general solution for w, i.e. for any function f

w = f (y + z, ln(x)(y + z)− y)

solves the PDE.

Limitations of QUASILINPDE

One restriction on the applicability of QUASILINPDE results from the program
CRACK which tries to solve the characteristic ODE-system of the PDE. So far
CRACK can be applied only to polynomially non-linear DE’s, i.e. the characteristic
ODE-system (20.25),(20.26) or (20.27) may only be polynomially non-linear, i.e.
in the PDE (20.22) the expressions ai and b may only be rational in wj , ϕ.

The task of CRACK is simplified as (20.28) does not have to be solved forwj , ϕ. On
the other hand (20.28) has to be solved for the ci. This gives a second restriction
coming from the REDUCE function SOLVE. Though SOLVE can be applied to
polynomial and transzendential equations, again no guarantee for solvability can
be given.

20.1.4 Transformation of DEs

The content of DETRAFO

Finally, after having found the finite transformations, the program APPLYSYM calls
the procedure DETRAFO to perform the transformations. DETRAFO can also be
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used alone to do point- or higher order transformations which involve a consid-
erable computational effort if the differential order of the expression to be trans-
formed is high and if many dependent and independent variables are involved. This
might be especially useful if one wants to experiment and try out different coordi-
nate transformations interactively, using DETRAFO as standalone procedure.

To run DETRAFO, the old functions yα and old variables xi must be known explic-
itly in terms of algebraic or differential expressions of the new functions uβ and
new variables vj . Then for point transformations the identity

dyα =
(
yα,vi +y

α,uβ uβ,vi
)
dvi (20.31)

= yα,xj dxj (20.32)

= yα,xj

(
xj ,vi +x

j ,uβ uβ,vi
)
dvi (20.33)

provides the transformation

yα,xj =
dyα

dvi
·
(
dxj

dvi

)−1

(20.34)

with det
(
dxj/dvi

)
̸= 0 because of the regularity of the transformation which is

checked by DETRAFO. Non-regular transformations are not performed.

DETRAFO is not restricted to point transformations. In the case of contact- or
higher order transformations, the total derivatives dyα/dvi and dxj/dvi then only
include all vi− derivatives of uβ which occur in

yα = yα(vi, uβ, uβ,vj , . . .)

xk = xk(vi, uβ, uβ,vj , . . .).

Syntax

The call of DETRAFO is

DETRAFO({ex1, ex2, . . . , exm},
{ofun1 =fex1, ofun2 =fex2, . . . ,ofunp =fexp},
{ovar1 =vex1, ovar2 =vex2, . . . , ovarq =vexq},
{nfun1, nfun2, . . . , nfunp},
{nvar1, nvar2, . . . , nvarq});

where m, p, q are arbitrary.

• The exi are differential expressions to be transformed.

• The second list is the list of old functions ofun expressed as expressions fex
in terms of new functions nfun and new independent variables nvar.
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• Similarly the third list expresses the old independent variables ovar as ex-
pressions vex in terms of new functions nfun and new independent variables
nvar.

• The last two lists include the new functions nfun and new independent vari-
ables nvar.

Names for ofun, ovar, nfun and nvar can be arbitrarily chosen.

As the result DETRAFO returns the first argument of its input, i.e. the list

{ex1, ex2, . . . , exm}

where all exi are transformed.

Limitations of DETRAFO

The only requirement is that the old independent variables xi and old functions
yα must be given explicitly in terms of new variables vj and new functions uβ

as indicated in the syntax. Then all calculations involve only differentiations and
basic algebra.
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20.2 ASSIST: Useful Utilities for Various Applications

ASSIST contains a large number of additional general purpose functions that allow
a user to better adapt REDUCE to various calculational strategies and to make the
programming task more straightforward and more efficient.

Author: Hubert Caprasse

20.2.1 Introduction

The package ASSIST contains an appreciable number of additional general pur-
pose operators which allow one to better adapt REDUCE to various calculational
strategies, to make the programming task more straightforward and, sometimes,
more efficient.

In contrast with all other packages, ASSIST does not aim to provide either a new
facility to compute a definite class of mathematical objects or to extend the base of
mathematical knowledge of REDUCE. The operators it contains should be useful
independently of the nature of the application which is considered. They were ini-
tially written while applying REDUCE to specific problems in theoretical physics.
Most of them were designed in such a way that their applicability range is broad.
Though it was not the primary goal, efficiency has been sought whenever possible.

The source code in ASSIST contains many comments concerning the meaning
and use of the supplementary operators available in the algebraic mode. These
comments, hopefully, make the code transparent and allow a thorough exploitation
of the package. The present documentation contains a non-technical description of
it and describes the various new facilities it provides.

20.2.2 Survey of the Available New Facilities

An elementary help facility is available, independent of the help facility of RE-
DUCE itself. It includes two operators:

assist is a operator which takes no argument. If entered, it returns the informa-
tions required for a proper use of assisthelp.
assisthelp takes one argument.

i. If the argument is the identifier assist, the operator returns the information
necessary to retrieve the names of all the available operators.

ii. If the argument is an integer equal to one of the section numbers of the
present documentation. The names of the operators described in that section
are obtained.



349

There is, presently, no possibility to retrieve the number and the type of the
arguments of a given operator.

The package contains several modules. Their content reflects closely the various
categories of facilities listed below. Some operators do already exist inside the
Core of REDUCE. However, their range of applicability is extended.

• Control of Switches:

switches switchorg

• Operations on Lists and Bags:

mklist kernlist algnlist length
position frequency sequences split
insert insert_keep_order merge_list
first second third rest reverse last
belast cons ( . ) append appendn
remove delete delete_all delpair
member elmult pair depth mkdepth_one
repfirst represt asfirst aslast asrest
asflist asslist restaslist substitute
bagprop putbag clearbag bagp baglistp
alistp abaglistp listbag

• Operations on Sets:

mkset setp union intersect diffset symdiff

• General Purpose Utility Functions:

list_to_ids mkidn mkidnew dellastdigit detidnum
oddp followline == randomlist mkrandtabl
permutations cyclicpermlist perm_to_num
num_to_perm combnum combinations symmetrize
remsym sortnumlist sortlist algsort extremum
gcdnl
depatom funcvar implicit explicit remnoncom
korderlist simplify checkproplist extractlist

• Properties and Flags:

putflag putprop displayprop displayflag
clearflag clearprop

• Control Statements, Control of Environment:



350 CHAPTER 20. USER CONTRIBUTED PACKAGES

nordp depvarp alatomp alkernp precp
show suppress clearop clearfunctions

• Handling of Polynomials:

alg_to_symb symb_to_alg
distribute leadterm redexpr monom
lowestdeg divpol splitterms splitplusminus

• Handling of Transcendental Functions:

trigexpand hypexpand trigreduce hypreduce

• Coercion from Lists to Arrays and converse:

list_to_array array_to_list

• Handling of n-dimensional Vectors:

sumvect minvect scalvect crossvect mpvect

• Handling of Grassmann Operators:

putgrass remgrass grassp grassparity
ghostfactor

• Handling of Matrices:

unitmat mkidm baglmat coercemat
submat matsubr matsubc rmatextr rmatextc
hconcmat vconcmat tpmat hermat
seteltmat geteltmat

• Control of the HEPHYS package:

remvector remindex mkgam

In the following all these operators are described.

20.2.3 Control of Switches

The two available operators i.e. switches, switchorg have no argument and
are called as if they were mere identifiers.

switches displays the actual status of the most frequently used switches when
manipulating rational operators. The chosen switches are
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exp, allfac, ezgcd, gcd, mcd, lcm, div, rat,
intstr, rational, precise, reduced, rationalize,
combineexpt, complex, revpri, distribute.

The selection is somewhat arbitrary but it may be changed in a trivial fashion by
the user.

The new switch distribute allows one to put polynomials in a distributed form
(see the description below of the new operators for manipulating them).

Most of the symbolic variables !*exp, !*div, . . . which have either the value
t or the value nil are made available in the algebraic mode so that it becomes
possible to write conditional statements of the kind

if !*exp then do ......

if !*gcd then off gcd;

SWITCHORG resets the switches enumerated above to the status they had when
starting REDUCE.

20.2.4 Manipulation of the List Structure

Additional operators for list manipulations are provided and some already defined
operators in the kernel of REDUCE are modified to properly generalize them to
the available new structure bag.

i. Generation of a list of length n with all its elements initialized to 0 and
possibility to append to a list l a certain number of zero’s to make it of length
n:

mklist n ; n is an integer

mklist(l,n); l is List-like, n is an integer

ii. Generation of a list of sublists of length n containing p elements equal to 0
and q elements equal to 1 such that

p+ q = n.

The operator sequences works both in algebraic and symbolic modes.
Here is an example in the algebraic mode:

sequences 2 ; ==> {{0,0},{0,1},{1,0},{1,1}}
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An arbitrary splitting of a list can be done. The operator split generates a
list which contains the splitted parts of the original list.

split({a,b,c,d},{1,1,2}) ==> {{a},{b},{c,d}}

The operator algnlist constructs a list which contains n copies of a list
bound to its first argument.

algnlist({a,b,c,d},2); ==> {{a,b,c,d},{a,b,c,d}}

The operator kernlist transforms any prefix of a kernel into the list
prefix. The output list is a copy:

kernlist (<kernel>); ==> {<kernel arguments>}

iii. Four operators to delete elements are delete, remove, delete_all
and delpair. The first two act as in symbolic mode, and the third elim-
inates from a given list all elements equal to its first argument. The fourth
acts on a list of pairs and eliminates from it the first pair whose first element
is equal to its first argument :

delete(x,{a,b,x,f,x}); ==> {a,b,f,x}

remove({a,b,x,f,x},3); ==> {a,b,f,x}

delete_all(x,{a,b,x,f,x}); ==> {a,b,f}

delpair(a,{{a,1},{b,2},{c,3}}; ==> {{b,2},{c,3}}

iv. The operator elmult returns an integer which is the multiplicity of its
first argument inside the list which is its second argument. The operator
frequency gives a list of pairs whose second element indicates the num-
ber of times the first element appears inside the original list:

elmult(x,{a,b,x,f,x}) ==> 2

frequency({a,b,c,a}); ==> {{a,2},{b,1},{c,1}}

v. The operator insert allows one to insert a given object into a list at the
desired position.

The operators insert_keep_order and merge_list allow one to
keep a given ordering when inserting one element inside a list or when merg-
ing two lists. Both have 3 arguments. The last one is the name of a binary
boolean ordering function:
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ll:={1,2,3}$

insert(x,ll,3); ==> {1,2,x,3}

insert_keep_order(5,ll,lessp); ==> {1,2,3,5}

merge_list(ll,ll,lessp); ==> {1,1,2,2,3,3}

Notice that merge_list will act correctly only if the two lists are well
ordered themselves.

vi. Algebraic lists can be read from right to left or left to right. They look sym-
metrical. One would like to dispose of manipulation functions which reflect
this. So, to the already defined functions first and rest are added
the functions last and belast. last gives the last element of the list
while belast gives the list without its last element.
Various additional functions are provided. They are:

. (“dot”), position, depth, mkdepth_one,
pair, appendn, repfirst, represt

The token “dot” needs a special comment. It corresponds to several different
operations.

1. If one applies it on the left of a list, it acts as the cons infix operator.
Note however that blank spaces are required around the dot:

4 . {a,b}; ==> {4,a,b}

2. If one applies it on the right of a list, it has the same effect as the part
operator:

{a,b,c}.2; ==> b

3. If one applies it to a 4-dimensional vectors, it acts as in the HEPHYS
package.

position returns the position of the first occurrence of x in a list or a
message if x is not present in it.

depth returns an integer equal to the number of levels where a list is found
if and only if this number is the same for each element of the list otherwise
it returns a message telling the user that the list is of unequal depth. The
function mkdepth_one allows to transform any list into a list of depth
equal to 1.

pair has two arguments which must be lists. It returns a list whose ele-
ments are lists of two elements. The nth sublist contains the nth element of
the first list and the nth element of the second list. These types of lists are
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called association lists or short alists in the following. To test for these type
of lists a boolean function abaglistp is provided. It will be discussed
below.
appendn has any fixed number of lists as arguments. It generalizes the al-
ready existing function append which accepts only two lists as arguments.
It may also be used for arbitrary kernels but, in that case, it is important to
notice that the concatenated object is always a list.
repfirst has two arguments. The first one is any object, the second one
is a list. It replaces the first element of the list by the object. It works like
the symbolic mode (lisp) function rplaca except that the original list is not
destroyed.
represt has also two arguments. It replaces the rest of the list by its first
argument and returns the new list without destroying the original list. It is
analogous to the symbolic mode (lisp) function rplacd. Here are exam-
ples:

ll:={{a,b}}$
ll1:=ll.1; ==> {a,b}
ll.0; ==> list
0 . ll; ==> {0,{a,b}}

depth ll; ==> 2

pair(ll1,ll1); ==> {{a,a},{b,b}}

repfirst{new,ll); ==> {new}

ll3:=appendn(ll1,ll1,ll1); ==> {a,b,a,b,a,b}

position(b,ll3); ==> 2

represt(new,ll3); ==> {a,new}

vii. The functions asfirst, aslast, asrest, asflist, asslist, and
restaslist act on alists or on lists of lists of well defined depths and
have two arguments. The first is the key object which one seeks to associate
in some way with an element of the association list which is the second
argument.
asfirst returns the pair whose first element is equal to the first argument.
aslast returns the pair whose last element is equal to the first argument.
asrest needs a list as its first argument. The function seeks the first sublist
of a list of lists (which is its second argument) equal to its first argument and
returns it.
restaslist has a list of keys as its first argument. It returns the collection
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of pairs which meet the criterium of asrest.
asflist returns a list containing all pairs which satisfy the criteria of the
function asfirst. So the output is also an association list.
asslist returns a list which contains all pairs which have their second
element equal to the first argument.
Here are a few examples:

lp:={{a,1},{b,2},{c,3}}$

asfirst(a,lp); ==> {a,1}

aslast(1,lp); ==> {a,1}

asrest({1},lp); ==> {a,1}

restaslist({a,b},lp); ==> {{1},{2}}

lpp:=append(lp,lp)$

asflist(a,lpp); ==> {{a,1},{a,1}}

asslist(1,lpp); ==> {{a,1},{a,1}}

vii. The function substitute has three arguments. The first is the object to
be substituted, the second is the object which must be replaced by the first,
and the third is the list in which the substitution must be made. Substitution
is made to all levels. It is a more elementary function than sub but its
capabilities are less. When dealing with algebraic quantities, it is important
to make sure that all objects involved in the function have either the prefix
lisp or the standard quotient representation otherwise it will not properly
work.

20.2.5 The Bag Structure and its Associated Functions

The list structure of REDUCE is very convenient for manipulating groups of ob-
jects which are, a priori, unknown. This structure is endowed with other properties
such as “mapping” i.e. the fact that if op is an operator one gets, by default,

op({x,y}); ==> {op(x),op(y)}

It is not permitted to submit lists to the operations valid on rings so that, for exam-
ple, lists cannot be indeterminates of polynomials.
Very frequently too, procedure arguments cannot be lists. At the other extreme,
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so to say, one has the kernel structure associated with the algebraic declaration
operator . This structure behaves as an “unbreakable” one and, for that reason,
behaves like an ordinary identifier. It may generally be bound to all non-numeric
procedure parameters and it may appear as an ordinary indeterminate inside poly-
nomials.
The BAG structure is intermediate between a list and an operator. From the operator
it borrows the property of being a kernel and, therefore, may be an indeterminate of
a polynomial. From the list structure it borrows the property of being a composite
object.

Definition:

A bag is an object endowed with the following properties:

1. It is a kernel, i.e. it is composed of an atomic prefix (its envelope) and its
content (miscellaneous objects).

2. Its content may be handled in an analogous way as the content of a list. The
important difference is that during these manipulations the name of the bag
is kept.

3. Properties may be given to the envelope. For instance, one may declare it
noncom or symmetric, etc.

Available Functions:

i. A default bag envelope
textttbag is defined. It is a reserved identifier. An identifier other than
list or one which is already associated with a boolean function may be
defined as a bag envelope through the command putbag. In particular, any
operator may also be declared to be a bag. When and only when the iden-
tifier is not an already defined function then putbag set for it the property
of an operator prefix. The command:

putbag id1,id2,....idn;

declares id1,. . . ,idn as bag envelopes. Analogously, the command

clearbag id1,...idn;

eliminates the bag property on id1,. . . ,idn.

ii. The boolean operator bagp detects the bag property. Here is an example:

aa:=bag(x,y,z)$

if bagp aa then "ok"; ==> ok



357

iii. The functions listed below may act both on lists or bags. Moreover, functions
subsequently defined for setsSETS also work for a bag when its content is a
set. Here is a list of the main ones:

FIRST, second, last, rest, belast, depth, length,
reverse,
member, append, . (“dot”), repfirst, represt, . . .

However, since they keep track of the envelope, they act somewhat differ-
ently. Remember that

the name of the envelope is kept by the operators

first, second and last.

Here are a few examples (more examples are given inside the test file):

putbag op; ==> t

aa:=op(x,y,z)$

first op(x,y,z); ==> op(x)

rest op(x,y,z); ==> op(y,z)

belast op(x,y,z); ==> op(x,y)

append(aa,aa); ==> op(x,y,z,x,y,z)

appendn(aa,aa,aa); ==> {x,y,z,x,y,z,x,y,z}

length aa; ==> 3

depth aa; ==> 1

member(y,aa); ==> op(y,z)

When “appending” two bags with different envelopes, the resulting bag
gets the name of the one bound to the first parameter of append. When
appendn is used, the output is always a list.
The function length gives the number of objects contained in the bag.
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iv. The connection between the list and the bag structures is made easy thanks
to kernlist which transforms a bag into a list and thanks to the coercion
function listbag which transforms a list into a bag. This function has 2
arguments and is used as follows:

listbag(〈list〉,〈id〉); ==> 〈id〉(〈arg_list〉)

The identifier 〈id〉, if allowed, is automatically declared as a bag envelope or
an error message is generated.

Finally, two boolean functions which work both for bags and lists are
provided. They are baglistp and abaglistp. They return t or nil (in a
conditional statement) if their argument is a bag or a list for the first one, or
if their argument is a list of sublists or a bag containing bags for the second
one.

20.2.6 Sets and their Manipulation Functions

Functions for sets exist at the level of symbolic mode. The package makes them
available in algebraic mode but also generalizes them so that they can be applied
to bag-like objects as well.

i. The constructor mkset transforms a list or bag into a set by eliminating
duplicates.

mkset({1,a,a}); ==> {1,a}
mkset bag(1,a,1,a); ==> bag(1,a)

setp is a boolean function which recognizes set–like objects.

if setp {1,2,3} then ... ;

ii. The available functions are

union, intersect, diffset, symdiff.

They have two arguments which must be sets otherwise an error message
is issued. Their meaning is transparent from their name. They respectively
give the union, the intersection, the difference and the symmetric difference
of two sets.
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20.2.7 General Purpose Utility Functions

Functions in this sections have various purposes. They have all been used many
times in applications in some form or another. The form given to them in this
package is adjusted to maximize their range of applications.

i. The operators mkidnew, dellastdigit, detidnum, list_to_ids
handle identifiers.

mkidnew has either 0 or 1 argument. It generates an identifier which has
not yet been used before.

mkidnew(); ==> g0001

mkidnew(a); ==> ag0002

dellastdigit takes an integer as argument and strips from it its last digit.

dellastdigit 45; ==> 4

detidnum deletes the last digit from an identifier. It is a very convenient
function when one wants to make a do loop starting from a set of indices
a1, . . . , an.

detidnum a23; ==> 23

list_to_ids generalizes the function mkid to a list of atoms. It creates
and intern an identifier from the concatenation of the atoms. The first atom
cannot be an integer.

list_to_ids {a,1,id,10}; ==> a1id10

The boolean operator oddp detects odd integers.

The function followline is convenient when using the function prin2.
It allows one to format output text in a much more flexible way than with the
write statement.
Try the following examples :

<<prin2 2; prin2 5>>$ ==> ?

<<prin2 2; followline(5); prin2 5;>>; ==> ?

The infix operator == is a short and convenient notation for the set function.
In fact it is a generalization of it to allow one to deal also with kernels:
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operator op;

op(x):=abs(x)$

op(x) == x; ==> x

op(x); ==> x

abs(x); ==> x

The function randomlist generates a list of random numbers. It takes two
arguments which are both integers. The first one indicates the range inside
which the random numbers are chosen. The second one indicates how many
numbers are to be generated. Its output is the list of generated numbers.

randomlist(10,5); ==> {2,1,3,9,6}

mkrandtabl generates a table of random numbers. This table is either a
one or two dimensional array. The base of random numbers may be either an
integer or a decimal number. In this last case, to work properly, the switch
rounded must be ON. It has three arguments. The first is either a one
integer or a two integer list. The second is the base chosen to generate the
random numbers. The third is the chosen name for the generated array. In
the example below a two-dimensional table of random integers is generated
as array elements of the identifier ar.

mkrandtabl({3,4},10,ar); ==>

*** array ar redefined

{3,4}

The output is the dimension of the constructed array.

permutations gives the list of permutations of n objects. Each permuta-
tion is itself a list. cyclicpermlist gives the list of cyclic permutations.
For both functions, the argument may also be a bag.

permutations {1,2} ==> {{1,2},{2,1}}

cyclicpermlist {1,2,3} ==>

{{1,2,3},{2,3,1},{3,1,2}}
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perm_to_num and num_to_perm allow to associate to a given permu-
tation of n numbers or identifiers a number between 0 and n! − 1. The first
function has the two permutated lists as its arguments and it returns an in-
teger. The second one has an integer as its first argument and a list as its
second argument. It returns the list of permutated objects.

perm_to_num({4,3,2,1},{1,2,3,4}) ==> 23

num_to_perm(23,{1,2,3,4}); ==> {4,3,2,1}

combnum gives the number of combinations of n objects taken p at a time.
It has the two integer arguments n and p.

combinations gives a list of combinations on n objects taken p at a time.
It has two arguments. The first one is a list (or a bag) and the second one is
the integer p.

combinations({1,2,3},2) ==> {{2,3},{1,3},{1,2}}

remsym is a command that suppresses the effect of the REDUCE com-
mands symmetric or antisymmetric .

symmetrize is a powerful function which generates a symmetric expres-
sion. It has 3 arguments. The first is a list (or a list of lists) containing the
expressions which will appear as variables for a kernel. The second argu-
ment is the kernel-name and the third is a permutation function which exists
either in algebraic or symbolic mode. This function may be constructed
by the user. Within this package the two functions permutations and
cyclicpermlist may be used. Examples:

ll:={a,b,c}$

symmetrize(ll,op,cyclicpermlist); ==>

op(a,b,c) + op(b,c,a) + op(c,a,b)

symmetrize(list ll,op,cyclicpermlist); ==>

op({a,b,c}) + op({b,c,a}) + op({c,a,b})

Notice that, taking for the first argument a list of lists gives rise to an ex-
pression where each kernel has a list as argument. Another peculiarity of
this function is the fact that, unless a pattern matching is made on the oper-
ator op, it needs to be reevaluated. This peculiarity is convenient when op
is an abstract operator if one wants to control the subsequent simplification
process. Here is an illustration:
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op(a,b,c):=a*b*c$

symmetrize(ll,op,cyclicpermlist); ==>

op(a,b,c) + op(b,c,a) + op(c,a,b)

reval ws; ==>

op(b,c,a) + op(c,a,b) + a*b*c

for all x let op(x,a,b)=sin(x*a*b);

symmetrize(ll,op,cyclicpermlist); ==>

op(b,c,a) + sin(a*b*c) + op(a,b,c)

The functions sortnumlist and sortlist are functions which sort
lists. They use the bubblesort and the quicksort algorithms.

sortnumlist takes as argument a list of numbers. It sorts it in increasing
order.

sortlist is a generalization of the above function. It sorts the list accord-
ing to any well defined ordering. Its first argument is the list and its second
argument is the ordering function. The content of the list need not necessar-
ily be numbers but must be such that the ordering function has a meaning.

algsort exploits the PSL sort function. It is intended to replace the
two functions above.

l:={1,3,4,0}$ sortnumlist l; ==> {0,1,3,4}

ll:={1,a,tt,z}$ sortlist(ll,ordp); ==> {a,z,tt,1}

l:={-1,3,4,0}$ algsort(l,>); ==> {4,3,0,-1}

It is important to realise that using these functions for kernels or bags may
be dangerous since they are destructive. If it is necessary, it is recommended
to first apply kernlist to them to act on a copy.

The function extremum is a generalization of the already defined functions
min, max to include general orderings. It is a 2 argument function. The first
is the list and the second is the ordering function. With the list ll defined in
the last example, one gets

extremum(ll,ordp); ==> 1

GCDNL takes a list of integers as argument and returns their gcd.
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iii. There are four functions to identify dependencies. funcvar takes any
expression as argument and returns the set of variables on which it depends.
Constants are eliminated.

funcvar(e+pi+sin(log(y)); ==> {y}

depatom has an atom as argument. It returns it if it is a number or if no
dependency has previously been declared. Otherwise, it returns the list of
variables which the previous DEPEND declarations imply.

depend a,x,y;

depatom a; ==> {x,y}

The operators explicit and implicit make explicit or implicit the de-
pendencies. This example shows how they work:

depend a,x; depend x,y,z;

explicit a; ==> a(x(y,z))

implicit ws; ==> a

These are useful when one wants to trace the names of the independent vari-
ables and (or) the nature of the dependencies.

korderlist is a zero argument function which displays the actual order-
ing.

korder x,y,z;

korderlist; ==> (x,y,z)

iv. A command remnoncom to remove the non-commutativity of operators
previously declared non-commutative is available. Its use is like the one of
the command noncom.

v. Filtering functions for lists.

checkproplist is a boolean function which checks if the elements of a
list have a definite property. Its first argument is the list, its second argument
is a boolean operator (fixp, numberp, . . . ) or an ordering function (as
ordp).

extractlist extracts from the list given as its first argument the elements
which satisfy the boolean function given as its second argument. For exam-
ple:
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if checkproplist({1,2},fixp) then "ok"; ==> ok

l:={1,a,b,"st")$

extractlist(l,fixp); ==> {1}

extractlist(l,stringp); ==> {st}

vi. Coercion.

Since lists and arrays have quite distinct behaviour and storage properties,
it is interesting to coerce lists into arrays and vice-versa in order to fully
exploit the advantages of both datatypes. The functions array_to_list
and list_to_array are provided to do that easily. The first function has
the array identifier as its unique argument. The second function has three
arguments. The first is the list, the second is the dimension of the array
and the third is the identifier which defines it. If the chosen dimension is
not compatible with the the list depth, an error message is issued. As an
illustration suppose that ar is an array whose components are 1,2,3,4. then

array_to_list ar; ==> {1,2,3,4}

list_to_array({1,2,3,4},1,arr}; ==>

generates the array arr with the components 1,2,3,4.

vii. Control of the HEPHYS package.

The commands remvector and remindex remove the property of being
a 4-vector or a 4-index respectively.

The function mkgam allows to assign to any identifier the property of a Dirac
gamma matrix and, eventually, to suppress it. Its interest lies in the fact that,
during a calculation, it is often useful to transform a gamma matrix into an
abstract operator and vice-versa. Moreover, in many applications in basic
physics, it is interesting to use the identifier g for other purposes. It takes
two arguments. The first is the identifier. The second must be chosen equal
to t if one wants to transform it into a gamma matrix. Any other binding for
this second argument suppresses the property of being a gamma matrix the
identifier is supposed to have.

20.2.8 Properties and Flags

In spite of the fact that many facets of the handling of property lists is easily acces-
sible in algebraic mode, it is useful to provide analogous functions genuine to the
algebraic mode. The reason is that, altering property lists of objects, may easily
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destroy the integrity of the system. The functions, which are here described, do
ignore the property list and flags already defined by the system itself. They gen-
erate and track the addtional properties and flags that the user issues using them.
They offer him the possibility to work on property lists so that he can design a
programming style of the “conceptual” type.

i. We first consider “flags”.
To a given identifier, one may associate another one linked to it

“in the background”. The three functions putflag, displayflag and
clearflag handle them.

putflag has 3 arguments. The first one is the identifier or a list of iden-
tifiers, the second one is the name of the flag, and the third one is t (true)
or 0 (zero). When the third argument is t, it creates the flag, when it is 0 it
destroys it. In this last case, the function does return nil (not seen inside the
algebraic mode).

putflag(z1,flag_name,t); ==> flag_name

putflag({z1,z2},flag1_name,t); ==> t

putflag(z2,flag1_name,0) ==>

displayflag allows one to extract flags. The previous actions give:

displayflag z1; ==>{flag_name,flag1_name}

displayflag z2 ; ==> {}

clearflag is a command which clears all flags associated with the iden-
tifiers id1, . . . , idn.

ii. Properties are handled by similar operators. putprop has four argu-
ments. The second argument is, here, the indicator of the property. The
third argument may be any valid expression. The fourth one is also t or 0.

putprop(z1,property,x^2,t); ==> z1

In general, one enters

putprop(list(idp1,idp2,..),<propname>,<value>,t);

To display a specific property, one uses displayprop which takes two
arguments. The first is the name of the identifier, the second is the indicator
of the property.
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2
displayprop(z1,property); ==> {property,x }

Finally, clearprop is a nary commmand which clears all properties of the
identifiers which appear as arguments.

20.2.9 Control Functions

Here we describe additional functions which improve user control on the environ-
ment.

i. The first set of functions is composed of unary and binary boolean functions.
They are:

alatomp x; x is anything.
alkernp x; x is anything.
depvarp(x,v); x is anything.

(v is an atom or a kernel.) alatomp has the value t iff x is an integer or an
identifier after it has been evaluated down to the bottom.

alkernp has the value t iff x is a kernel after it has been evaluated down
to the bottom.

depvarp returns t iff the expression x depends on v at any level.

The above functions together with precp have been declared operator func-
tions to ease the verification of their value.

nordp is equal to not ordp.

ii. The next functions allow one to analyze and to clean the environment of
REDUCE created by the user while working interactively. Two functions
are provided:

show allows the user to get the various identifiers already assigned and
to see their type. suppress selectively clears the used identifiers or clears
them all. It is to be stressed that identifiers assigned from the input of files
are ignored. Both functions have one argument and the same options for this
argument:

show (suppress) all
show (suppress) scalars
show (suppress) lists
show (suppress) saveids

(for saved expressions)
show (suppress) matrices



367

show (suppress) arrays
show (suppress) vectors

(contains vector, index and tvector)
show (suppress) forms

The option all is the most convenient for show but, with it, it may takes
some time to get the answer after one has worked several hours. When en-
tering REDUCE the option all for show gives:

show all; ==>

scalars are: NIL
arrays are: NIL
lists are: NIL
matrices are: NIL
vectors are: NIL
forms are: NIL

It is a convenient way to remind the various options. Here is an example
which is valid when one starts from a fresh environment:

a:=b:=1$

show scalars; ==> scalars are: (a b)

suppress scalars; ==> t

show scalars; ==> scalars are: nil

iii. The clear command of the system does not do a complete cleaning of
operators and functions. The following two commands do a more complete
cleaning and, also, automatically takes into account the user flag and prop-
erties that the functions putflag and putprop may have introduced.

Their names are clearop and clearfunctions. clearop takes one
operator as its argument.
clearfunctions is a nary command. If one issues

clearfunctions a1,a2, ... , an $

The functions with names a1, a2, . . . , an are cleared. One should be careful
when using this facility since the only functions which cannot be erased are
those which are protected with the lose flag.
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20.2.10 Handling of Polynomials

The module contains some utility functions to handle standard quotients and sev-
eral new facilities to manipulate polynomials.

i. Two operators alg_to_symb and symb_to_alg allow one to change
an expression which is in the algebraic standard quotient form into a prefix
lisp form and vice-versa. This is done in such a way that the symbol list
which appears in the algebraic mode disappears in the symbolic form (there
it becomes a parenthesis “()” ) and it is reintroduced in the translation from
a symbolic prefix lisp expression to an algebraic one. Here, is an exam-
ple, showing how the wellknown lisp function flattens can be trivially
transposed inside the algebraic mode:

algebraic procedure ecrase x;
lisp symb_to_alg

flattens1 alg_to_symb algebraic x;

symbolic procedure flattens1 x;
% ll; ==> ((a b) ((c d) e))
% flattens1 ll; (a b c d e)

if atom x then list x else
if cdr x then

append(flattens1 car x, flattens1 cdr x)
else flattens1 car x;

gives, for instance,

ll:={a,{b,{c},d,e},{{{z}}}}$

ecrase ll; ==> {a, b, c, d, e, z}

The function mkdepth_one described above implements that functional-
ity.

ii. leadterm and redexpr are the algebraic equivalent of the symbolic
mode functions lt and red. They give, respectively, the leading term and
the reductum of a polynomial. They also work for rational functions. Their
interest lies in the fact that they do not require one to extract the main vari-
able. They work according to the current ordering of the system:

pol:=x++y+z$

leadterm pol; ==> x
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korder y,x,z;

leadterm pol; ==> y

redexpr pol; ==> x + z

By default, the representation of multivariate polynomials is recursive. It
is justified since it is the one which takes the least memory. With such a
representation, the function leadterm does not necessarily extract a true
monom. It extracts a monom in the leading indeterminate multiplied by a
polynomial in the other indeterminates. However, very often, one needs to
handle true monoms separately. In that case, one needs a polynomial in dis-
tributive form. Such a form is provided by the package GROEBNER (H.
Melenk et al.). The facility there is, however, much too involved in many
applications and the necessity to load the package makes it interesting to
construct an elementary facility to handle the distributive representation of
polynomials. A new switch has been created for that purpose. It is called
distribute and a new function distribute puts a polynomial in dis-
tributive form. With that switch set to on, leadterm returns true monoms.

monom transforms a polynomial into a list of monoms. It works whatever
the position of the switch distribute.

splitterms is analoguous to monom except that it gives a list of two lists.
The first sublist contains the positive terms while the second sublist contains
the negative terms.

splitplusminus gives a list whose first element is the positive part of
the polynomial and its second element is its negative part.

iii. Two complementary operators lowestdeg and divpol are provided. The
first takes a polynomial as its first argument and the name of an indeterminate
as its second argument. It returns the lowest degree in that indeterminate.
The second function takes two polynomials and returns both the quotient
and its remainder.

20.2.11 Handling of Transcendental Functions

The functions trigreduce and trigexpand and the equivalent ones for hy-
perbolic functions hypreduce and hypexpand make the transformations to
multiple arguments and from multiple arguments to elementary arguments. Here
is a simple example:

aa:=sin(x+y)$
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trigexpand aa; ==> sin(x)*cos(y) + sin(y)*cos(x)

trigreduce ws; ==> sin(y + x)

When a trigonometric or hyperbolic expression is symmetric with respect to the
interchange of sin (sinh) and cos (cosh), the application of trigreduce
(hypreduce) may often lead to great simplifications. However, if it is highly
asymmetric, the repeated application of trigreduce (hypreduce) followed
by the use of trigexpand (hypexpand) will lead to more complicated but
more symmetric expressions:

aa:=(sin(x)^2+cos(x)^2)^3$

trigreduce aa; ==> 1

bb:=1+sin(x)^3$

trigreduce bb; ==>

- sin(3*x) + 3*sin(x) + 4
---------------------------

4

trigexpand ws; ==>

3 2
sin(x) - 3*sin(x)*cos(x) + 3*sin(x) + 4
-------------------------------------------

4

20.2.12 Handling of n-dimensional Vectors

Explicit vectors in euclidean space may be represented by list-like or bag-like
objects of depth 1. The components may be bags but may not be lists. Funct-
ions are provided to do the sum, the difference and the scalar product. When the
space-dimension is three there are also functions for the cross and mixed products.

sumvect, minvect, scalvect, and crossvect have two
arguments. mpvect has three arguments. The following example is sufficient to
explain how they work:

l:={1,2,3}$

ll:=list(a,b,c)$
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sumvect(l,ll); ==> {a + 1,b + 2,c + 3}

minvect(l,ll); ==> { - a + 1, - b + 2, - c + 3}

scalvect(l,ll); ==> a + 2*b + 3*c

crossvect(l,ll); ==> { - 3*b + 2*c,
3*a - c, - 2*a + b}

mpvect(l,ll,l); ==> 0

20.2.13 Handling of Grassmann Operators

Grassman variables are often used in physics. For them the multiplication opera-
tion is associative, distributive but anticommutative. The core of REDUCE does
not provide it. However, implementing it in full generality would almost certainly
decrease the overall efficiency of the system. This small module together with
the declaration of antisymmetry for operators is enough to deal with most calcu-
lations. The reason is, that a product of similar anticommuting kernels can easily
be transformed into an antisymmetric operator with as many indices as the number
of these kernels. Moreover, one may also issue pattern matching rules to imple-
ment the anticommutativity of the product. The functions in this module represent
the minimum functionality required to identify them and to handle their specific
features.

putgrass is a (nary) command which give identifiers the property of being the
names of Grassmann kernels. remgrass removes this property.

grassp is a boolean function which detects grassmann kernels.

GRASSPARITY takes a monom as argument and gives its parity. If the monom is
a simple grassmann kernel it returns 1.

GHOSTFACTOR has two arguments. Each one is a monom. It is equal to

(-1)**(grassparity u * grassparity v)

Here is an illustration to show how the above functions work:

putgrass eta; ==> t

if grassp eta(1) then "grassmann kernel"; ==>

grassmann kernel



372 CHAPTER 20. USER CONTRIBUTED PACKAGES

aa:=eta(1)*eta(2)-eta(2)*eta(1); ==>

aa := - eta(2)*eta(1) + eta(1)*eta(2)

grassparity eta(1); ==> 1

grassparity (eta(1)*eta(2)); ==> 0

ghostfactor(eta(1),eta(2)); ==> -1

grasskernel:=
{eta(~x)*eta(~y)

=> -eta y * eta x when nordp(x,y),
(~x)*(~x) => 0 when grassp x};

exp:=eta(1)^2$

exp where grasskernel; ==> 0

aa where grasskernel; ==> - 2*eta(2)*eta(1)

20.2.14 Handling of Matrices

This module provides functions for handling matrices more comfortably.

i. Often, one needs to construct some unit matrix of a given dimension. This
construction is done by the system thanks to the command unitmat. It
takes any number of arguments:

unitmat m1(n1), m2(n2), .....mi(ni) ;

where m1, m2,. . . ,mi are names of matrices and n1, n2,. . . ,ni are integers.

mkidm is a generalization of mkid. It allows one to connect two or several
matrices. If u and u1 are two matrices, one can go from one to the other:

matrix u(2,2);$ unitmat u1(2)$

u1; ==>

[1 0]
[ ]
[0 1]
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mkidm(u,1); ==>

[1 0]
[ ]
[0 1]

This operators allows one to make loops on matrices like in the following
illustration. If u, u1, u2,. . . , u5 are matrices:

for i:=1:5 do u:=u-mkidm(u,i);

can be issued.

ii. The next functions map matrices on bag-like or list-like objects and con-
versely they generate matrices from bags or lists.

coercemat transforms the matrix u into a list of lists. The entry is

coercemat(u,id)

where id is equal to list, otherwise it transforms it into a bag of bags
whose envelope is equal to id.

baglmat does the opposite job. The first argument is the bag-like or list-
like object while the second argument is the matrix identifier. The input is

baglmat(bgl,u)

bgl becomes the matrix u . The transformation is not done if u is already the
name of a previously defined matrix. This is to avoid accidental redefinition
of that matrix.

ii. The operators submat, matextr, and matextc take parts of a given ma-
trix.

submat has three arguments. The entry is

submat(u,nr,nc)

The first is the matrix name, and the other two are the row and column num-
bers. It gives the submatrix obtained from u by deleting the row nr and the
column nc. When one of them is equal to zero only column nc or row nr
is deleted.

matextr and matextc extract a row or a column and place it into a list-
like or bag-like object. The entries are
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matextr(u,vn,nr)

matextc(u,vn,nc)

where u is the matrix, vn is the “vector name”, nr and nc are integers. If
vn is equal to list the vector is returned as a list otherwise as a bag.

iii. Functions which manipulate matrices. They are matsubr, matsubc,
hconcmat, vconcmat, tpmat, and hermat.

matsubr and matsubc substitute rows and columns. They have three
arguments. Entries are:

matsubr(u,bgl,nr)

matsubc(u,bgl,nc)

The meaning of the variables u, nr, and nc is the same as above while bgl
is a list-like or bag-like vector. Its length should be compatible with the
dimensions of the matrix.

hconcmat and vconcmat concatenate two matrices. The entries are

hconcmat(u,v)

vconcmat(u,v)

The first function concatenates horizontally, the second one concatenates
vertically. The dimensions must match.

tpmat makes the tensor product of two matrices. It is also an infix operator.
The entry is

tpmat(u,v) or u tpmat V

hermat takes the hermitian conjuguate of a matrix. The entry is

hermat(u,hu)

where
textttu is the identifier for the hermitian conjugate of matrix u. It should be
unassigned for this function to work successfully. This is done on purpose
to prevent accidental redefinition of an already used identifier.

iv. setelmat getelmat are functions of two integers. The first one resets
the element (i, j) while the second one extracts an element identified by
(i, j). They may be useful when dealing with matrices inside procedures.
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20.3 ATENSOR: A REDUCE Program for Tensor Sim-
plification

Simplification of tensor expression with taking into account multiterm linear iden-
tities, symmetry relations and renaming dummy indices. This problem is important
for the calculation in the gravity theory, differential geometry, other fields where
indexed objects arise.

The group algebra technique for permutation group is applied to construt a canon-
ical subspace and the effective algorithm for the corresponding projection.

Authors: V. A. Ilyin and A. P. Kryukov

For more information, see [IK96]. Further documentation is available at https:
//reduce-algebra.sourceforge.io/extra-docs/atensor.pdf.

https://reduce-algebra.sourceforge.io/extra-docs/atensor.pdf
https://reduce-algebra.sourceforge.io/extra-docs/atensor.pdf
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20.4 AVECTOR: A Vector Algebra and Calculus Package

This package provides REDUCE with the ability to perform vector algebra using
the same notation as scalar algebra. The basic algebraic operations are supported,
as are differentiation and integration of vectors with respect to scalar variables,
cross product and dot product, component manipulation and application of scalar
functions (e.g. cosine) to a vector to yield a vector result.

Author: David Harper

20.4.1 Introduction

This package ([Har89]) provides REDUCE with the ability to perform vector alge-
bra using the same notation as scalar algebra. The basic algebraic operations are
supported, as are differentiation and integration of vectors with respect to scalar
variables, cross product and dot product, component manipulation and application
of scalar functions, e.g., cosine) to a vector to yield a vector result.

A set of vector calculus operators are provided for use with any orthogonal curvi-
linear coordinate system. These operators are gradient, divergence, curl and del-
squared (Laplacian). The Laplacian operator can take scalar or vector arguments.

Several important coordinate systems are pre-defined and can be invoked by name.
It is also possible to create new coordinate systems by specifying the names of the
coordinates and the values of the scale factors.

20.4.2 Vector declaration and initialisation

Any name may be declared to be a vector, provided that it has not previously been
declared as a matrix or an array. To declare a list of names to be vectors use the
vec command:

vec a,b,c;

declares the variables a, b and c to be vectors. If they have already been assigned
(scalar) values, these will be lost.

When a vector is declared using the vec command, it does not have an initial
value.

If a vector value is assigned to a scalar variable, then that variable will automati-
cally be declared as a vector and the user will be notified that this has happened.

A vector may be initialised using the avec function which takes three scalar argu-
ments and returns a vector made up from those scalars. For example
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a := avec(a1, a2, a3);

sets the components of the vector a to a1, a2 and a3.

20.4.3 Vector algebra

(In the examples which follow, v, v1, v2, etc. are assumed to be vectors while s,
s1, s2, etc. are scalars.)

The scalar algebra operators +,-,* and / may be used with vector operands accord-
ing to the rules of vector algebra. Thus multiplication and division of a vector by
a scalar are both allowed, but it is an error to multiply or divide one vector by
another.

v := v1 + v2 - v3; Addition and subtraction
v := s1*3*v1; Scalar multiplication
v := v1/s; Scalar division
v := -v1; Negation

Vector multiplication is carried out using the infix operators dot and cross.
These are defined to have higher precedence than scalar multiplication and divi-
sion.

v := v1 cross v2; Cross product
s := v1 dot v2; Dot product
v := v1 cross v2 + v3;
v := (v1 cross v2) + v3;

The last two expressions are equivalent due to the precedence of the cross oper-
ator.

The modulus of a vector may be calculated using the VMOD operator.

s := vmod v;

A unit vector may be generated from any vector using the vmod operator.

v1 := v/(vmod v);

Components may be extracted from any vector using index notation in the same
way as an array.

v := avec(ax, ay, az);
v(0); yields ax
v(1); yields ay
v(2); yields az

It is also possible to set values of individual components. Following from above:
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v(1) := b;

The vector v now has components ax, b, az.

Vectors may be used as arguments in the differentiation and integration routines in
place of the dependent expression.

v := avec(x**2, sin(x), y);
df(v,x); yields (2*x, cos(x), 0)
int(v,x); yields (x**3/3, -cos(x), y*x)

Vectors may be given as arguments to monomial functions such as sin, log and
tan. The result is a vector obtained by applying the function component-wise to
the argument vector.

v := avec(a1, a2, a3);
sin(v); yields (sin(a1), sin(a2), sin(a3))

20.4.4 Vector calculus

The vector calculus operators div, grad and curl are recognised. The Laplacian
operator is also available and may be applied to scalar and vector arguments.

v := grad s; Gradient of a scalar field
s := div v; Divergence of a vector field
v := curl v1; Curl of a vector field
s := delsq s1; Laplacian of a scalar field
v := delsq v1; Laplacian of a vector field

These operators may be used in any orthogonal curvilinear coordinate system. The
user may alter the names of the coordinates and the values of the scale factors.
Initially the coordinates are x, y and z and the scale factors are all unity.

There are two special vectors : coords contains the names of the coordinates in
the current system and hfactors contains the values of the scale factors.

The coordinate names may be changed using the coordinates command.

coordinates r,theta,phi;

This command changes the coordinate names to r, theta and phi.

The scale factors may be altered using the scalefactors operator.

scalefactors(1,r,r*sin(theta));

This command changes the scale factors to 1, r and r sin(theta).

Note that the arguments of scalefactors must be enclosed in parentheses.
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This is not necessary with the coordinates command.

When vector differential operators are applied to an expression, the current set of
coordinates are used as the independent variables and the scale factors are em-
ployed in the calculation. (See, for example, Batchelor G.K. ’An Introduction to
Fluid Mechanics’, Appendix 2.)

Several coordinate systems are pre-defined and may be invoked by name. To see a
list of valid names enter

symbolic !*csystems;

and REDUCE will respond with something like

(cartesian spherical cylindrical)

To choose a coordinate system by name, use the command getcsystem.

To choose the Cartesian coordinate system :

getcsystem ’cartesian;

Note the quote which prefixes the name of the coordinate system. This is required
because getcsystem (and its complement putcsystem) is a symbolic pro-
cedure which requires a literal argument.

REDUCE responds by typing a list of the coordinate names in that coordinate
system. The example above would produce the response

(x y z)

whilst

getcsystem ’spherical;

would produce

(r theta phi)

Note that any attempt to invoke a coordinate system is subject to the same restric-
tions as the implied calls to coordinates and SCALEFACTORS. In particular,
getcsystem fails if any of the coordinate names has been assigned a value and
the previous coordinate system remains in effect.

A user-defined coordinate system can be assigned a name using the command
putcsystem. It may then be re-invoked at a later stage using getcsystem.

Example 1
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We define a general coordinate system with coordinate names X,Y,Z and scale fac-
tors h1,h2,h3 :

coordinates x,y,z;
scalefactors(h1,h2,h3);
putcsystem ’general;

This system may later be invoked by entering

getcsystem ’general;

20.4.5 Volume and Line Integration

Several functions are provided to perform volume and line integrals. These operate
in any orthogonal curvilinear coordinate system and make use of the scale factors
described in the previous section.

Definite integrals of scalar and vector expressions may be calculated using the
defint function.

Example 2

To calculate the definite integral of sin(x)2 between 0 and 2π we enter

defint(sin(x)**2,x,0,2*pi);

This function is a simple extension of the int operator taking two extra arguments,
the lower and upper bounds of integration respectively.

Definite volume integrals may be calculated using the volintegral function
whose syntax is as follows :

volintegral(〈integrand:expression〉,
〈lower-bound:vector〉,〈upper-bound:vector〉)

Example 3

In spherical polar coordinates we may calculate the volume of a sphere by integrat-
ing unity over the range r=0 to rr, θ=0 to π, ϕ=0 to 2*π as follows :

vlb := avec(0,0,0); Lower bound
vub := avec(rr,pi,2*pi); Upper bound in r, θ, ϕ respectively
volintorder := (0,1,2); The order of integration
volintegral(1,vlb,vub);

Note the use of the special vector volintorder which controls the order in
which the integrations are carried out. This vector should be set to contain the
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number 0, 1 and 2 in the required order. The first component of volintorder
contains the index of the first integration variable, the second component is the
index of the second integration variable and the third component is the index of the
third integration variable.

Example 4

Suppose we wish to calculate the volume of a right circular cone. This is equivalent
to integrating unity over a conical region with the bounds:

z = 0 to h (h = the height of the cone)
r = 0 to p z (p = ratio of base diameter to height)
phi = 0 to 2*pi

We evaluate the volume by integrating a series of infinitesimally thin circular disks
of constant z-value. The integration is thus performed in the order : d(ϕ) from 0 to
2π, dr from 0 to p*Z, dz from 0 to H. The order of the indices is thus 2, 0, 1.

volintorder := avec(2,0,1);
vlb := avec(0,0,0);
vub := avec(p*z,h,2*pi);
volintegral(1,vlb,vub);

(At this stage, we replace p*h by rr, the base radius of the cone, to obtain the
result in its more familiar form.)

Line integrals may be calculated using the lineint and deflineint oper-
ators. Their general syntax is

lineint(〈vector-function〉,〈vector-curve〉,〈variable:kernel〉)
deflineint(〈vector-function〉,〈vector-curve〉,〈variable:kernel〉,

〈lower-bound〉,〈upper-bound〉)

where

〈vector-function〉 is any vector-valued expression;

〈vector-curve〉 is a vector expression which describes the path of integration in
terms of the independent variable;

〈variable〉 is the independent variable;

〈lower-bound〉

〈upper-bound〉 are the bounds of integration in terms of the independent variable.

Example 5
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In spherical polar coordinates, we may integrate round a line of constant theta
(‘latitude’) to find the length of such a line. The vector function is thus the tangent
to the ‘line of latitude’, (0,0,1) and the path is (0,lat,phi) where phi is the
independent variable. We show how to obtain the definite integral, i.e. from ϕ = 0
to 2π :

deflineint(avec(0,0,1),avec(0,lat,phi),phi,0,2*pi);

20.4.6 Defining new functions and procedures

Most of the procedures in this package are defined in symbolic mode and are in-
voked by the REDUCE expression-evaluator when a vector expression is encoun-
tered. It is not generally possible to define procedures which accept or return vector
values in algebraic mode. This is a consequence of the way in which the REDUCE
interpreter operates and it affects other non-scalar data types as well : arrays cannot
be passed as algebraic procedure arguments, for example.

20.4.7 Acknowledgements

This package was written whilst the author was the U.K. Computer Algebra Sup-
port Officer at the University of Liverpool Computer Laboratory.
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20.5 BIBASIS: A Package for Calculating Boolean Invo-
lutive Bases

Authors: Yuri A. Blinkov and Mikhail V. Zinin

20.5.1 Introduction

Involutive polynomial bases are redundant Gröbner bases of special structure with
some additional useful features in comparison with reduced Gröbner bases [GB98].
Apart from numerous applications of involutive bases [Sei10] the involutive algo-
rithms [Ger05] provide an efficient method for computing reduced Gröbner bases.
A reduced Gröbner basis is a well-determined subset of an involutive basis and can
be easily extracted from the latter without any extra reductions. All this takes place
not only in rings of commutative polynomials but also in Boolean rings.

Boolean Gröbner basis already have already revealed their value and usability in
practice. The first impressive demonstration of practicability of Boolean Gröbner
bases was breaking the first HFE (Hidden Fields Equations) challenge in the pub-
lic key cryptography done in [FJ03] by computing a Boolean Gröbner basis for
the system of quadratic polynomials in 80 variables. Since that time the Boolean
Gröbner bases application area has widen drastically and nowadays there is also
a number of quite successful examples of using Gröbner bases for solving SAT
problems.

During our research we had developed [GZ08b, GZ08a, GZB10] Boolean involu-
tive algorithms based on Janet and Pommaret divisions and applied them to com-
putation of Boolean Gröbner bases. Our implementation of both divisions has
experimentally demonstrated computational superiority of the Pommaret division
implementation. This package BIBASIS is the result of our thorough research in
the field of Boolean Gröbner bases. BIBASIS implements the involutive algorithm
based on Pommaret division in a multivariate Boolean ring.

In section 2 the Boolean ring and its peculiarities are shortly introduced. In section
3 we briefly argue why the involutive algorithm and Pommaret division are good
for Boolean ring while the Buhberger’s algorithm is not. And finally in section
4 we give the full description of BIBASIS package capabilities and illustrate it by
examples.

20.5.2 Boolean Ring

Boolean ring perfectly goes with its name, it is a ring of Boolean functions of n
variables, i.e mappings from {0, 1}n to {0, 1}n. Considering these variables are
X := {x1, . . . , xn} and F2 is the finite field of two elements {0, 1}, Boolean ring
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can be regarded as the quotient ring

B [X] := F2[X] / < x21 + x1, . . . , x
2
n + xn > .

Multiplication in B [X] is idempotent and addition is nilpotent

∀ b ∈ B [X] : b2 = b , b+ b = 0.

Elements in B [X] are Boolean polynomials and can be represented as finite sums∑
j

∏
x∈Ωj⊆X

x

of Boolean monomials. Each monomial is a conjunction. If set Ω is empty, then
the corresponding monomial is the unity Boolean function 1. The sum of zero
monomials corresponds to zero polynomial, i.e. is zero Boolean function 0.

20.5.3 Pommaret Involutive Algorithm

Detailed description of involutive algorithm can found in [Ger05]. Here we note
that result of both involutive and Buhberger’s algorithms depend on chosen mono-
mial ordering. At that the ordering must be admissible, i.e.

m ̸= 1⇐⇒ m ≻ 1, m1 ≻ m2 ⇐⇒ m1m ≻ m2m ∀m,m1,m2.

But as one can easily check the second condition of admissibility does not hold for
any monomial ordering in Boolean ring:

x1 ≻ x2
∗x1−−−−→ x1 ∗ x1 ≻ x2 ∗ x2 −−→ x1 ≺ x1x2

Though B [X] is a principal ideal ring, boolean singleton {p} is not necessarily a
Gröbner basis of ideal < p >, for example:

x1, x2 ∈< x1x2 + x1 + x2 >⊂ B [x1, x2].

That the reason why one cannot apply the Buhberger’s algorithm directly in a
Boolean ring, using instead a ring F2[X] and the field binomials x21+x1, . . . , x

2
n+

xn.

The involutive algorithm based on Janet division has the same disadvantage unlike
the Pommaret division algorithm as shown in [GZ08b]. The Pommaret division
algorithm can be applied directly in a Boolean ring and admits effective data struc-
tures for monomial representation.
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20.5.4 BIBASIS Package

The package BIBASIS implements the Pommaret division algorithm in a Boolean
ring. The first step to using the package is to load it:

1: load_package bibasis;

The current version of the BIBASIS user interface consists only of 2 functions:
bibasis and bibasis_print_statistics.

The bibasis is the function that performs all the computation and has the fol-
lowing syntax:

bibasis( 〈initial_polynomial_list〉,〈variables_list〉,
〈monomial_ordering〉,〈reduce_to_groebner〉);

Input:

• 〈initial_polynomial_list〉 is the list of polynomials containing the known ba-
sis of initial Boolean ideal. All given polynomials are treated modulo 2. See
Example 1.

• 〈variables_list〉 is the list of independent variables in decreasing order.

• 〈monomial_ordering〉 is a chosen monomial ordering and the supported ones
are:

lex – pure lexicographical ordering;

deglex – degree lexicographic ordering;

degrevlex – degree reverse lexicographic.

See Examples 2–4 to check that Gröbner (as well as involutive) basis de-
pends on monomial ordering.

• 〈reduce_to_groebner〉 is a Boolean value, if it is t the output is the reduced
Boolean Gröbner basis, if nil, then the reduced Boolean Pommaret basis.
Examples 5,6 show distinctions between these two outputs.

Output:

• The list of polynomials which constitute the reduced Boolean Gröbner or
Pommaret basis.

The syntax of bibasis_print_statistics is simple:

bibasis_print_statistics();
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This function prints out a brief statistics for the last invocation of bibasis func-
tion. See Example 7.

20.5.5 Examples

Example 1:

1: load_package bibasis;
2: bibasis({x+2*y}, {x,y}, lex, t);
{x}

Example 2:

1: load_package bibasis;
2: variables :={x0,x1,x2,x3,x4}$
3: polynomials := {x0*x3+x1*x2,x2*x4+x0}$
4: bibasis(polynomials, variables, lex, t);
{x0 + x2*x4,x2*(x1 + x3*x4)}

Example 3:

1: load_package bibasis;
2: variables :={x0,x1,x2,x3,x4}$
3: polynomials := {x0*x3+x1*x2,x2*x4+x0}$
4: bibasis(polynomials, variables, deglex, t);
{x1*x2*(x3 + 1),
x1*(x0 + x2),
x0*(x2 + 1),
x0*x3 + x1*x2,
x0*(x4 + 1),
x2*x4 + x0}

Example 4:

1: load_package bibasis;
2: variables :={x0,x1,x2,x3,x4}$
3: polynomials := {x0*x3+x1*x2,x2*x4+x0}$
4: bibasis(polynomials, variables, degrevlex, t);
{x0*(x1 + x3),
x0*(x2 + 1),
x1*x2 + x0*x3,
x0*(x4 + 1),
x2*x4 + x0}
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Example 5:

1: load_package bibasis;
2: variables :={x,y,z}$
3: polinomials := {x, z}$
4: bibasis(polinomials, variables, degrevlex, t);
{x,z}

Example 6:

1: load_package bibasis;
2: variables :={x,y,z}$
3: polinomials := {x, z}$
4: bibasis(polinomials, variables, degrevlex, nil);
{x,z,y*z}

Example 7:

1: load_package bibasis;
2: variables :={u0,u1,u2,u3,u4,u5,u6,u7,u8,u9}$
3: polinomials := {u0*u1+u1*u2+u1+u2*u3+u3*u4+u4*u5
3: +u5*u6+u6*u7+u7*u8+u8*u9,
3: u0*u2+u1+u1*u3+u2*u4+u2+u3*u5
3: +u4*u6+u5*u7+u6*u8+u7*u9,
3: u0*u3+u1*u2+u1*u4+u2*u5+u3*u6
3: +u3+u4*u7+u5*u8+u6*u9,
3: u0*u4+u1*u3+u1*u5+u2+u2*u6+u3*u7
3: +u4*u8+u4+u5*u9,
3: u0*u5+u1*u4+u1*u6+u2*u3+u2*u7
3: +u3*u8+u4*u9+u5,
3: u0*u6+u1*u5+u1*u7+u2*u4+u2*u8
3: +u3+u3*u9+u6,
3: u0*u7+u1*u6+u1*u8+u2*u5+u2*u9
3: +u3*u4+u7,
3: u0*u8+u1*u7+u1*u9+u2*u6+u3*u5+u4+u8,
3: u0+u1+u2+u3+u4+u5+u6+u7+u8+u9+1}$
4: bibasis(polinomials, variables, degrevlex, t);
{u3*u6,
u3*u7,
u7*(u6 + 1),
u3*u8,
u6*u8 + u6 + u7,
u7*u8,
u3*(u9 + 1),
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u6*u9 + u7,
u7*(u9 + 1),
u8*u9 + u6 + u7 + u8,
u0 + u3 + u6 + u9 + 1,
u1 + u7,
u2 + u7 + u8,
u4 + u6 + u8,
u5 + u6 + u7 + u8}

5: bibasis_print_statistics();
Variables order = u0 > u1 > u2 > u3 > u4

> u5 > u6 > u7 > u8 > u9
Normal forms calculated = 216

Non-zero normal forms = 85
Reductions made = 4488

Time: 270 ms
GC time: 0 ms
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20.6 BOOLEAN: A Package for Boolean Algebra

This package supports the computation with boolean expressions in the proposi-
tional calculus. The data objects are composed from algebraic expressions con-
nected by the infix boolean operators and, or, implies, equiv, and the unary prefix
operator not. Boolean allows you to simplify expressions built from these oper-
ators, and to test properties like equivalence, subset property etc.

Author: Herbert Melenk

20.6.1 Introduction

The package BOOLEAN supports the computation with boolean expressions in
the propositional calculus. The data objects are composed from algebraic expres-
sions (“atomic parts”, “leafs”) connected by the infix boolean operators and, or,
implies, equiv, and the unary prefix operator not. BOOLEAN allows you to
simplify expressions built from these operators, and to test properties like equiva-
lence, subset property etc. Also the reduction of a boolean expression by a partial
evaluation and combination of its atomic parts is supported.

20.6.2 Entering boolean expressions

In order to distinguish boolean data expressions from boolean expressions in the
REDUCE programming language (e.g. in an if statement), each expression must
be tagged explicitly by an operator boolean. Otherwise the boolean operators
are not accepted in the REDUCE algebraic mode input. The first argument of
boolean can be any boolean expression, which may contain references to other
boolean values.

boolean (a and b or c);
q := boolean(a and b implies c);
boolean(q or not c);

Brackets are used to override the operator precedence as usual. The leafs or atoms
of a boolean expression are those parts which do not contain a leading boolean
operator. These are considered as constants during the boolean evaluation. There
are two pre-defined values:

• true, t or 1

• false, nil or 0

These represent the boolean constants. In a result form they are used only as 1 and
0.
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By default, a boolean expression is converted to a disjunctive normal form, that is
a form where terms are connected by or on the top level and each term is set of
leaf expressions, eventually preceded by not and connected by and. An operators
or or and is omitted if it would have only one single operand. The result of the
transformation is again an expression with leading operator boolean such that the
boolean expressions remain separated from other algebraic data. Only the boolean
constants 0 and 1 are returned untagged.

On output, the operators and and or are represented as /\ and \/, respectively.

boolean(true and false);
-> 0

boolean(a or not(b and c));
-> boolean(not(b) \/ not(c) \/ a)

boolean(a equiv not c);
-> boolean(not(a)/\c \/ a/\not(c))

20.6.3 Normal forms

The disjunctive normal form is used by default. It represents the “natural” view
and allows us to represent any form free or parentheses. Alternatively a conjunc-
tive normal form can be selected as simplification target, which is a form with
leading operator and. To produce that form add the keyword and as an additional
argument to a call of boolean.

boolean (a or b implies c);
->

boolean(not(a)/\not(b) \/ c)

boolean (a or b implies c, and);
->

boolean((not(a) \/ c)/\(not(b) \/ c))

Usually the result is a fully reduced disjunctive or conjuntive normal form, where
all redundant elements have been eliminated following the rules

a ∧ b ∨ ¬a ∧ b←→ b

a ∨ b ∧ ¬a ∨ b←→ b

Internally the full normal forms are computed as intermediate result; in these forms
each term contains all leaf expressions, each one exactly once. This unreduced
form is returned when you set the additional keyword full:

boolean (a or b implies c, full);
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->
boolean(a/\b/\c \/ a/\not(b)/\c \/ not(a)/\b/\c

\/ not(a)/\not(b)/\c

\/ not(a)/\not(b)/\not(c))

The keywords full and and may be combined.

20.6.4 Evaluation of a boolean expression

If the leafs of the boolean expression are algebraic expressions which may eval-
uate to logical values because the environment has changed (e.g. variables have
been bound), you can re–investigate the expression using the operator testbool
with the boolean expression as argument. This operator tries to evaluate all leaf
expressions in REDUCE boolean style. As many terms as possible are replaced
by their boolean values; the others remain unchanged. The resulting expression is
contracted to a minimal form. The result 1 (= true) or 0 (=false) signals that the
complete expression could be evaluated.

In the following example the leafs are built as numeric greater test. For using > in
the expressions the greater sign must be declared operator first. The error messages
are meaningless.

operator >;
fm:=boolean(x>v or not (u>v));

->
fm := boolean(not(u>v) \/ x>v)

v:=10$

testbool fm;

***** u - 10 invalid as number

***** x - 10 invalid as number

->
boolean(not(u>10) \/ x>10)

x:=3$
testbool fm;

***** u - 10 invalid as number
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->
boolean(not(u>10))

x:=17$

testbool fm;

***** u - 10 invalid as number

->
1
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20.7 CALI: A Package for Computational Commutative
Algebra

Author: Hans-Gert Gräbe

Key words: affine and projective monomial curves, affine and projective sets of
points, analytic spread, associated graded ring, blowup, border bases, construc-
tive commutative algebra, dual bases, elimination, equidimensional part, extended
Gröbner factorizer, free resolution, Gröbner algorithms for ideals and module,
Gröbner factorizer, ideal and module operations, independent sets, intersections,
lazy standard bases, local free resolutions, local standard bases, minimal gen-
erators, minors, normal forms, pfaffians, polynomial maps, primary decomposi-
tion, quotients, symbolic powers, symmetric algebra, triangular systems, weighted
Hilbert series, primality test, radical, unmixed radical.

20.7.1 Introduction

This package contains algorithms for computations in commutative algebra closely
related to the Gröbner algorithm for ideals and modules. Its heart is a new imple-
mentation of the Gröbner algorithm1 that allows the computation of syzygies, too.
This implementation is also applicable to submodules of free modules with gener-
ators represented as rows of a matrix.

Moreover CALI contains facilities for local computations, using a modern imple-
mentation of Mora’s standard basis algorithm, see [MPT89] and [Grä94b], that
works for arbitrary term orders. The full analogy between modules over the lo-
cal ring k[xv : v ∈ H]m and homogeneous (in fact H-local) modules over
k[xv : v ∈ H] is reflected through the switch . Turn it on (Gröbner basis, the
default) or off (local standard basis) to choose appropriate algorithms automati-
cally. In v. 2.2 we present an unified approach to both cases, using reduction with
bounded ecart for non Noetherian term orders, see [Grä95a] for details. This allows
to have a common driver for the Gröbner algorithm in both cases.

CALI extends also the restricted term order facilities of the GROEBNER package,
defining term orders by degree vector lists, and the rigid implementation of the
sugar idea, by a more flexible ecart vector, in particular useful for local computa-
tions, see [Grä94b].

The package was designed mainly as a symbolic mode programming environment
extending the build-in facilities of REDUCE for the computational approach to
problems arising naturally in commutative algebra. An algebraic mode interface
accesses (in a more rigid frame) all important features implemented symbolically

1The data representation even for polynomials is different from that given in the GROEBNER

package distributed with REDUCE (and rests on ideas in the DIPOLY package).
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and thus should be favored for short sample computations.

On the other hand, tedious computations are strongly recommended to be done
symbolically since this allows considerably more flexibility and avoids unneces-
sary translations of intermediate results from CALI’s internal data representation
to the algebraic mode and vice versa. Moreover, one can easily extend the package
with new symbolic mode scripts, or do more difficult interactive computations. For
all these purposes the symbolic mode interface offers substantially more facilities
than the algebraic one.

For a detailed description of special symbolic mode procedures one should consult
the source code and the comments therein. In this manual we can give only a brief
description of the main ideas incorporated into the package CALI. We concentrate
on the data structure design and the description of the more advanced algorithms.
For sample computations from several fields of commutative algebra the reader
may consult also the cali.tst file.

As main topics CALI contains facilities for

• defining rings, ideals and modules,

• computing Gröbner bases and local standard bases,

• computing syzygies, resolutions and (graded) Betti numbers,

• computing (now also weighted) Hilbert series, multiplicities, independent
sets, and dimensions,

• computing normal forms and representations,

• computing sums, products, intersections, quotients, stable quotients, elimi-
nation ideals etc.,

• primality tests, computation of radicals, unmixed radicals, equidimensional
parts, primary decompositions etc. of ideals and modules,

• advanced applications of Gröbner bases (blowup, associated graded ring,
analytic spread, symmetric algebra, monomial curves etc.),

• applications of linear algebra techniques to zero dimensional ideals, as e.g.
the FGLM change of term orders, border bases and affine and projective
ideals of sets of points,

• splitting polynomial systems of equations mixing factorization and the Gröb-
ner algorithm, triangular systems, and different versions of the extended
Gröbner factorizer.
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Below we will use freely without further explanation the notions common for text
books and papers about constructive commutative algebra, assuming the reader to
be familiar with the corresponding ideas and concepts. For further references see
e.g. the text books [BWK93], [CLO92] and [Mis93] or the survey papers [Buc85],
[Buc88] and [Rob89].

CALI should be loaded via

load_package cali;

Upon successful loading CALI responds with a message containing the version
number and the last update of the distribution.

Feel free to contact me by email if You have problems to get CALI started.
Also comments, hints, bug reports etc. are welcome.

CALI’s Language Concept

From a certain point of view one of the major disadvantage of the current RLISP
(and the underlying Lisp) language is the fact that it supports modularity and data
encapsulation only in a rudimentary way. Since all parts of code loaded into a
session are visible all the time, name conflicts between different packages may
occur, will occur (even not issuing a warning message), and are hard to prevent,
since packages are developed (and are still developing) by different research groups
at different places and different time.

A (yet rudimentary) concept of REDUCE packages and modules indicates the di-
rection into what the REDUCE designers are looking for a solution for this general
problem.

CALI (2.0 and higher) follows a name concept for internal procedures to mimick
data encapsulation at a semantical level. We hope this way on the one hand to
resolve the conflicts described above at least for the internal part of CALI and on
the other hand to anticipate a desirable future and already foregoing development
of REDUCE towards a true modularity.

The package CALI is divided into several modules, each of them introducing either
a single new data type together with basic facilities, constructors, and selectors or
a collection of algorithms subject to a common problem. Each module contains in-
ternal procedures, conceptually hidden by this module, local procedures, designed
for a CALI wide use, and global procedures, exported by CALI into the general
(algebraic or symbolic) environment of REDUCE. A header module cali contains
all (fluid) global variables and switches defined by the package CALI.

Along these lines the CALI procedures available in symbolic mode are divided into
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three types with the following naming convention:

module!=procedure
internal to the given module.

module_procedure
exported by the given module into the local CALI environment.

procedure!*
a global procedure usually having a semantically equivalent procedure (pos-
sibly with another parameter list) without trailing asterisk in algebraic mode.

There are also symbolic mode equivalents without trailing asterisk, if the algebraic
procedure is not a psopfn, but a symbolic operator. They transfer data to CALI’s
internal structure and call the corresponding procedure with trailing asterisk. CALI

2.2 distinguishes between algebraic and symbolic calls of such a procedure. In
symbolic mode such a procedure calls the corresponding procedure with trailing
asterisk directly without data transfer.

CALI 2.2 follows also a more concise concept for global variables. There are three
types of them:

True fluid global variables,
that are part of the current data structure, as e.g. the current base ring and the
degree vector. They are often locally rebound to be restored after interrupts.

Global variables, stored on the property list of the package name cali,
that reflect the state of the computational model as e.g. the trace level, the
output print level or the chosen version of the Gröbner basis algorithm. There
are several such parameters in the module dualbases to serve the common
dual basis driver with information for different applications.

Switches,
that allow to choose different branches of algorithms. Note that this con-
cept interferes with the second one. Different versions of algorithms, that
apply different functions in a common driver, are not implemented through
switches.

20.7.2 The Computational Model

This section gives a short introduction into the data type design of CALI at dif-
ferent levels. First (§1 and 2) we describe CALI’s way of algorithmic translation
of the abstract algebraic objects ring of polynomials, ideal and (finitely generated)
module. Then (§3 and 4) we describe the algebraic mode interface of CALI and
the switches and global variables to drive a session. In the next chapter we give a



397

more detailed overview of the basic (symbolic mode) data structures involved with
CALI. We refer to the appendix for a short summary of the commands available in
algebraic mode.

The Base Ring

A polynomial ring consists in CALI of the following data:

a list of variable names: All variables not occuring in the list of ring names are
treated as parameters. Computations are executed denominatorfree, but the
results are valid only over the corresponding parameter field extension.

a term order and a term order tag: They describe the way in which the terms in
each polynomial (and polynomial vector) are ordered.

an ecart vector: A list of positive integers corresponding to the variable names.

A base ring may be defined (in algebraic mode) through the command

setring 〈ring〉

with 〈ring〉 ::= { vars, tord, tag [, ecart ] } resp.

setring(vars, tord, tag [,ecart])

This sets the global (symbolic) variable cali!=basering. Here vars is the
list of variable names, tord a (possibly empty) list of weight lists, the degree
vectors, and tag the tag LEX or REVLEX. Optionally one can supply ecart, a
list of positive integers of the same length as vars, to set an ecart vector different
from the default one (see below).

The degree vectors must have the same length as vars. If (w1 . . . wk) is the list
of degree vectors then

xa < xb :⇔ either wj(x
a) = wj(x

b) for j < i and

wi(x
a) < wi(x

b)

or wj(x
a) = wj(x

b) for all j and

xa <lex x
b resp. xa <revlex x

b

Here <lex resp. <revlex denote the lexicographic (tag=LEX) resp. reverse lexi-
cographic (tag=REVLEX) term orders2 with respect to the variable order given in

2The definition of the revlex term order changed for version 2.2.
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vars, i.e.

xa < xb :⇔ ∃ j ∀ i < j : ai = bi and aj < bj (lex.)

or
xa < xb :⇔ ∃ j ∀ i > j : ai = bi and aj > bj (revlex.)

Every term order can be represented in such a way, see [MR88].

During the ring setting the term order will be checked to be Noetherian (i.e. to fulfill
the descending chain condition) provided the switch is on (the default). The same
applies turning noetherian on: If the term order of the underlying base ring isn’t
Noetherian the switch can’t be turned over. Hence, starting from a non Noetherian
term order, one should define first a new ring and then turn the switch on.

Useful term orders can be defined by the procedures

degreeorder 〈vars〉

that returns tord = {{1, . . . , 1}}.

localorder 〈vars〉

that returns tord = {{−1, . . . ,−1}} (a non Noetherian term order for com-
putations in local rings).

eliminationorder( 〈vars〉,〈elimvars〉)

that returns a term order for elimination of the variables in 〈elimvars〉, a
subset of all 〈vars〉. It’s recommended to combine it with the tag revlex.

blockorder( 〈vars〉,〈vars,integerlist〉)

that returns the list of degree vectors for the block order with block lengths
given in the 〈integerlist〉. Note that these numbers should sum up to the
length of the variable list supplied as the first argument.

Examples:

vars:={x,y,z};
tord:=degreeorder vars;

% Returns {{1,1,1}}.

setring(vars,tord,lex);
% GRADLEX in the groebner package.

% or

setring({a,b,c,d},{},lex);
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% LEX in the groebner package.
% or

vars:={a,b,c,x,y,z};
tord:=eliminationorder(vars,{x,y,z});
tord:=reverse blockorder(vars,{3,3});

% Return both {{0,0,0,1,1,1},{1,1,1,0,0,0}}.
setring(vars,tord,revlex);

The base ring is initialized with

{{t,x,y,z},{{1,1,1,1}},revlex,{1,1,1,1}}

i.e. S = k[t, x, y, z] supplied with the degreewise reverse lexicographic term order.

getring 〈m〉

returns the ring attached to the object with the identifier 〈m〉. E.g.,

setring getring 〈m〉

(re)sets the base ring to the base ring of the formerly defined object (ideal or
module) 〈m〉.

getring()

returns the currently active base ring.

CALI defines also an ecart vector, attaching to each variable a positive weight with
respect to that homogenizations and related algorithms are executed. It may be set
optionally by the user during the setring command. (Default: If the term order is a
(positive) degree order then the ecart is the first degree vector, otherwise each ecart
equals 1).

The ecart vector is used in several places for efficiency reason (Gröbner basis com-
putation with the sugar strategy) or for termination (local standard bases). If the
input is homogeneous the ecart vector should reflect this homogeneity rather than
the first degree vector to obtain the best possible performance. For a discussion of
local computations with encoupled ecart vector see [Grä94b]. In general the ecart
vector is recommended to be chosen in such a way that the input examples become
close to be homogeneous. Homogenizations and Hilbert series are computed with
respect to this ecart vector. getecart() returns the ecart vector currently set.



400 CHAPTER 20. USER CONTRIBUTED PACKAGES

Ideals and Modules

If S = k[xv, v ∈ H] is a polynomial ring, a matrix M of size r × c defines a map

f : Sr −→ Sc

by the following rule

f(v) := v ·M for v ∈ Sr.

There are two modules, connected with such a map, im f , the submodule of Sc

generated by the rows of M , and coker f (= Sc/im f). Conceptually we will
identify M with im f for the basic algebra, and with coker f for more advanced
topics of commutative algebra (Hilbert series, dimension, resolution etc.) follow-
ing widely accepted conventions.

With respect to a fixed basis {e1, . . . , ec} one can define module term orders on Sc,
Gröbner bases of submodules of Sc etc. They generalize the corresponding notions
for ideal bases. See [Eis95] or [MM86] for a detailed introduction to this area of
computational commutative algebra. This allows to define joint facilities for both
ideals and submodules of free modules. Moreover computing syzygies the latter
come in in a natural way.

CALI handles ideal and module bases in a unique way representing them as rows
of a dpmat (distributive polynomial matrix). It attaches to each unit vector ei a
monomial xai , the i-th column degree and represents the rows of a dpmat M as
lists of module terms xaei, sorted with respect to a module term order, that may be
roughly3 described as

xaei < xbej :⇔ either xaxai < xbxaj in S

or xaxai = xbxaj

and
i < j (lex.) resp. i > j (revlex.)

Every dpmat M has its own column degrees (no default !). They are managed
through a global (symbolic) variable cali!=degrees.

getdegrees 〈m〉

returns the column degrees of the object with identifier 〈m〉.

getdegrees()

returns the current setting of cali!=degrees.
3The correct definition is even more difficult.
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setdegrees 〈list of monomials〉

sets cali!=degrees correspondingly. Use this command before ex-
ecuting setmodule to give a dpmat prescribed column degrees since
cali!=degrees has no default value and changes during computations. A good
guess is to supply the empty list (i.e. all column degrees are equal to x0). Be
careful defining modules without prescribed column degrees.

To distinguish between ideals and modules the former are represented as a dpmat
with c = 0 (and hence without column degrees). If I ⊂ S is such an ideal one has
to distinguish between the ideal I (with c = 0, allowing special ideal operations as
e.g. ideal multiplication) and the submodule I of the free one dimensional module
S1 (with c = 1, allowing matrix operations as e.g. transposition, matrix multiplica-
tion etc.). ideal2mat converts an (algebraic) list of polynomials into an (algebraic)
matrix column whereas mat2list collects all matrix entries into a list.

The Algebraic Mode Interface

Corresponding to CALI’s general philosophy explained in the introduction the al-
gebraic mode interface translates algebraic input into CALI’s internal data repre-
sentation, calls the corresponding symbolic functions, and retranslates the result
back into algebraic mode. Since Gröbner basis computations may be very tedious
even on small examples, one should find a well balance between the storage of
results computed earlier and the unavoidable time overhead and memory request
associated with the management of these results.

Therefore CALI distinguishes between free and bounded identifiers. Free iden-
tifiers stand only for their value whereas to bounded identifiers several internal
information is attached to their property list for later use.

After the initialization of the base ring bounded identifiers for ideals or modules
should be declared via

setmodule(〈name〉,〈matrix value〉)

resp.

setideal(〈name〉,〈list of polynomials〉)

This way the corresponding internal representation (as dpmat) is attached to
〈name〉 as the property basis, the prefix form as its value and the current base
ring as the property ring.

Performing any algebraic operation on objects defined this way their ring will be
compared with the current base ring (including the term order). If they are different
an error message occurs. If m is a valid name, after resetting the base ring
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setmodule(m1,m)

reevaluates m with respect to the new base ring (since the value of m is its prefix
form) and assigns the reordered dpmat to m1 clearing all information previously
computed for m1 (m1 and m may coincide).

All computations are performed with respect to the ring S = k[xv ∈ vars] over
the field k. Nevertheless by efficiency reasons base coefficients are represented in
a denominator free way as standard forms. Hence the computational properties of
the base coefficient domain depend on the dmode and also on auxiliary variables,
contained in the expressions, but not in the variable list. They are assumed to be
parameters.

Best performance will be obtained with integer or modular domain modes, but one
can also try Algebraic numbers as coefficients as e.g. generated by sqrt or the
ARNUM package. To avoid an unnecessary slow-down connected with the man-
agement of simplified algebraic expressions there is a switch hardzerotest (default:
off) that may be turned on to force an additional simplification of algebraic coeffi-
cients during each zero test. It should be turned on only for domain modes without
canonical representations as e.g. mixtures of arnums and square roots. We remind
the general zero decision problem for such domains.

Alternatively, CALI offers the possibility to define a set of algebraic substitution
rules that will affect CALI’s base coefficient arithmetic only.

setrules 〈rule list〉

transfers the (algebraic) 〈rule list〉 into the internal representation stored at
the cali value rules.

In particular, setrules {} clears the rules previously set.

getrules()

returns the internal CALI rules list in algebraic form.

We recommend to use setrules for computations with algebraic numbers since
they are better adapted to the data structure of CALI than the algebraic numbers
provided by the ARNUM package. Note, that due to the zero decision problem
complicated setrules based computations may produce wrong results if base
coefficient’s pseudo division is involved (as e.g. with dp_pseudodivmod). In
this case we recommend to enlarge the variable set and add the defining equations
of the algebraic numbers to the equations of the problem4.

The standard domain (Integer) doesn’t allow denominators for input. setideal
clears automatically the common denominator of each input expression whereas a

4A qring facility for the computation over quotient rings will be incorporated into future versions.
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polynomial matrix with true rational coefficients will be rejected by setmodule.

One can save/initialize ideal and module bases together with their accompanying
data (base ring, degrees) to/from a file:

savemat(〈m〉,〈name〉)

resp.

initmat 〈name〉

execute the file transfer from/to disk files with the specified file 〈name〉. e.g.

savemat(m,"myfile");

saves the base ring and the ideal basis of m to the file “myfile” whereas

setideal(m,initmat "myfile");

sets the current base ring (via a call to setring) to the base ring of m saved at
“myfile” and then recovers the basis of m from the same file.

Switches and Global Variables

There are several switches, (fluid) global variables, a trace facility, and global pa-
rameters on the property list of the package name cali to control CALI’s compu-
tations.

Switches

bcsimp (Default:on)
On: Cancel out gcd’s of base coefficients.

detectunits (Default: off)
On: replace polynomials of the form ⟨monomial⟩ ∗ ⟨polynomial unit⟩ by
⟨monomial⟩ during interreductions and standard basis computations.

Affects only local computations.

factorprimes (Default: on)
On: Invoke the Gröbner factorizer during computation of isolated primes.
Note that REDUCE lacks a modular multivariate factorizer, hence for mod-
ular prime decomposition computations this switch has to be turned off.
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factorunits (Default: off)
On: factor polynomials and remove polynomial unit factors during interre-
ductions and standard basis computations.

Affects only local computations.

hardzerotest (Default: off)
On: try an additional algebraic simplification of base coefficients at each
base coefficient’s zero test. Useful only for advanced base coefficient do-
mains without canonical REDUCE representation. May slow down the com-
putation drastically.

lexefgb (Default: off) On: Use the pure lexicographic term order and zerosolve
during reduction to dimension zero in the extended Gröbner factorizer. This
is a single, but possibly hard task compared to the degrevlex invocation of ze-
rosolve1. See [Grä95b] for a discussion of different zero dimensional solver
strategies.

Noetherian (Default: on)
On: choose algorithms for Noetherian term orders.

Off: choose algorithms for local term orders.

red_total (Default: on)
On: compute total normal forms, i.e. apply reduction (Noetherian term or-
ders) or reduction with bounded ecart (non Noetherian term orders to tail
terms of polynomials, too.

Off: Do only top reduction.

Tracing

Different to v. 2.1 now intermediate output during the computations is controlled
by the value of the trace and printterms entries on the property list of the
package name cali. The former value controls the intensity of the intermedi-
ate output (Default: 0, no tracing), the latter the number of terms printed in such
intermediate polynomials (Default: all).

setcalitrace 〈n〉

Changes the trace intensity. Set n = 2 for a sparse tracing (a dot for each
reduction step). Other good suggestions are the values 30 or 40 for tracing
the Gröbner algorithm or n > 70 for tracing the normal form algorithm. The
higher n the more intermediate information will be given.

setcaliprintterms 〈n〉
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Sets the number of terms that are printed in intermediate polynomials. Note
that this does not affect the output of whole dpmats. The output of polynom-
ials with more than n terms (n > 0) breaks off and continues with ellipses.

clearcaliprintterms()

Clears the printterms value forcing full intermediate output (according
to the current trace level).

Global Variables

cali!=basering The currently active base ring initialized e.g. by setring.

cali!=degrees The currently active module component degrees initialized
e.g. by setdegrees.

cali!=monset A list of variable names considered as non zero divisors during
Gröbner basis computations initialized e.g. by setmonset. Useful e.g. for
binomial ideals defining monomial varieties or other prime ideals.

Entries on the Property List of cali

This approach is new for v. 2.2. Information concerning the state of the computa-
tional model as e.g. trace intensity, base coefficient rules, or algorithm versions are
stored as values on the property list of the identifier (package name) cali. This
concerns

trace and printterms

see above.

efgb

Changed by the switch lexefgb.

groeb!=rf

Reduction function invoked during the Gröbner algorithm. It can be changed
with gbtestversion < n > (n = 1, 2, 3, default is 1).

hf!=ff

Variant for the computation of the Hilbert series numerator. It can be
changed with hftestversion < n > (n = 1, 2, default is 1).

rules

Algebraic “replaceby” rules introduced to CALI with the setrules com-
mand.
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evlf, varlessp, sublist, varnames, oldborderbasis, oldring,
oldbasis

see module lf , implementing the dual bases approach.

20.7.3 Basic Data Structures

In the following we describe the data structure layers underlying the dpmat rep-
resentation in CALI and some important (symbolic) procedures to handle them.
We refer to the source code and the comments therein for a more complete survey
about the procedures available for different data types.

The Coefficient Domain

Base coefficients as implemented in the module bcsf are standard forms in the
variables outside the variable list of the current ring. All computations are executed
"denominator free" over the corresponding quotient field, i.e. gcd’s are canceled out
without request. To avoid this set the bcsimp off.5 In the given implementation
we use the s.f. procedure qremf for effective divisibility test. We had some trouble
with it under on factor.

Additionally it is possible to supply the parameters occuring as base coefficients
with a (global) set of algebraic rules.6

setrules!* 〈r〉

converts an algebraic mode rules list r as e.g. used in WHERE statements
into the internal CALI format.

The Base Ring

The base ring is defined by its name list, the degree matrix (a list of lists
of integers), the ring tag (LEX or REVLEX), and the ecart. The name list
contains a phantom name cali!=mk for the module component at place 0.

The module ring exports among others the following selectors: ring_names,
ring_degrees, ring_tag, ring_ecart, the symbolic mode test func-
tion ring_isnoetherian and the transfer procedures from/to an (appropri-
ate, printable by mathprint) algebraic prefix form ring_from_a (including
extensive tests of the supplied parameters for consistency) and ring_2a.

5This induces a rapid base coefficient’s growth and doesn’t yield Z-Gröbner bases in the sense of
[GTZ88] since the S-pair criteria are different.

6This is different from the let rule mechanism since they must be present in symbolic mode.
Hence for a simultaneous application of the same rules in algebraic mode outside CALI they must
additionally be declared in the usual way.
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The following procedures allow to define a base ring:

ring_define(〈name list〉, 〈degree matrix〉, 〈ring tag〉, 〈ecart〉

combines the given parameters to a ring.

setring!* 〈ring〉

sets cali!=basering and checks for consistency with the Noetherian.
It also sets through setkorder the current variable list as main vari-
ables. It is strongly recommended to use setring!* ... instead of
cali!=basering := ....

The procedures degreeorder!* , localorder!*, eliminationorder!*,
and blockorder!* define term order matrices in full analogy to algebraic mode.

There are three ring constructors for special purposes:

ring_sum(〈a〉,〈b〉)

returns a ring, that is constructed in the following way: Its variable list is
the union of the (disjoint) lists of the variables of the rings 〈a〉 and 〈b〉 (in
this order) whereas the degree list is the union of the (appropriately shifted)
degree lists of 〈b〉 and 〈a〉 (in this order). The ring tag is that of 〈a〉. Hence
it returns (essentially) the ring b

⊕
a if b has a degree part (e.g. useful for

elimination problems, introducing “big” new variables) and the ring a
⊕
b

if b has no degree part (introducing “small” new variables).

ring_rlp(〈r〉,〈u〉)

〈u〉 is a subset of the names of the ring 〈r〉. Returns the ring 〈r〉, but with a
term order “first degrevlex on 〈u〉, then the order on 〈r〉”.

ring_lp(〈r〉,〈u〉)

As ring_rlp, but with a term order “first lex on 〈u〉, then the order on
〈r〉”.

Example:

vars:=’(x y z)
setring!*
ring_define(vars,degreeorder!* vars,’lex,’(1 1 1));

% GRADLEX in the groebner package.
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Monomials

The current version uses a place-driven exponent representation closely related to
a vector model. This model handles term orders on S and module term orders
on Sc in a unique way. The zero component of the exponent list of a monomial
contains its module component (> 0) or 0 (ring element). All computations are
executed with respect to a current ring (cali!=basering) and current (mono-
mial) weights of the free generators ei, i = 1, . . . , c, of Sc (cali!=degrees).
For efficiency reasons every monomial has a precomputed degree part that should
be reevaluated if cali!=basering (i.e. the term order) or cali!=degrees
were changed. cali!=degrees contains the list of column degrees of the cur-
rent module as an assoc. list and will be set automatically by (almost) all dpmat
procedure calls. Since monomial operations use the degree list that was precom-
puted with respect to fixed column degrees (and base ring)

watch carefully for cali!=degrees programming at the mono-
mial or dpoly level !

As procedures there are selectors for the module component, the exponent and
the degree parts, comparison procedures, procedures for the management of the
module component and the degree vector, monomial arithmetic, transfer from/to
prefix form, and more special tools.

Polynomials and Polynomial Vectors

CALI uses a distributive representation as a list of terms for both polynomials and
polynomial vectors, where a term is a dotted pair

(〈monomial〉 . 〈base coefficient〉)

The ecart of a polynomial (vector) f =
∑
ti with (module) terms ti is defined as

max(ec(ti))− ec(lt(ti)),

see [Grä94b]. Here ec(ti) denotes the ecart of the term ti, i.e. the scalar product of
the exponent vector of ti (including the monomial weight of the module generator)
with the ecart vector of the current base ring.

As procedures there are selectors, dpoly arithmetic including the management of
the module component, procedures for reordering (and reevaluating) polynomials
wrt. new term order degrees, for extracting common base coefficient or monomial
factors, for transfer from/to prefix form and for homogenization and dehomoge-
nization (wrt. the current ecart vector).

Two advanced procedures use ideal theory ingredients:
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dp_pseudodivmod(〈g〉,〈f 〉)

returns a dpoly list {q, r, z} such that z · g = q · f + r and z is a dpoly unit
(i.e. a scalar for Noetherian term orders). For non Noetherian term orders
the necessary modifications are described in [Grä95a].

g, f and r belong to the same free module or ideal.

dpgcd(〈a〉,〈b〉)

computes the gcd of two dpolys a and b by the syzygy method: The
syzygy module of {a, b} is generated by a single element [−b0 a0] with
a = ga0, b = gb0, where g is the gcd of a and b. Since it uses dpoly pseudo-
division it may work not properly with setrules.

Base Lists

Ideal bases are one of the main ingredients for dpmats. They are represented as
lists of base elements and contain together with each dpoly entry the following
information:

• a number (the row number of the polynomial vector in the corresponding
dpmat).

• the dpoly, its ecart (as the main sort criterion), and length.

• a representation part, that may contain a representation of the given dpoly in
terms of a certain fixed basis (default: empty).

The representation part is managed during normal form computations and other
row arithmetic of dpmats appropriately with the following procedures:

bas_setrelations 〈b〉

sets the relation part of the base element i in the base list 〈b〉 to ei.

bas_removerelations 〈b〉

removes all relations, i.e. replaces them with the zero polynomial vector.

bas_getrelations 〈b〉

gets the relation part of 〈b〉 as a separate base list.

Further there are procedures for selection and construction of base elements and for
the manipulation of lists of base elements as e.g. sorting, renumbering, reordering,
simplification, deleting zero base elements, transfer from/to prefix form, homoge-
nization and dehomogenization.



410 CHAPTER 20. USER CONTRIBUTED PACKAGES

Dpoly Matrices

Ideals and matrices, represented as dpmats, are the central data type of the CALI

package, as already explained above. Every dpmat m combines the following in-
formation:

• its size (dpmat_rows m,dpmat_cols m),

• its base list (dpmat_list m) and

• its column degrees as an assoc. list of monomials (dpmat_coldegs m).
If this list is empty, all degrees are assumed to be equal to x0.

• New in v. 2.2 there is a gb-tag (dpmat_gbtag m), indicating that the given
base list is already a Gröbner basis (under the given term order).

The module dpmat contains selectors, constructors, and the algorithms for the basic
management of this data structure as e.g. file transfer, transfer from/to algebraic
prefix forms, reordering, simplification, extracting row degrees and leading terms,
dpmat matrix arithmetic, homogenization and dehomogenization.

The modules matop and quot collect more advanced procedures for the algebraic
management of dpmats.

Extending the REDUCE Matrix Package

In v. 2.2 minors, Jacobian matrix, and Pfaffians are available for general REDUCE
matrices. They are collected in the module calimat and allow to define procedures
in more generality, especially allowing variable exponents in polynomial expres-
sions. Such a generalization is especially useful for the investigation of whole
classes of examples that may be obtained from a generic one by specialization. In
the following 〈m〉 is a matrix given in algebraic prefix form.

matjac(〈m〉,〈l〉)

returns the Jacobian matrix of the ideal 〈m〉 (given as an algebraic mode list)
with respect to the variable list 〈l〉.

minors(〈m〉,〈k〉)

returns the matrix of k-minors of the matrix m.

ideal_of_minors(〈m〉,〈k〉)

returns the ideal of the k-minors of the matrix m.

pfaffian 〈m〉

returns the pfaffian of a skewsymmetric matrix m.
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ideal_of_pfaffians(〈m〉,〈k〉)

returns the ideal of the 2k-pfaffians of the skewsymmetric matrix m.

random_linear_form(〈vars〉,〈bound〉)

returns a random linear form in algebraic prefix form in the supplied vari-
ables vars with integer coefficients bounded by the supplied bound.

singular_locus!*(〈m〉,〈c〉)

returns the singular locus of m (as dpmat). m must be an ideal of codimen-
sion c given as a list of polynomials in prefix form. singular_locus
computes the ideal generated by the corresponding Jacobian and m itself.

20.7.4 About the Algorithms Implemented in CALI

Below we give a short explanation of the main algorithmic ideas of CALI and the
way they are implemented and may be accessed (symbolically).

Normal Form Algorithms

For v. 2.2 we completely revised the implementation of normal form algorithms
due to the insight obtained from our investigations of normal form procedures
for local term orders in [Grä95a] and [Grä94b]. It allows a common handling
of Noetherian and non Noetherian term orders already on this level thus making
superfluous the former duplication of reduction procedures in the modules red and
mora as in v. 2.1.

Normal form algorithms reduce polynomials (or polynomial vectors) with respect
to a given finite set of generators of an ideal or module. The result is not unique ex-
cept for a total normal form with respect to a Gröbner basis. Furthermore different
reduction strategies may yield significant differences in computing time.

CALI reduces by first matching, usually keeping base lists sorted with respect to
the sort predicate red_better. In v. 2.2 we sort solely by the dpoly length, since
the introduction of red_TopRedBE, i.e. reduction with bounded ecart, guarantees
termination also for non Noetherian term orders. Overload red_better for other
reduction strategies.

Reduction procedures produce for a given ideal basis B ⊂ S and a polynomial
f ∈ S a (pseudo) normal form h ∈ S such that h ≡ u · f mod B where u ∈ S
is a polynomial unit, i.e. a (polynomially represented) non zero domain element in
the Noetherian case (pseudodivision of f by B) or a polynomial with a scalar as
leading term in the non Noetherian case. Following up the reduction steps one can
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even produce a presentation of h − u · f as a polynomial combination of the base
elements in B.

More general, given for fi ∈ B and f representations fi =
∑
rikek = Ri · ET

and f = R ·ET as polynomial combinations wrt. a fixed basis E one can produce
such a presentation also for h. For this purpose the dpoly f and its representation
are collected into a base element and reduced simultaneously by the base list B,
that collects the base elements and their representations.

The main procedures of the newly designed reduction package are the following:

red_TopRedBE(〈bas〉,〈model〉)

Top reduction with bounded ecart of the base element model by the base list
bas, i.e. only reducing the top term and only with base elements with ecart
bounded by that of model.

red_TopRed(〈bas〉,〈model〉)

Top reduction of model, but without restrictions.

red_TailRed(〈bas〉,〈model〉)

Make tail reduction on model, i.e. top reduction on the tail terms. For con-
vergence this uses reduction with bounded ecart for non Noetherian term
orders and full reduction otherwise.

There is a common red_TailRedDriver that takes a top reduction func-
tion as parameter. It can be used for experiments with other top reduction
procedure combinations.

red_TotalRed(〈bas〉,〈model〉)

A terminating total reduction, i.e. for Noetherian term orders the classical
one and for local term orders using tail reduction with bounded ecart.

red_Straight 〈bas〉

Reduce (with red_TailRed) the tails of the polynomials in the base list
bas.

red_TopInterreduce 〈bas〉

Reduces the base list bas with red_TopRed until it has pairwise incompa-
rable leading terms, computes correct representation parts, but does no tail
reduction.

red_Interreduce 〈bas〉

Does top and, if the switch red_total is on, also tail interreduction on the
base list bas.
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Usually, e.g. for ideal generation problems, there is no need to care about the mul-
tiplier u. If nevertheless one needs its value, the base element f may be prepared
with red_prepare to collect this information in the 0-slot of its representation
part. Extract this information with red_extract.

red_redpol(〈bas〉,〈model〉)

combines this tool with a total reduction of the base element model and
returns a dotted pair

(〈reduced model〉 . 〈dpoly unit multiplier〉)

Advanced applications call the interfacing procedures

interreduce!* 〈m〉

that returns an interreduced basis of the dpmat m.

mod!*(〈f 〉,〈m〉)

that returns the dotted pair (h.u) where h is the pseudo normal form of the
dpoly f modulo the dpmat m and u the corresponding polynomial unit mul-
tiplier.

normalform!*(〈a〉,〈b〉)

that returns {a1, r, z} with a1 = z ∗a− r ∗ b where the rows of the dpmat a1
are the normalforms of the rows of the dpmat a with respect to the dpmat b.

For local standard bases the ideal generated by the basic polynomials may have
components not passing through the origin. Although they do not contribute to the
ideal in Loc(S) = Sm they usually heavily increase the necessary computational
effort. Hence for local term orders one should try to remove polynomial units as
soon as they are detected. To remove them from base elements in an early stage of
the computation one can either try the (cheap) test, whether f ∈ S is of the form
〈monomial〉 * 〈polynomial unit〉 or factor f completely and remove polynomial
unit factors. For base elements this may be done with bas_detectunits or
bas_factorunits.

Moreover there are two switches detectunits and factorunits, both off
by default, that force such automatic simplifications during more advanced com-
putations.

The procedure deleteunits!* tries explicitely to factor the basis polynomials
of a dpmat and to remove polynomial units occuring as one of the factors.
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The Gröbner and Standard Basis Algorithms

There is now a unique module groeb that contains the Gröbner resp. standard basis
algorithms with syzygy computation facility and related topics. There are common
procedures (working for both Noetherian and non Noetherian term orders)

gbasis!* 〈m〉

that returns a minimal Gröbner or standard basis of the dpmat m,

syzygies!* 〈m〉

that returns an interreduced basis of the first syzygy module of the dpmat m
and

syzygies1!* 〈m〉

that returns a (not yet interreduced) basis of the syzygy module of the dpmat
m.

These procedures start the outer Gröbner engine (now also common for both
Noetherian and non Noetherian term orders)

groeb_stbasis(〈m〉,〈mgb〉,〈ch〉,〈syz〉)

that returns, applied to the dpmat m, three dpmats g, c, s with

g — the minimal reduced Gröbner basis of m if mgb = t,

c — the transition matrix g = c ·m if ch = t, and

s — the (not yet interreduced) syzygy matrix of m if syz = t.

The next layer manages the preparation of the representation parts of the base el-
ements to carry the syzygy information, calls the general internal driver, and ex-
tracts the relevant information from the result of that computation. The general
internal driver branches according to different reduction functions into several ver-
sions. Upto now there are three different strategies for the reduction procedures for
the S-polynomial reduction (different versions may be chosen via gbtestversion):

1. Total reduction with local simplifier lists. For local term orders this is (al-
most) Mora’s first version for the tangent cone (the default).

2. Total reduction with global simplifier list. For local term orders this is (al-
most) Mora’s SimpStBasis, see [MPT89].

3. Total reduction with bounded ecart.
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The first two versions (almost) coincide for Noetherian term orders. The third
version reduces only with bounded ecart, thus forcing more pairs to be treated than
necessary, but usually less expensive to be reduced. It is not yet well understood,
whether this idea is of practical importance.

groeb_lazystbasis calls the lazy standard basis driver instead, that implements
Mora’s lazy algorithm, see [MPT89]. As groeb_homstbasis, the computation of
Gröbner and standard bases via homogenization (Lazard’s approach), it is not fully
integrated into the algebraic interface. Use

homstbasis!* 〈m〉

for the invocation of the homogenization approach to compute a standard
basis of the dpmat m and

lazystbasis!* 〈m〉

for the lazy algorithm.

Experts commonly agree that the classical approach is better for “computable”
examples, but computations done by the author on large examples indicate, that
both approaches are in fact independent.

The pair list management uses the sugar strategy, see [GMN+91], with respect to
the current ecart vector. If the input is homogeneous and the ecart vector reflects
this homogeneity then pairs are sorted by ascending degree. Hence no superfluous
base elements will be computed in this case. In general the sugar strategy performs
best if the ecart vector is chosen to make the input close to be homogeneous.

There is another global variable cali!=monset that may contain a list of vari-
able names (a subset of the variable names of the current base ring). During the
“pure” Gröbner algorithm (without syzygy and representation computations) com-
mon monomial factors containing only these variables will be canceled out. This
shortcut is useful if some of the variables are known to be non zero divisors as e.g.
in most implicitation problems.

setmonset!* 〈vars〉

initializes cali!=monset with a given list of variables vars.

The Gröbner tools as e.g. pair criteria, pair list update, pair management and S-
polynomial construction are available.

groeb_mingb 〈m〉

extracts a minimal Gröbner basis from the dpmatm, removing base elements
with leading terms, divisible by other leading terms.



416 CHAPTER 20. USER CONTRIBUTED PACKAGES

groeb_minimize(〈bas〉,〈syz〉)

minimizes the dpmat pair (bas, syz) deleting superfluous base elements
from bas using syzygies from syz containing unit entries.

The Gröbner Factorizer

If k̄ is the algebraic closure of k, B := {f1, . . . , fm} ⊂ S a finite system of
polynomials, and C := {g1, . . . , gk} a set of side conditions define the relative set
of zeroes

Z(B,C) := {a ∈ k̄n : ∀ f ∈ B f(a) = 0 and ∀g ∈ C g(a) ̸= 0}.

Its Zariski closure is the zero set of I(B) :<
∏
C >.

The Gröbner factorizer solves the following problem:

Find a collection (Bα, Cα) of Gröbner bases Bα and side conditions
Cα such that

Z(B,C) =
⋃
α

Z(Bα, Cα).

The module groebf and the module triang contain algorithms related to that prob-
lem, triangular systems, and their generalizations as described in [Grä94a] and
[Grä95b]. V. 2.2 thus heavily extends the algorithmic possibilities that were imple-
mented in former releases of CALI.

Note that, different to v. 2.1, we work with constraint lists.

groebfactor!*(〈bas〉,〈con〉)

returns for the dpmat ideal bas and the constraint list con (of dpolys) a min-
imal list of (dpmat, constraint list) pairs with the desired property.

During a preprocessing it splits the submitted basis bas by a recursive factorization
of polynomials and interreduction of bases into a (reduced) list of smaller subprob-
lems consisting of a partly computed Gröbner basis, a constraint list, and a list
of pairs not yet processed. The main procedure forces the next subproblem to be
processed until another factorization is possible. Then the subproblem splits into
subsubproblems, and the subproblem list will be updated. Subproblems are kept
sorted with respect to their expected dimension easydim forcing this way a depth
first recursion. Returned and not yet interreduced Gröbner bases are, after interre-
duction, subject to another call of the preprocessor since interreduced polynomials
may factor anew.

listgroebfactor!* 〈l〉

processes a whole list of dpmats (without constraints) at once and strips off
constraints at the end.
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Using the (ordinary) Gröbner factorizer even components of different dimension
may keep gluing together. The extended Gröbner factorizer involves a postpro-
cessing, that guarantees a decomposition into puredimensional components, given
by triangular systems instead of Gröbner bases. Triangular systems in positive
dimension must not be Gröbner bases of the underlying ideal. They should be
preferred, since they are more simple but contain all information about the (quasi)
prime component that they represent. The complete Gröbner basis of the corre-
sponding component can be obtained by an easy stable quotient computation, see
[Grä95b]. We refer to the same paper for the definition of triangular systems in
positive dimension, that is consistent with our approach.

extendedgroebfactor!*(〈bas〉,〈c〉)
extendedgroebfactor1!*(〈bas〉,〈c〉)

return a list of results {bi, ci, vi} in algebraic prefix form such that bi is a
triangular set wrt. the variables vi and ci is a list of constraints, such that
bi :<

∏
ci > is the (puredimensional) recontraction of the zerodimensional

ideal bi
⊗

k k(vi). For the first version the recontraction is not computed,
hence the output may be not minimal. The second version computes re-
contractions to decide superfluous components already during the algorithm.
Note that the stable quotient computation involved for that purpose may dras-
tically slow down the whole attempt.

The postprocessing involves a change to dimension zero and invokes (zero dimen-
sional) triangular system computations from the module triang. In a first step
groebf_zeroprimes1 incorporates the square free parts of certain univari-
ate polynomials into these systems and strips off the constraints (since relative
sets of zeroes in dimension zero are Zariski closed), using a splitting approach
analogous to the Gröbner factorizer. In a second step, according to the switch
lexefgb, either zerosolve!* or zerosolve1!* converts these intermedi-
ate results into lists of triangular systems in prefix form. If lexefgb is off (the
default), the zero dimensional term order is degrevlex and zerosolve1!*, the
“slow turn to lex” is involved, with lexefgb on the pure lexicographic term order
and zerosolve!*, Möllers original approach, see [Möl93], are used. Note that
for this term order we need only a single Gröbner basis computation at this level.

A third version, zerosolve2!*, mixes the first approach with the FGLM change
of term orders. It is not incorporated into the extended Gröbner factorizer.

Basic Operations on Ideals and Modules

Gröbner and local standard bases are the heart of several basic algorithms in ideal
theory, see e.g. [BWK93, 6.2.]. CALI offers the following facilities:
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submodulep!*(〈m〉,〈n〉)

tests the dpmat m for being a submodule of the dpmat n reducing the basis
elements of m with respect to n. The result will be correct provided n is a
Gröbner basis.

modequalp!*(〈m〉,〈n〉)

= submodulep!*(m,n) and submodulep!*(n,m).

eliminate!*(〈m〉,〈variable list〉)

computes the elimination ideal/module eliminating the variables in the given
variable list (a subset of the variables of the current base ring). Changes
temporarily the term order to degrevlex.

matintersect!* 〈l〉

computes the intersection of the dpmats in the dpmat list l along [BWK93,
6.20].7

CALI offers several quotient algorithms. They rest on the computation of quotients
by a single element of the following kind: Assume M ⊂ Sc, v ∈ Sc, f ∈ S. Then
there are

the module quotient M : (v) = {g ∈ S | gv ∈M},

the ideal quotient M : (f) = {w ∈ Sc | fw ∈M}, and

the stable quotient M : (f)∞ = {w ∈ Sc | ∃n : fnw ∈M}.

CALI uses the elimination approach [CLO92, 4.4.] and [BWK93, 6.38] for their
computation:

matquot!*(〈M〉,〈f 〉)

returns the module or ideal quotient M : (f) depending on f .

matqquot!*(〈M〉,〈f 〉)

returns the stable quotient M : (f)∞.

matquot!* calls the pseudo division with remainder

dp_pseudodivmod!*(〈g〉,〈f 〉)

that returns a dpoly list {q, r, z} such that z ·g = q ·f+r with a dpoly unit z.
(g, f and r must belong to the same free module). This is done uniformly for
noetherian and local term orders with an extended normal form algorithm as
described in [Grä95a].

7This can be done for ideals and modules in an unique way. Hence idealintersect!* has
been removed in v. 2.1.
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In the same way one defines the quotient of a module by another module (both
embedded in a common free module Sc), the quotient of a module by an ideal,
and the stable quotient of a module by an ideal. Algorithms for their computation
can be obtained from the corresponding algorithms for a single element as divisor
either by the generic element method [Eis95] or as an intersection [BWK93, 6.31].
CALI offers both approaches (X=1 or 2 below) at the symbolic level, but for true
quotients only the latter one is integrated into the algebraic mode interface.

idealquotientX!*(〈M〉,〈I〉)

returns the ideal quotient M : I of the dpmat M by the dpmat ideal I .

modulequotientX!*(〈M〉,〈N〉)

returns the module quotient M : N of the dpmat M by the dpmat N .

annihilatorX!* 〈M〉

returns the annihilator of cokerM , i.e. the module quotient Sc : M , if M is
a submodule of Sc.

matstabquot!*(〈M〉,〈I〉)

returns the stable quotient M : I∞ (only by the general element method).

Monomial Ideals

Monomial ideals occur as ideals of leading terms of (ideal’s) Gröbner bases and
also as components of leading term modules of submodules of free modules, see
[Grä93], and reflect some properties of the original ideal/module. Several parame-
ters of the original ideal or module may be read off from it as e.g. dimension and
Hilbert series.

The module moid contains the corresponding algorithms on monomial ideals.
Monomial ideals are lists of monomials, kept sorted by descending lexicographic
order as proposed in [BS92].

moid_primes 〈u〉

returns the minimal primes (as a list of lists of variable names) of the mono-
mial ideal u using an adaption of the algorithm, proposed in [BS92] for the
computation of the codimension.

indepvarsets!* 〈m〉

returns (based on moid_primes) the list of strongly independent sets of
m, see [KW88] and [Grä93] for definitions.

dim!* 〈m〉

returns the dimension of cokerm as the size of the largest independent set.
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codim!* 〈m〉

returns the codimension of cokerm.

easyindepset!* 〈m〉

returns a maximal with respect to inclusion independent set of m.

easydim!* 〈m〉

is a fast dimension algorithm (based on easyindepset), that will be cor-
rect if m is (radically) unmixed. Since it is significantly faster than the gen-
eral dimension algorithm8, it should be used, if all maximal independent sets
are known to be of equal cardinality (as e.g. for prime or unmixed ideals, see
[Grä93]).

Hilbert Series

CALI v. 2.2 now offers also weighted Hilbert series, i.e. series that may reflect
multihomogeneity of ideals and modules. For this purpose a weighted Hilbert se-
ries has a list of (integer) degree vectors as second parameter, and the ideal(s) of
leading terms are evaluated wrt. these weights. For the output and polynomial
arithmetic, involved during the computation of the Hilbert series numerator, the
different weight levels are mapped onto the first variables of the current ring. If
w is such a weight vector list and I is a monomial ideal in the polynomial ring
S = k[xv : v ∈ V ] we get (using multi exponent notation)

H(S/I, t) :=
∑
α

|{xa ̸∈ I : w(a) = α}| · tα =
Q(t)∏

v∈V
(
1− tw(xv)

)
for a certain polynomial Hilbert series numerator Q(t). H(R/I, t) is known to be
a rational function with pole order at t = 1 equal to dim R/I . Note that Weighted-
HilbertSeries returns a reduced rational function where the gcd of numerator and
denominator is canceled out.

(Non weighted) Hilbert series call the weighted Hilbert series procedure with a
single weight vector, the ecart vector of the current ring.

The Hilbert series numerator Q(t) is computed using (the obvious generalizations
to the weighted case of) the algorithms in [BS92] and [BCRT93]. Experiments
suggest that the former is better for few generators of high degree whereas the
latter has to be preferred for many generators of low degree. Choose the version
with hftestversion n, n = 1, 2. Bayer/Stillman’s approach (n = 1) is the default.
In the following m is a dpmat and Gröbner basis.

8This algorithm is of linear time as opposed to the problem to determine the dimension of an
arbitrary monomial ideal, that is known to be NP-hard in the number of variables, see [BS92].
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hf_whilb(〈m〉,〈w〉)

returns the weighted Hilbert series numerator Q(t) of m according to the
version chosen with hftestversion.

WeightedHilbertSeries!*(〈m〉,〈w〉)

returns the weighted Hilbert series reduced rational function of m as s.q.

HilbertSeries!*(〈m〉,〈w〉)

returns the Hilbert series reduced rational function of m wrt. the ecart vector
of the current ring as s.q.

hf_whilb3(〈u〉,〈w〉)
and
hf_whs_from_resolution(〈u〉,〈w〉)

compute the weighted Hilbert series numerator and the corresponding re-
duced rational function from (the column degrees of) a given resolution u.

degree!* 〈m〉

returns the value of the numerator of the reduced Hilbert series ofm at t = 1.
i.e. the sum of its coefficients. For the standard ecart this is the degree of
cokerm.

Resolutions

Resolutions of ideals and modules, represented as lists of dpmats, are computed
via repeated syzygy computation with minimization steps between them to get
minimal bases and generators of syzygy modules. Note that the algorithms apply
simultaneously to both Noetherian and non Noetherian term orders. For compati-
bility reasons with further releases v. 2.2 introduces a second parameter to bound
the number of syzygy modules to be computed, since Hilbert’s syzygy theorem
applies only to regular rings.

Resolve!*(〈m〉,〈d〉)

computes a minimal resolution of the dpmat m, i.e. a list of dpmats
{s0, s1, s2, . . .}, where sk is the k-th syzygy module of m, upto part sd.

BettiNumbers!* 〈c〉
and
GradedBettiNumbers!* 〈c〉

returns the Betti numbers resp. the graded Betti numbers of the resolution
c, i.e. the list of the lengths resp. the degree lists (according to the ecart)
themselves of the dpmats in c.
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Zero Dimensional Ideals and Modules

There are several algorithms that either force the reduction of a given problem to
dimension zero or work only for zero dimensional ideals or modules. The module
odim offers such algorithms. It contains, e.g.

dimzerop!* 〈m〉

that tests a dpmat m for being zero dimensional.

getkbase!* 〈u〉

that returns a (monomial) k-vector space basis of Coker m provided m is a
Gröbner basis.

odim_borderbasis 〈m〉

that returns a border basis, see [MMM91], of the zero dimensional dpmat m
as a list of base elements.

odim_parameter 〈m〉

that returns a parameter of the dpmat m, i.e. a variable x ∈ vars such that
k[x]

⋂
Ann Sc/m = (0), or nil if m is zero dimensional.

odim_up(〈a〉,〈m〉)

that returns an univariate polynomial (of smallest possible degree if m is a
gbasis) in the variable a, that belongs to the zero dimensional dpmat ideal
m, using Buchberger’s approach [Buc85].

Primary Decomposition and Related Algorithms

The algorithms of the module prime implement the ideas of [GTZ88] with modifi-
cations along [Kre87] and their natural generalizations to modules as e.g. explained
in [Rut92]. Version 2.2.1 fixes a serious bug detecting superfluous embedded pri-
mary components, see section 20.7.7, and contains now a second primary decom-
position algorithm, based on ideal separation, as standard. For a discussion about
embedded primes and the ideal separation approach, see [Grä97].

CALI contains also algorithms for the computation of the unmixed part of a given
module and the unmixed radical of a given ideal (along the same lines). We fol-
lowed the stepwise recursion decreasing dimension in each step by 1 as proposed
in (the final version of) [GTZ88] rather than the “one step” method described in
[BWK93] since handling leading coefficients, i.e. standard forms, depending on
several variables is a quite hard job for REDUCE9.

In the following procedures m must be a Gröbner basis.
9prime!=decompose2 implements this strategy in the symbolic mode layer.
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zeroradical!* 〈m〉

returns the radical of the zero dimensional ideal m, using squarefree decom-
position of univariate polynomials.

zeroprimes!* 〈m〉

computes as in [GTZ88] the list of prime ideals of Ann F/M if m is zero
dimensional, using the (sparse) general position argument from [KW88].

zeroprimarydecomposition!* 〈m〉

computes the primary components of the zero dimensional dpmat m using
prime splitting with the prime ideals of Ann F/M . It returns a list of pairs
with first entry the primary component and second entry the corresponding
associated prime ideal.

isprime!* 〈m〉

a (one step) primality test for ideals, extracted from [GTZ88].

isolatedprimes!* 〈m〉

computes (only) the isolated prime ideals of Ann F/M .

radical!* 〈m〉

computes the radical of the dpmat ideal m, reducing as in [GTZ88] to the
zero dimensional case.

easyprimarydecomposition!* 〈m〉

computes the primary components of the dpmat m, if it has no embed-
ded components. The algorithm uses prime splitting with the isolated
prime ideals of Ann F/M . It returns a list of pairs as described in
zeroprimarydecomposition!*.

primarydecomposition!* 〈m〉

computes the primary components of the dpmat m along the lines of
[GTZ88]. It returns a list of two-element lists as described above in
zeroprimarydecomposition!*.

unmixedradical!* 〈m〉

returns the unmixed radical, i.e. the intersection of the isolated primes of top
dimension, associated to the dpmat ideal m.

eqhull!* 〈m〉

returns the equidimensional hull, i.e. the intersection of the top dimensional
primary components of the dpmat m.
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Advanced Algorithms

The module scripts just under further development offers some advanced topics of
the Gröbner bases theory. It introduces the new data structure of a map between
base rings:

A ring map
ϕ : R −→ S

for R = k[ri], S = k[sj ] is represented in symbolic mode as a list

{preimage_ring R, image_ring S, subst_list},

where subst_list is a substitution list {r1 = ϕ1(s), r2 = ϕ2(s), . . .} in alge-
braic prefix form, i.e. looks like (list (equal var image) ...).

The central tool for several applications is the computation of the preimage
ϕ−1(I) ⊂ R of an ideal I ⊂ S either under a polynomial map ϕ or its closure
in R under a rational map ϕ, see [BWK93, 7.69 and 7.71].

preimage!*(〈m〉,〈map〉)

computes the preimage of the ideal m in algebraic prefix form under the
given polynomial map and sets the current base ring to the preimage ring.
Returns the result also in algebraic prefix form.

ratpreimage!*(〈m〉,〈map〉)

computes the closure of the preimage of the ideal m in algebraic prefix form
under the given rational map and sets the current base ring to the preimage
ring. Returns the result also in algebraic prefix form.

Derived applications are

affine_monomial_curve!*(〈l〉,〈vars〉)

l is a list of integers, vars a list of variable names of the same length as
l. The procedure sets the current base ring and returns the defining ideal of
the affine monomial curve with generic point (ti : i ∈ l) computing the
corresponding preimage.

analytic_spread!* 〈m〉

Computes the analytic spread of M , i.e. the dimension of the exceptional
fiberR(M)/mR(M) of the blowup along M over the irrelevant ideal m of
the current base ring.
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assgrad!*(〈M〉,〈N〉,〈vars〉)

Computes the associated graded ring

grR(N) := (R/N ⊕N/N2 ⊕ . . .) = R(N)/NR(N)

over the ring R = S/M , where M and N are dpmat ideals defined over
the current base ring S. 〈vars〉 is a list of new variable names one for each
generator of N . They are used to create a second ring T with degree order
corresponding to the ecart of the row degrees of N and a ring map

ϕ : S ⊕ T −→ S.

It returns a dpmat ideal J such that (S⊕T )/J is a presentation of the desired
associated graded ring over the new current base ring S ⊕ T .

blowup!*(〈M〉,〈N〉,〈vars〉)

Computes the blow up R(N) := R[N · t] of N over the ring R = S/M ,
whereM andN are dpmat ideals defined over the current base ring S. vars
is a list of new variable names one for each generator of N . They are used
to create a second ring T with degree order corresponding to the ecart of the
row degrees of N and a ring map

ϕ : S ⊕ T −→ S.

It returns a dpmat ideal J such that (S⊕T )/J is a presentation of the desired
blowup ring over the new current base ring S ⊕ T .

proj_monomial_curve!*(〈l〉,〈vars〉)

l is a list of integers, vars a list of variable names of the same length as l.
The procedure set the current base ring and returns the defining ideal of the
projective monomial curve with generic point (sd−i · ti : i ∈ l) inR, where
d = max{x : x ∈ l}, computing the corresponding preimage.

sym!*(〈M〉,〈vars〉)

Computes the symmetric algebra Sym(M) where M is a dpmat ideal de-
fined over the current base ring S. 〈vars〉 is a list of new variable names
one for each generator of M . They are used to create a second ring R with
degree order corresponding to the ecart of the row degrees of N and a ring
map

ϕ : S ⊕R −→ S.

It returns a dpmat ideal J such that (S ⊕ R)/J is the desired symmetric
algebra over the new current base ring S ⊕R.

There are several other applications:
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minimal_generators!* 〈m〉

returns a set of minimal generators of the dpmatm inspecting the first syzygy
module.

nzdp!*(〈f 〉,〈m〉)

tests whether the dpoly f is a non zero divisor on cokerm. m must be a
Gröbner basis.

symbolic_power!*(〈m〉,〈d〉)

returns the dth symbolic power of the prime dpmat idealm as the equidimen-
sional hull of the dth true power. (Hence applies also to unmixed ideals.)

varopt!* 〈m〉

finds a heuristically optimal variable order by the approach in [BGK86] and
returns the corresponding list of variables.

Dual Bases

For the general ideas underlying the dual bases approach see e.g. [MMM91]. This
paper explains, that constructive problems from very different areas of commuta-
tive algebra can be formulated in a unified way as the computation of a basis for
the intersection of the kernels of a finite number of linear functionals generating
a dual S-module. Our implementation honours this point of view, presenting two
general drivers dualbases and dualhbases for the computation of such bases (even
as submodules of a free module M = Sm) with affine resp. projective dimension
zero.

Such a collection of N linear functionals

L : M = Sm −→ kN

should be given through values {[ei, L(ei)], i = 1, . . . ,m} on the generators ei of
M and an evaluation function evlf([p,L(p)],x), that evaluates L(p ·x) from
L(p) for p ∈M and the variable x ∈ S.

dualbases starts with a list of such generator/value constructs generating M and
performs Gaussian reduction on expressions [p · x, L(p · x)], where p was already
processed, L(p) ̸= 0, and x ∈ S is a variable. These elements are processed in
ascending order wrt. the term order on M . This guarantees both termination and
that the resulting basis of ker L is a Gröbner basis. TheN values of L are attached
to N variables, that are ordered linearly. Gaussian elimination is executed wrt. this
variable order.

To initialize the dual bases driver one has to supply the basic generator/value list
(through the parameter list; for ideals just the one element list containing the gen-
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erator [1 ∈ S,L(1)]), the evaluation function, and the linear algebra variable or-
der. The latter are supplied via the property list of cali as properties evlf and
varlessp. Different applications need more entries on the property list of cali
to manage the communication between the driver and the calling routine.

dualhbases realizes the same idea for (homogeneous) ideals and modules of (pro-
jective) dimension zero. It produces zerodimensional “slices” with ascending de-
gree until it reaches a supremum supplied by the user, see [MMM91] for details.

Applications concern affine and projective defining ideals of a finite number
of points10 and two versions (with and without precomputed border basis) of
term order changes for zerodimensional ideals and modules as first described in
[FGLM93].

affine_points!* 〈m〉
m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns
the defining ideal of the collection of points in affine space with coordinates
given by the rows of m. Note that m may contain parameters. In this case k
is treated as rational function field.

change_termorder!*(〈m〉,〈r〉)
and
change_termorder1!*(〈m〉,〈r〉)
m is a Gröbner basis of a zero dimensional ideal wrt. the current base ring.
These procedures change the current ring to r and compute the Gröbner basis
of m wrt. the new ring r. The former uses a precomputed border basis.

proj_points!* 〈m〉
m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns
the defining ideal of the collection of points in projective space with ho-
mogeneous coordinates given by the rows of m. Note that m may as for
affine_points contain parameters.

20.7.5 A Short Description of Procedures Available in Algebraic
Mode

Here we give a short description, ordered alphabetically, of algebraic procedures
offered by CALI in the algebraic mode interface11.

10This substitutes the “brute force” method computing the corresponding intersections directly as
it was implemented in v. 2.1. The new approach is significantly faster. The old stuff is available as
affine_points1!* and proj_points1!*.

11It does not contain switches, get. . . procedures, setting trace level and related stuff.
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If not stated explicitely procedures take (algebraic mode) polynomial matrices (c >
0) or polynomial lists (c = 0) m,m1,m2, . . . as input and return results of the
same type. 〈gb〉 stands for a bounded identifier12, 〈gbr〉 for one with precomputed
resolution. For the mechanism of bounded identifier see the section “Algebraic
Mode Interface”.

affine_monomial_curve(〈l〉,〈vars〉)

l is a list of integers, vars a list of variable names of the same length as l.
The procedure sets the current base ring and returns the defining ideal of the
affine monomial curve with generic point (ti : i ∈ l).

affine_points 〈m〉

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns
the defining ideal of the collection of points in affine space with coordinates
given by the rows of m. Note that m may contain parameters. In this case k
is treated as rational function field.

analytic_spread 〈m〉

Computes the analytic spread of m.

annihilator 〈m〉

returns the annihilator of the dpmat m ⊆ Sc, i.e. Ann Sc/M .

assgrad(〈M〉,〈N〉,〈vars〉)

Computes the associated graded ring grR(N) over R = S/M , where S is
the current base ring. 〈vars〉 is a list of new variable names, one for each
generator of N . They are used to create a second ring T to return an ideal
J such that (S ⊕ T )/J is the desired associated graded ring over the new
current base ring S ⊕ T .

bettiNumbers 〈gbr〉

extracts the list of Betti numbers from the resolution of gbr.

blowup(〈M〉,〈N〉,〈vars〉)

Computes the blow up R(N) of N over the ring R = S/M , where S is
the current base ring. vars is a list of new variable names, one for each
generator of N . They are used to create a second ring T to return an ideal
J such that (S ⊕ T )/J is the desired blowup ring over the new current base
ring S ⊕ T .

12Different to v. 2.1 a Gröbner basis will be computed automatically, if necessary.
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change_termorder(〈m〉,〈r〉)
and
change_termorder1(〈m〉,〈r〉)

Change the current ring to r and compute the Gröbner basis of m wrt. the
new ring r by the FGLM approach. The former uses internally a precom-
puted border basis.

codim 〈gb〉

returns the codimension of Sc/gb.

degree 〈gb〉

returns the multiplicity of gb as the sum of the coefficients of the (classical)
Hilbert series numerator.

degsfromresolution 〈gbr〉

returns the list of column degrees from the minimal resolution of gbr.

deleteunits 〈m〉

factors each basis element of the dpmat ideal m and removes factors that are
polynomial units. Applies only to non Noetherian term orders.

dim 〈gb〉

returns the dimension of Sc/gb.

dimzerop 〈gb〉

tests whether Sc/gb is zerodimensional.

directsum(〈m1〉,〈m2〉,. . . )

returns the direct sum of the modules m1,m2, . . ., embedded into the direct
sum of the corresponding free modules.

dpgcd(〈f 〉,〈g〉)

returns the gcd of two polynomials f and g, computed by the syzygy method.

easydim 〈m〉
and
easyindepset 〈m〉

If the given ideal or module is unmixed (e.g. prime) then all maximal
strongly independent sets are of equal size and one can look for a maximal
with respect to inclusion rather than size strongly independent set. These
procedures don’t test the input for being a Gröbner basis or unmixed, but
construct a maximal with respect to inclusion independent set of the basic
leading terms resp. detect from this (an approximation for) the dimension.
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easyprimarydecomposition 〈m〉

a short primary decomposition using ideal separation of isolated primes of
m, that yields true results only for modules without embedded components.
Returns a list of {component, associated prime} pairs.

eliminate(〈m〉,〈variable list〉)

computes the elimination ideal/module eliminating the variables in the given
variable list (a subset of the variables of the current base ring). Changes
temporarily the term order to degrevlex.

eqhull 〈m〉

returns the equidimensional hull of the dpmat m.

extendedgroebfactor(〈m〉,〈c〉)
and
extendedgroebfactor1(〈m〉,〈c〉)

return for a polynomial ideal m and a list of (polynomial) constraints c a list
of results {bi, ci, vi}, where bi is a triangular set wrt. the variables vi and ci
is a list of constraints, such that Z(m, c) =

⋃
Z(bi, ci). For the first version

the output may be not minimal. The second version decides superfluous
components already during the algorithm.

gbasis 〈gb〉

returns the Gröbner resp. local standard basis of gb.

getkbase 〈gb〉

returns a k-vector space basis of Sc/gb, consisting of module terms, provided
gb is zerodimensional.

getleadterms 〈gb〉

returns the dpmat of leading terms of a Gröbner resp. local standard basis of
gb.

GradedBettinumbers 〈gbr〉

extracts the list of degree lists of the free summands in a minimal resolution
of gbr.

groebfactor (〈m〉[,〈c〉])

returns for the dpmat idealm and an optional constraint list c a (reduced) list
of dpmats such that the union of their zeroes is exactly Z(m, c). Factors all
polynomials involved in the Gröbner algorithms of the partial results.

HilbertSeries 〈gb〉

returns the Hilbert series of gb with respect to the current ecart vector.
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homstbasis 〈m〉

computes the standard basis of m by Lazard’s homogenization approach.

ideal2mat 〈m〉

converts the ideal (=list of polynomials) m into a column vector.

ideal_of_minors(〈mat〉,〈k〉)

computes the generators for the ideal of k-minors of the matrix mat.

ideal_of_pfaffians(〈mat〉,〈k〉)

computes the generators for the ideal of the 2k-pfaffians of the skewsymmet-
ric matrix mat.

idealpower(〈m〉,〈n〉)

returns the interreduced basis of the ideal power mn with respect to the inte-
ger n ≥ 0.

idealprod(〈m1〉,〈m2〉,. . . )

returns the interreduced basis of the ideal product m1 ·m2 · . . . of the ideals
m1,m2, . . ..

idealquotient(〈m1〉,〈m2〉)

returns the ideal quotient m1 : m2 of the module m1 ⊆ Sc by the ideal m2.

idealsum(〈m1〉,〈m2〉,. . . )

returns the interreduced basis of the ideal sum m1 +m2 + . . ..

indepvarsets 〈gb〉

returns the list of strongly independent sets of gb with respect to the current
term order, see [KW88] for a definition in the case of ideals and [Grä93] for
submodules of free modules.

initmat(〈m〉,〈filename〉)

initializes the dpmat m together with its base ring, term order and column
degrees from a file.

interreduce 〈m〉

returns the interreduced module basis given by the rows of m, i.e. a basis
with pairwise indivisible leading terms.

isolatedprimes 〈m〉

returns the list of isolated primes of the dpmat m, i.e. the isolated primes of
Ann Sc/M .
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isprime 〈gb〉

tests the ideal gb to be prime.

iszeroradical 〈gb〉

tests the zerodimensional ideal gb to be radical.

lazystbasis 〈m〉

computes the standard basis of m by the lazy algorithm, see e.g. [MPT89].

listgroebfactor 〈in〉

computes for the list in of ideal bases a list out of Gröbner bases by the
Gröbner factorization method, such that

⋃
m∈in Z(m) =

⋃
m∈out Z(m).

mat2list 〈m〉

converts the matrix m into a list of its entries.

matappend(〈m1〉,〈m2〉,. . . )

collects the rows of the dpmatsm1,m2, . . . to a common matrix. m1,m2, . . .
must be submodules of the same free module, i.e. have equal column degrees
(and size).

mathomogenize(〈m〉,〈var〉)13

returns the result obtained by homogenization of the rows of m with respect
to the variable 〈var〉 and the current ecart vector.

matintersect(〈m1〉,〈m2〉,. . . )

returns the interreduced basis of the intersection m1
⋂
m2
⋂
. . ..

matjac(〈m〉,〈variable list〉)

returns the Jacobian matrix of the ideal m with respect to the supplied vari-
able list.

matqquot(〈m〉,〈f 〉)

returns the stable quotient m : (f)∞ of the dpmat m by the polynomial
f ∈ S.

matquot(〈m〉,〈f 〉)

returns the quotient m : (f) of the dpmat m by the polynomial f ∈ S.

matstabquot(〈m1〉,〈id〉)

returns the stable quotient m1 : id∞ of the dpmat m1 by the ideal id.
13Dehomogenize with sub(z=1,m) if z is the homogenizing variable.
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matsum(〈m1〉,〈m2〉,. . . )

returns the interreduced basis of the module summ1+m2+. . . in a common
free module.

minimal_generators 〈m〉

returns a set of minimal generators of the dpmat m.

minors(〈m〉,〈n〉)

returns the matrix of minors of size b× b of the matrix m.

〈a〉 mod 〈b〉

computes the (true) normal form(s), i.e. a standard quotient representation,
of a modulo the dpmat m. a may be either a polynomial or a polynomial list
(c = 0) or a matrix (c > 0) of the correct number of columns.

modequalp(〈gb1〉,〈gb2〉)

tests, whether gb1 and gb2 are equal (returns YES or NO).

modulequotient(〈m1〉,〈m2〉)

returns the module quotient m1 : m2 of two dpmats m1,m2 in a common
free module.

normalform(〈m1〉,〈m2〉)

returns a list of three dpmats {m3, r, z}, where m3 is the normalform of m1
modulom2, z a scalar matrix of polynomial units (i.e. polynomials of degree
0 in the noetherian case and polynomials with leading term of degree 0 in the
tangent cone case), and r the relation matrix, such that

m3 = z ∗m1 + r ∗m2.

nzdp(〈f 〉,〈m〉)

tests whether the dpoly f is a non zero divisor on cokerm.

pfaffian 〈mat〉

returns the pfaffian of a skewsymmetric matrix mat.

preimage(〈m〉,〈map〉)

computes the preimage of the ideal m under the given polynomial map and
sets the current base ring to the preimage ring.

primarydecomposition 〈m〉

returns the primary decomposition of the dpmat m as a list of pairs of the
form {〈component〉, 〈associated prime〉}.
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proj_monomial_curve(〈l〉,〈vars〉)

l is a list of integers, vars a list of variable names of the same length as l.
The procedure sets the current base ring and returns the defining ideal of the
projective monomial curve with generic point (sd−i · ti : i ∈ l) in R where
d = max{x : x ∈ l}.

proj_points 〈m〉

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns
the defining ideal of the collection of points in projective space with ho-
mogeneous coordinates given by the rows of m. Note that m may as for
affine_points contain parameters.

radical 〈m〉

returns the radical of the dpmat ideal m.

random_linear_form(〈vars〉,〈bound〉)

returns a random linear form in the variables 〈vars〉 with integer coefficients
less than the supplied bound.

ratpreimage(〈m〉,〈map〉)

computes the closure of the preimage of the ideal m under the given rational
map and sets the current base ring to the preimage ring.

resolve(〈m〉[,〈d〉])

returns the first d members of the minimal resolution of the bounded identi-
fier m as a list of matrices. If the resolution has less than d non zero mem-
bers, only those are collected. (Default: d = 100)

savemat(〈m〉,〈file name〉)

save the dpmat m together with the settings of it base ring, term order and
column degrees to a file.

setgbasis 〈m〉

declares the rows of the bounded identifier m to be already a Gröbner resp.
local standard basis thus avoiding a possibly time consuming Gröbner or
standard basis computation.

sive(〈m〉,〈variable list〉)

sieves out all base elements with leading terms having a factor contained in
the specified variable list (a subset of the variables of the current base ring).
Useful for elimination problems solved “by hand”.
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singular_locus(〈M〉,〈c〉)

returns the defining ideal of the singular locus of Spec S/M where M is
an ideal of codimension c, adding to M the generators of the ideal of the
c-minors of the Jacobian of M .

submodulep(〈m〉,〈gb〉)

tests, whether m is a submodule of gb (returns YES or NO).

sym(〈M〉,〈vars〉)

Computes the symmetric algebra Sym(M) whereM is an ideal defined over
the current base ring S. 〈vars〉 is a list of new variable names, one for each
generator of M . They are used to create a second ring R to return an ideal J
such that (S ⊕ R)/J is the desired symmetric algebra over the new current
base ring S ⊕R.

symbolic_power(〈m〉,〈d〉)

returns the dth symbolic power of the prime dpmat ideal m.

syzygies 〈m〉

returns the first syzygy module of the bounded identifier m.

tangentcone 〈gb〉

returns the tangent cone part, i.e. the homogeneous part of highest degree
with respect to the first degree vector of the term order from the Gröbner
basis elements of the dpmat gb. The term order must be a degree order.

unmixedradical 〈m〉

returns the unmixed radical of the dpmat ideal m.

varopt 〈m〉

finds a heuristically optimal variable order, see [BGK86].

vars:=varopt m;
setring(vars,\{\},lex);
setideal(m,m);

changes to the lexicographic term order with heuristically best performance
for a lexicographic Gröbner basis computation.

WeightedHilbertSeries(〈m〉,〈w〉)

returns the weighted Hilbert series of the dpmat m. Note that m is not a
bounded identifier and hence not checked to be a Gröbner basis. w is a list
of integer weight vectors.
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zeroprimarydecomposition 〈m〉

returns the primary decomposition of the zerodimensional dpmat m as a list
of {component, associated prime} pairs.

zeroprimes 〈m〉

returns the list of primes of the zerodimensional dpmat m.

zeroradical 〈gb〉

returns the radical of the zerodimensional ideal gb.

zerosolve 〈m〉
and
zerosolve1 〈m〉
and
zerosolve2 〈m〉

Returns for a zerodimensional ideal a list of triangular systems that cover
Z(m). zerosolve needs a pure lex. term order for the “fast” turn to lex. as
described in [Möl93], zerosolve1 is the “slow” turn to lex. as described
in [Grä95b], and zerosolve2 incorporated the FGLM term order change
into zerosolve1.
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20.7.6 The CALI Module Structure

name subject data type representation
cali Header module, contains

global variables, switches
etc.

— —

bcsf Base coefficient arithmetic base coeff. standard forms
ring Base ring setting, definition

of the term order
base ring special type RING

mo monomial arithmetic monomials (exp. list . degree list)
dpoly Polynomial and vector

arithmetic
dpolys list of terms

bas Operations on base lists base list list of base elements
dpmat Operations on polynomial

matrices, the central data
type of CALI

dpmat special type DPMAT

red Normal form algorithms — —
groeb Gröbner basis algorithm and

related ones
— —

groebf the Gröbner factorizer and
its extensions

— —

matop Operations on (lists of)
dpmats that correspond to
ideal/module operations

— —

quot Different quotient algorithms — —
moid Monomial ideal algorithms monomial

ideal
list of monomials

hf weighted Hilbert series – –
res Resolutions of dpmats resolution list of dpmats
intf Interface to algebraic mode — —
odim Algorithms for

zerodimensional ideals and
modules

— —

prime Primary decomposition and
related questions

— —

scripts Advanced applications — —
calimat Extension of the matrix

package
— —

lf The dual bases approach — —
triang (Zero dimensional)

triangular systems
— —
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20.7.7 Changelog

New and Improved Facilities in v. 2.1

The major changes in v. 2.1 reflect the experience we’ve got from the use of CALI

2.0. The following changes are worth mentioning explicitely:

1. The algebraic rule concept was adapted to CALI. It allows to supply rule
based coefficient domains. This is a more efficient way to deal with (easy)
algebraic numbers than through the arnum package.

2. listtest and listminimize provide an unified concept for different list opera-
tions previously scattered in the source text.

3. There are several new quotient algorithms at the symbolic level (both the
general element and the intersection approaches are available) and new fea-
tures for the computation of equidimensional hull and equidimensional rad-
ical.

4. A new module scripts offers advanced applications of Gröbner bases.

5. Several advanced procedures initialize a Gröbner basis computation over a
certain intermediate base ring or term order as e.g. eliminate, resolve, matin-
tersect or all primary decomposition procedures. Interrupting a computation
in v. 2.1 now restores the original values of CALI’s global variables, since
all intermediate procedures work with local copies of the global variables.14

This doesn’t apply to advanced procedures that change the current base ring
as e.g. blowup, preimage, sym etc.

New and Improved Facilities in v. 2.2

Version 2.2 (beside bug fixes) incorporates several new facilities of constructive
non linear algebra that we investigated the last two years, as e.g. dual bases, the
Gröbner factorizer, triangular systems, and local standard bases. Essential changes
concern the following topics:

1. The CALI modules red and groeb were rewritten and the module mora was
removed. This is due to new theoretical insight into standard bases theory
as e.g. described in [Grä94b] or [Grä95a]. The Gröbner basis algorithm
is reorganized as a Gröbner driver with simplifier and base lists, that in-
volves different versions of polynomial reduction according to the setting

14Note that recovering the base ring this way may cause some trouble since the intermediate ring,
installed with setring, changed possibly the internal variable order set by setkorder.
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via gbtestversion. It applies now to both noetherian and non noetherian term
orders in a unified way.

The switches binomial and lazy were removed.

2. The Gröbner factorizer was thoroughly revised, extended along the lines ex-
plained in [Grä94a], and collected into a separate module groebf . It now
allows a list of constraints also in algebraic mode. Two versions of an ex-
tended Gröbner factorizer produce triangular systems, i.e. a decomposition
into quasi prime components, see [Grä95b], that are well suited for further
(numerical) evaluation. There is also a version of the Gröbner factorizer that
allows a list of problems as input. This is especially useful, if a system is
splitted with respect to a “cheap” (e.g. degrevlex) term order and the pieces
are recomputed with respect to a “hard” (e.g. pure lex) term order.

The extended Gröbner factorizer involves, after change to dimension zero,
the computation of triangular systems. The corresponding module triang
extends the facilities for zero dimensional ideals and modules in the module
odim.

3. A new module lf implements the dual bases approach as described in
[MMM91]. On this basis there are new implementations of procedures
affine_points and proj_points that are significantly faster than the
old ones. The linear algebra change of term orders [FGLM93] is available,
too. There are two versions, one with precomputed border basis, the other
with conventional normal forms.

4. dpmats now have a gb-tag that indicates, whether the given ideal or module
basis is already a Gröbner basis. This avoids certain Gröbner basis recompu-
tations especially during advanced algorithms as e.g. prime decomposition.
In the algebraic interface Gröbner bases are computed automatically when
needed rather than to issue an error message as in v. 2.1. So one can call
modequalp or dim etc. not having computed Gröbner bases in advance.
Note that such automatic computation can be avoided with setgbasis.

5. Hilbert series are now weighted Hilbert series, since e.g. for blow up rings
the generating ideal is multigraded. Usual Hilbert series are computed as in
v. 2.1 with respect to the ecart vector. Weighted Hilbert series accept a list
of (integer) weight lists as second parameter.

6. There are some name and conceptual changes to existing procedures and
variables to have a more concise semantic concept. This concerns

• Tracing (the trace parameter is now stored on the property list of cali
and should be set with setcalitrace),

• choosing different versions of the Gröbner algorithm (through gbtestver-
sion) and the Hilbert series computation (through hftestversion),
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• some names (mat2list replaced flatten, HilbertSeries replaced hilb-
series) and

• parameter lists of some local and internal procedures

7. The revlex term order is now the reverse lexicographic term order on the
reversely ordered variables. This is consistent with other computer algebra
systems (e.g. SINGULAR or AXIOM)15 and implies the same order on the
variables for deglex and degrevlex term orders (this was the main reason to
change the definition).

8. Ideals of minors, pfaffians and related stuff are now implemented as exten-
sion of the internal matrix package and collected into a separate module
calimat. Thus they allow more general expressions, especially with vari-
able exponents, as general REDUCE matrices do. So one can define generic
ideals as e.g. ideals of minors or pfaffians of matrices, containing generic
expressions as elements. They must be specified for further use in CALI

substituting general exponents by integers.

New and Improved Facilities in v. 2.2.1

The main change concerns the primary decomposition algorithm, where I fixed a
serious bug for deciding which embedded primes are really embedded16. During
that remake I incorporated also the Gröbner factorizer to compute isolated primes.
Since REDUCE has no multivariate modular factorizer, the switch factorprimes
may be turned off to switch to the former algorithm.

Some minor bugs were fixed as well, e.g., the bug that made radical crashing.

15But different to the currently distibuted groebner package in REDUCE. Note that the compu-
tations in [Grä94a] were done before these changes.

16That there must be a bug was pointed out to me by Shimoyama Takeshi who compared different
p.d. implementations. The bug is due to an incorrect test for embedded primes: A (superfluous)
primary component may contain none of the isolated primary components, but their intersection!
Note that neither [GTZ88] nor [BWK93] comment on that. Details of the implementation will appear
in [Grä97].
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20.8 CAMAL: Calculations in Celestial Mechanics

This packages implements in REDUCE the Fourier transform procedures of the
CAMAL package for celestial mechanics.

Author: John P. Fitch

It is generally accepted that special purpose algebraic systems are more efficient
than general purpose ones, but as machines get faster this does not matter. An
experiment has been performed to see if using the ideas of the special purpose
algebra system CAMAL(F) it is possible to make the general purpose system RE-
DUCE perform calculations in celestial mechanics as efficiently as CAMAL did
twenty years ago. To this end a prototype Fourier module is created for REDUCE,
and it is tested on some small and medium-sized problems taken from the CAMAL
test suite. The largest calculation is the determination of the Lunar Disturbing
Function to the sixth order. An assessment is made as to the progress, or lack of
it, which computer algebra has made, and how efficiently we are using modern
hardware.

20.8.1 Introduction

A number of years ago there emerged the divide between general-purpose algebra
systems and special purpose one. Here we investigate how far the improvements
in software and more predominantly hardware have enabled the general systems
to perform as well as the earlier special ones. It is similar in some respects to
the Possion program for MACSYMA [Fat74] which was written in response to a
similar challenge.

The particular subject for investigation is the Fourier series manipulator which had
its origins in the Cambridge University Institute for Theoretical Astronomy, and
later became the F subsystem of CAMAL [Bar67a, Fit83]. In the late 1960s this
system was used for both the Delaunay Lunar Theory [Del86, Bar67b] and the Hill
Lunar Theory [Bou72], as well as other related calculations. Its particular area of
application had a number of peculiar operations on which the general speed de-
pended. These are outlined below in the section describing how CAMAL worked.
There have been a number of subsequent special systems for celestial mechanics,
but these tend to be restricted to the group of the originator.

The main body of the paper describes an experiment to create within the REDUCE
system a sub-system for the efficient manipulation of Fourier series. This prototype
program is then assessed against both the normal (general) REDUCE and the extant
CAMAL results. The tests are run on a number of small problems typical of those
for which CAMAL was used, and one medium-sized problem, the calculation of
the Lunar Disturbing Function. The mathematical background to this problem is
also presented for completeness. It is important as a problem as it is the first stage
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in the development of a Delaunay Lunar Theory.

The paper ends with an assessment of how close the performance of a modern
REDUCE on modern equipment is to the (almost) defunct CAMAL of eighteen
years ago.

20.8.2 How CAMAL Worked

The Cambridge Algebra System was initially written in assembler for the Titan
computer, but later was rewritten a number of times, and matured in BCPL, a ver-
sion which was ported to IBM mainframes and a number of microcomputers. In
this section a brief review of the main data structures and special algorithms is
presented.

CAMAL Data Structures

CAMAL is a hierarchical system, with the representation of polynomials being
completely independent of the representations of the angular parts.

The angular part had to represent a polynomial coefficient, either a sine or cosine
function and a linear sum of angles. In the problems for which CAMAL was
designed there are 6 angles only, and so the design restricted the number, initially
to six on the 24 bit-halfword TITAN, and later to eight angles on the 32-bit IBM
370, each with fixed names (usually u through z). All that is needed is to remember
the coefficients of the linear sum. As typical problems are perturbations, it was
reasonable to restrict the coefficients to small integers, as could be represented in a
byte with a guard bit. This allowed the representation to pack everything into four
words.

[ NextTerm, Coefficient, Angles0-3, Angles4-7 ]

The function was coded by a single bit in the Coefficient field. This gives a
particularly compact representation. For example the Fourier term sin(u − 2v +
w − 3x) would be represented as

[ NULL, "1"|0x1, 0x017e017d, 0x00000000 ]
or

[ NULL, "1"|0x1, 1:-2:1:-3, 0:0:0:0 ]

where "1" is a pointer to the representation of the polynomial 1. In all this rep-
resentation of the term took 48 bytes. As the complexity of a term increased the
store requirements to no grow much; the expression (7/4)ae3f5 cos(u−2v+3w−
4x+ 5y + 6z) also takes 48 bytes. There is a canonicalisation operation to ensure
that the leading angle is positive, and sin(0) gets removed. It should be noted that
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cos(0) is a valid and necessary representation.

The polynomial part was similarly represented, as a chain of terms with packed
exponents for a fixed number of variables. There is no particular significance in this
except that the terms were held in increasing total order, rather than the decreasing
order which is normal in general purpose systems. This had a number of important
effects on the efficiency of polynomial multiplication in the presence of a truncation
to a certain order. We will return to this point later. Full details of the representation
can be found in [Fit75].

The space administration system was based on explicit return rather than garbage
collection. This meant that the system was sometimes harder to write, but it did
mean that much attention was focussed on efficient reuse of space. It was possible
for the user to assist in this by marking when an expression was needed no longer,
and the compiler then arranged to recycle the space as part of the actual opera-
tion. This degree of control was another assistance in running of large problems on
relatively small machines.

Automatic Linearisation

In order to maintain Fourier series in a canonical form it is necessary to apply the
transformations for linearising products of sine and cosines. These will be familiar
to readers of the REDUCE test program as

cos θ cosϕ⇒ (cos(θ + ϕ) + cos(θ − ϕ))/2, (20.35)

cos θ sinϕ⇒ (sin(θ + ϕ)− sin(θ − ϕ))/2, (20.36)

sin θ sinϕ⇒ (cos(θ − ϕ)− cos(θ + ϕ))/2, (20.37)

cos2 θ ⇒ (1 + cos(2θ))/2, (20.38)

sin2 θ ⇒ (1− cos(2θ))/2. (20.39)

In CAMAL these transformations are coded directly into the multiplication rou-
tines, and no action is necessary on the part of the user to invoke them. Of course
they cannot be turned off either.

Differentiation and Integration

The differentiation of a Fourier series with respect to an angle is particularly sim-
ple. The integration of a Fourier series is a little more interesting. The terms like
cos(nu + . . .) are easily integrated with respect to u, but the treatment of terms
independent of the angle would normally introduce a secular term. By convention
in Fourier series these secular terms are ignored, and the constant of integration is
taken as just the terms independent of the angle in the integrand. This is equivalent
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to the substitution rules

sin(nθ)⇒ −(1/n) cos(nθ)
cos(nθ)⇒ (1/n) sin(nθ)

In CAMAL these operations were coded directly, and independently of the differ-
entiation and integration of the polynomial coefficients.

Harmonic Substitution

An operation which is of great importance in Fourier operations is the harmonic
substitution. This is the substitution of the sum of some angles and a general ex-
pression for an angle. In order to preserve the format, the mechanism uses the
translations

sin(θ +A)⇒ sin(θ) cos(A) + cos(θ) sin(A)

cos(θ +A)⇒ cos(θ) cos(A)− sin(θ) sin(A)

and then assuming that the value A is small it can be replaced by its expansion:

sin(θ +A)⇒ sin(θ){1−A2/2! +A4/4! . . .}+
cos(θ){A−A3/3! +A5/5! . . .}

cos(θ +A)⇒ cos(θ){1−A2/2! +A4/4! . . .}−
sin(θ){A−A3/3! +A5/5! . . .}

If a truncation is set for large powers of the polynomial variables then the series
will terminate. In CAMAL the HSUB operation took five arguments; the original
expression, the angle for which there is a substitution, the new angular part, the
expression part (A in the above), and the number of terms required.

The actual coding of the operation was not as expressed above, but by the use of
Taylor’s theorem. As has been noted above the differentiation of a harmonic series
is particularly easy.

Truncation of Series

The main use of Fourier series systems is in generating perturbation expansions,
and this implies that the calculations are performed to some degree of the small
quantities. In the original CAMAL all variables were assumed to be equally small
(a restriction removed in later versions). By maintaining polynomials in increasing
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maximum order it is possible to truncate the multiplication of two polynomials.
Assume that we are multiplying the two polynomials

A = a0 + a1 + a2 + . . .

B = b0 + b1 + b2 + . . .

If we are generating the partial answer

ai(b0 + b1 + b2 + . . .)

then if for some j the product aibj vanishes, then so will all products aibk for
k > j. This means that the later terms need not be generated. In the product of
1+ x+ x2 + x3 + . . .+ x10 and 1+ y+ y2 + y3 + . . .+ y10 to a total order of 10
instead of generating 100 term products only 55 are needed. The ordering can also
make the merging of the new terms into the answer easier.

20.8.3 Towards a CAMAL Module

For the purposes of this work it was necessary to reproduce as many of the ideas
of CAMAL as feasible within the REDUCE framework and philosophy. It was not
intended at this stage to produce a complete product, and so for simplicity a number
of compromises were made with the “no restrictions” principle in REDUCE and
the space and time efficiency of CAMAL. This section describes the basic design
decisions.

Data Structures

In a fashion similar to CAMAL a two level data representation is used. The coef-
ficients are the standard quotients of REDUCE, and their representation need not
concern us further. The angular part is similar to that of CAMAL, but the ability to
pack angle multipliers and use a single bit for the function are not readily available
in Standard LISP, so instead a longer vector is used. Two versions were written.
One used a balanced tree rather than a linear list for the Fourier terms, this being a
feature of CAMAL which was considered but never coded. The other uses a simple
linear representation for sums. The angle multipliers are held in a separate vector
in order to allow for future flexibility. This leads to a representation as a vector of
length 6 or 4;

Version1: [ BalanceBits, Coeff, Function, Angles,
LeftTree, RightTree ]

Version2: [ Coeff, Function, Angles, Next ]

where the Angles field is a vector of length 8, for the multipliers. It was decided
to forego packing as for portability we do not know how many to pack into a small
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integer. The tree system used is AVL, which needs 2 bits to maintain balance infor-
mation, but these are coded as a complete integer field in the vector. We can expect
the improvements implicit in a binary tree to be advantageous for large expressions,
but the additional overhead may reduce its utility for smaller expressions.

A separate vector is kept relating the position of an angle to its print name, and
on the property list of each angle the allocation of its position is kept. So long as
the user declares which variables are to be treated as angles this mechanism gives
flexibility which was lacking in CAMAL.

Linearisation

As in the CAMAL system the linearisation of products of sines and cosines is done
not by pattern matching but by direct calculation at the heart of the product func-
tion, where the transformations (1) through (3) are made in the product of terms
function. A side effect of this is that there are no simple relations which can be used
from within the Fourier multiplication, and so a full addition of partial products is
required. There is no need to apply linearisations elsewhere as a special case. Ad-
dition, differentiation and integration cannot generate such products, and where
they can occur in substitution the natural algorithm uses the internal multiplication
function anyway.

Substitution

Substitution is the main operation of Fourier series. It is useful to consider three
different cases of substitutions.

1. Angle Expression for Angle:

2. Angle Expression + Fourier Expression for Angle:

3. Fourier Expression for Polynomial Variable.

The first of these is straightforward, and does not require any further comment.
The second substitution requires a little more care, but is not significantly difficult
to implement. The method follows the algorithm used in CAMAL, using TAYLOR
series. Indeed this is the main special case for substitution.

The problem is the last case. Typically many variables used in a Fourier series
program have had a WEIGHT assigned to them. This means that substitution must
take account of any possible WEIGHTs for variables. The standard code in RE-
DUCE does this in effect by translating the expression to prefix form, and recal-
culating the value. A Fourier series has a large number of coefficients, and so this
operations are repeated rather too often. At present this is the largest problem area
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with the internal code, as will be seen in the discussion of the Disturbing Function
calculation.

20.8.4 Integration with REDUCE

The Fourier module needs to be seen as part of REDUCE rather than as a separate
language. This can be seen as having internal and external parts.

Internal Interface

The Fourier expressions need to co-exist with the normal REDUCE syntax and
semantics. The prototype version does this by (ab)using the module method, based
in part on the TPS code [PB90]. Of course Fourier series are not constant, and so
are not really domain elements. However by asserting that Fourier series form a
ring of constants REDUCE can arrange to direct basic operations to the Fourier
code for addition, subtraction, multiplication and the like.

The main interface which needs to be provided is a simplification function for
Fourier expressions. This needs to provide compilation for linear sums of angles,
as well as constructing sine and cosine functions, and creating canonical forms.

User Interface

The creation of hdiff and hint functions for differentiation disguises this. An
unsatisfactory aspect of the interface is that the tokens sin and cos are already in
use. The prototype uses the operator form

fourier sin(u)

to introduce harmonically represented sine functions. An alternative of using the
tokens f_sin and f_cos is also available.

It is necessary to declare the names of the angles, which is achieved with the dec-
laration

harmonic theta, phi;

At present there is no protection against using a variable as both an angle and a
polynomial variable. This will nooed to be done in a user-oriented version.
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20.8.5 The Simple Experiments

The REDUCE test file contains a simple example of a Fourier calculation, deter-
mining the value of (a1 cos(wt) + a3 cos(3wt) + b1 sin(wt) + b3 sin(3wt))

3. For
the purposes of this system this is too trivial to do more than confirm the correct
answers.

The simplest non-trivial calculation for a Fourier series manipulator is to solve
Kepler’s equation for the eccentric anomoly E in terms of the mean anomoly u,
and the eccentricity of an orbit e, considered as a small quantity

E = u+ e sinE

The solution procedes by repeated approximation. Clearly the initial approxima-
tion is E0 = u. The nth approximation can be written as u + An, and so An can
be calculated by

Ak = e sin(u+Ak−1)

This is of course precisely the case for which the HSUB operation is designed, and
so in order to calculate En − u all one requires is the code

bige := fourier 0;
for k:=1:n do <<

wtlevel k;
bige:=fourier e * hsub(fourier(sin u), u, u, bige, k);

>>;
write "Kepler Eqn solution:", bige$

It is possible to create a regular REDUCE program to simulate this (as is done for
example in Barton and Fitch[BF72], page 254). Comparing these two programs
indicates substantial advantages to the Fourier module, as could be expected.
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Solving Kepler’s Equation
Order REDUCE Fourier Module

5 9.16 2.48
6 17.40 4.56
7 33.48 8.06
8 62.76 13.54
9 116.06 21.84
10 212.12 34.54
11 381.78 53.94
12 692.56 82.96
13 1247.54 125.86
14 2298.08 187.20
15 4176.04 275.60
16 7504.80 398.62
17 13459.80 569.26
18 *** 800.00
19 *** 1116.92
20 *** 1536.40

These results were with the linear representation of Fourier series. The tree rep-
resentation was slightly slower. The ten-fold speed-up for the 13th order is most
satisfactory.

20.8.6 A Medium-Sized Problem

Fourier series manipulators are primarily designed for large-scale calculations, but
for the demonstration purposes of this project a medium problem is considered.
The first stage in calculating the orbit of the Moon using the Delaunay theory (of
perturbed elliptic motion for the restricted 3-body problem) is to calculate the en-
ergy of the Moon’s motion about the Earth — the Hamiltonian of the system. This
is the calculation we use for comparisons.

Mathematical Background

The full calculation is described in detail in [Bro96], but a brief description is given
here for completeness, and to grasp the extent of the calculation.
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Referring to the figure 1 which gives the cordinate system, the basic equations are

S = (1− γ2) cos(f + g + h− f ′ − g′ − h′)
+ γ2 cos(f + g − h+ f ′ + g′ + h′) (20.40)

r = a(1− e cosE) (20.41)

l = E − e sinE (20.42)

a =
rdE

dl
(20.43)

r2df

dl
= a2(1− e2)

1
2 (20.44)
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}
(20.45)

There are similar equations to (20.41) to (20.44) for the quantities r′, a′, e′, l′, E′

and f ′ which refer to the position of the Sun rather than the Moon. The problem
is to calculate the expression R as an expansion in terms of the quantities e, e′, γ,
a/a′, l, g, h, l′, g′ and h′. The first three quantities are small quantities of the first
order, and a/a′ is of second order.

The steps required are

1. Solve the Kepler equation (20.42)

2. Substitute into (20.41) to give r/a in terms of e and l.

3. Calculate a/r from (20.43) and f from (20.44)

4. Substitute for f and f ′ into S using (20.40)

5. Calculate R from S, a′/r′ and r/a

The program is given in the Appendix.

Results

The Lunar Disturbing function was calculated by a direct coding of the previous
sections’ mathematics. The program was taken from Barton and Fitch [BF72] with
just small changes to generalise it for any order, and to make it acceptable for
REDUCE 3.4. The Fourier program followed the same pattern, but obviously used
the HSUB operation as appropriate and the harmonic integration. It is very similar
to the CAMAL program in [BF72].
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The disturbing function was calculated to orders 2, 4 and 6 using Cambridge LISP
on an HLH Orion 1/05 (Intergraph Clipper), with the three programs α) REDUCE
3.4, β) REDUCE 3.4 + Camal Linear Module and γ) REDUCE 3.4 + Camal AVL
Module. The timings for CPU seconds (excluding garbage collection time) are
summarised the following table:

Order of DDF REDUCE Camal Linear Camal Tree
2 23.68 11.22 12.9
4 429.44 213.56 260.64
6 > 7500 3084.62 3445.54

If these numbers are normalised so REDUCE calculating the DDF is 100 units for
each order the table becomes

Order of DDF REDUCE Camal Linear Camal Tree
2 100 47.38 54.48
4 100 49.73 60.69
6 100 < 41.13 < 45.94

From this we conclude that a doubling of speed is about correct, and although the
balanced tree system is slower as the problem size increases the gap between it and
the simpler linear system is narrowing.

It is disappointing that the ratio is not better, nor the absolute time less. It is worth
noting in this context that Jefferys claimed that the sixth order DDF took 30s on
a CDC6600 with TRIGMAN in 1970 [Jef70], and Barton and Fitch took about
1s for the second order DDF on TITAN with CAMAL [BF72]. A closer look at
the relative times for individual sections of the program shows that the substitution
case of replacing a polynomial variable by a Fourier series is only marginally faster
than the simple REDUCE program. In the DDF program this operation is only used
once in a major form, substituting into the Legendre polynomials, which have been
previously calculated by Rodrigues formula. This suggests that we replace this
with the recurrence relationship.

Making this change actually slows down the normal REDUCE by a small amount
but makes a significant change to the Fourier module; it reduces the run time for
the 6th order DDF from 3084.62s to 2002.02s. This gives some indication of the
problems with benchmarks. What is clear is that the current implementation of
substitution of a Fourier series for a polynomial variable is inadequate.



452 CHAPTER 20. USER CONTRIBUTED PACKAGES

20.8.7 Conclusion

The Fourier module is far from complete. The operations necessary for the solution
of Duffing’s and Hill’s equations are not yet written, although they should not
cause much problem. The main defficiency is the treatment of series truncation; at
present it relies on the REDUCE wtlevel mechanism, and this seems too coarse
for efficient truncation. It would be possible to re-write the polynomial manipulator
as well, while retaining the REDUCE syntax, but that seems rather more than one
would hope.

The real failure so far is the large time lag between the REDUCE-based system on a
modern workstation against a mainframe of 25 years ago running a special system.
The CAMAL Disturbing function program could calculate the tenth order with a
maximum of 32K words (about 192Kbytes) whereas this system failed to calculate
the eigth order in 4Mbytes (taking 2000s before failing). I have in my archives
the output from the standard CAMAL test suite, which includes a sixth order DDF
on an IBM 370/165 run on 2 June 1978, taking 22.50s and using a maximum of
15459 words of memory for heap — or about 62Kbytes. A rough estimate is that
the Orion 1/05 is comparable in speed to the 360/165, but with more real memory
and virtual memory.

However, a simple Fourier manipulator has been created for REDUCE which per-
forms between twice and three times the speed of REDUCE using pattern match-
ing. It has been shown that this system is capable of performing the calculations of
celestial mechanics, but it still seriously lags behind the efficiency of the specialist
systems of twenty years before. It is perhaps fortunate that it was not been possible
to compare it with a modern specialist system.

There is still work to do to provide a convenient user interface, but it is intended to
develop the system in this direction. It would be pleasant to have again a system of
the efficiency of CAMAL(F).

I would like to thank Codemist Ltd for the provision of computing resources for
this project, and David Barton who taught be so much about Fourier series and
celstial mechanics. Thank are also due to the National Health Service, without
whom this work and paper could not have been produced.

Appendix: The DDF Function

array p(n/2+2);
harmonic u,v,w,x,y,z;
weight e=1, b=1, d=1, a=1;

%% Generate Legendre Polynomials to sufficient order
for i:=2:n/2+2 do <<
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p(i):=(h*h-1)^i;
for j:=1:i do p(i):=df(p(i),h)/(2j)

>>;

%%%%%%%%%%%%%%%% Step1: Solve Kepler equation
bige := fourier 0;
for k:=1:n do <<

wtlevel k;
bige:=fourier e * hsub(fourier(sin u), u, u, bige, k);

>>;

%% Ensure we do not calculate things of
%% too high an order
wtlevel n;

%%%%%%%%%%%%%%%% Step 2: Calculate r/a
%%%%%%%%%%%%%%%% in terms of e and l
dd:=-e*e; hh:=3/2; j:=1; cc := 1;
for i:=1:n/2 do <<
j:=i*j; hh:=hh-1; cc:=cc+hh*(dd^i)/j

>>;
bb:=hsub(fourier(1-e*cos u), u, u, bige, n);
aa:=fourier 1+hdiff(bige,u);
ff:=hint(aa*aa*fourier cc,u);

%%%%%%%%%%%%%%%% Step 3: a/r and f
uu := hsub(bb,u,v); uu:=hsub(uu,e,b);
vv := hsub(aa,u,v); vv:=hsub(vv,e,b);
ww := hsub(ff,u,v); ww:=hsub(ww,e,b);

%%%%%%%%%%%%%%%% Step 4: Substitute f and f’ into S
yy:=ff-ww; zz:=ff+ww;
xx:=hsub(fourier((1-d*d)*cos(u)),u,u-v+w-x-y+z,yy,n)+

hsub(fourier(d*d*cos(v)),v,u+v+w+x+y-z,zz,n);

%%%%%%%%%%%%%%%% Step 5: Calculate R
zz:=bb*vv; yy:=zz*zz*vv;

on fourier;
for i := 2:n/2+2 do <<

wtlevel n+4-2i; p(i) := hsub(p(i), h, xx) >>;

wtlevel n;
for i:=n/2+2 step -1 until 3 do
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p(n/2+2):=fourier(a*a)*zz*p(n/2+2)+p(i-1);
yy*p(n/2+2);
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20.9 CANTENS: A Package for Manipulations and Sim-
plifications of Indexed Objects

This package creates an environment which allows the user to manipulate and sim-
plify expressions containing various indexed objects like tensors, spinors, fields
and quantum fields.

Author: Hubert Caprasse

20.9.1 Introduction

CANTENS is a package that creates an environment inside REDUCE which allows
the user to manipulate and simplify expressions containing various indexed objects
like tensors, spinors, fields and quantum fields. Briefly said, it allows him

- to define generic indexed quantities which can eventually depend implicitly
or explicitly on any number of variables;

- to define one or several affine or metric (sub-)spaces, and to work within
them without difficulty;

- to handle dummy indices and simplify adequatly expressions which contain
them.

Beside the above features, it offers the user:

1. Several invariant elementary tensors which are always used in the applica-
tions involving the use of indexed objects like delta, epsilon, eta, and
the generalized delta function.

2. The possibility to define any metric and to make it bloc-diagonal if he wishes
to.

3. The capability to symmetrize or antisymmetrize any expression.

4. The possibility to introduce any kind of symmetry (even partial symmetries)
for the indexed objects.

5. The choice to work with commutative, non-commutative or anticommutative
indexed objects.

In this package, one cannot find algorithms or even specific objects (i.e. like the
covariant derivative or the SU(3) group structure constants) which are of used either
in nuclear and particle physics. The objective of the package is simply to allow the
user to easily formulate his algorithms in the notations he likes most. The package
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is also conceived so as to minimize the number of new commands. However, the
large number of new capabilities inherently implies that quite a substantial number
of new functions and commands must be used. On the other hand, in order to
avoid too many error or warning messages the package assumes, in many cases,
that the user is reponsible of the consistency of its inputs. The author is aware that
the package is still perfectible and he will be grateful to all people who shall spare
some time to communicate bugs or suggest improvements.

The documentation below is separated into four sections. In the first one, the
space(s) properties and definitions are described.

In the second one, the commands to geberate and handle generic indexed quantities
(called abusively tensors) are illustrated. The manipulation and control of free and
dummy indices is discussed.

In the third one, the special tensors are introduced and their properties discussed
especially with respect to their ability to work simultaneously within several sub-
spaces.

The last section, which is also the most important, is devoted entirely to the simpli-
fication function canonical. This function originates from the package DUMMY

and has been substantially extended . It takes account of all symmetries, make
dummy summations and seeks a “canonical” form for any tensorial expression.
Without it, the present package would be much less useful.

When CANTENS is loaded, the packages ASSIST and DUMMY are also loaded.

20.9.2 Handling of space(s)

One can work either in a single space environment or in a multiple space environ-
ment. After the package is loaded, the single space environment is set and a unique
space is defined. It is euclidian, and has a symbolic dimension equal to dim. The
single space environment is determined by the switch onespace which is turned
on. One can verify the above assertions as follows wholespace_dim:

onespace ?; => yes

wholespace_dim ?; => dim

signature ?; => 0

One can introduce a pseudoeuclidian metric for the above space by the command
signature and verify that the signature is indeed 1:

signature 1;
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signature ?; => 1

In principle the signature may be set to any positive integer. However, presently,
the package cannot handle signatures larger than 1. One gets the Minkowski-like
space metric 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


which corresponds to the convention of high energy physicists. It is possible to
change it into the astrophysicists convention using the command global_sign:

global_sign ?; => 1

global_sign (-1);

global_sign ?; => -1

This means that the actual metric is now (−1, 1, 1, 1). The space dimension may,
of course, be assigned at will using the function wholespace_dim. Below, it
is assigned to 4:

wholespace_dim 4; ==> 4

When the switch onespace is turned off, the system assumes that this default
space is non-existent and, therefore, that the user is going to define the space(s) in
which he wants to work. Unexpected error messages will occur if it is not done.
Once the switch is turned off many more functions become active. A few of them
are available in the algebraic mode to allow the user to properly conctruct and
control the properties of the various (sub-)spaces he is going to define and, also, to
assign symbolic indices to some of them.

define_spaces is the space constructor and wholespace is a reserved identi-
fier which is meant to be the name of the global space if subspaces are introduced.
Suppose we want to define a unique space, we can choose for its any name but
choosing wholespace will be more efficient. On the other hand, it leaves open
the possibility to introduce subspaces in a more transparent way. So one writes, for
instance,:

define_spaces wholespace=

{6,signature=1,indexrange=0 .. 5}; ==>t

The arguments inside the list, assign respectively the dimension, the signature and
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the range of the numeric indices which is allowed. Notice that the range starts from
0 and not from 1. This is made to conform with the usual convention for spaces of
signature equal to 1. However, this is not compulsory. Notice that the declaration
of the indexrange may be omitted if this is the only defined space. There are two
other options which may replace the signature option, namely euclidian and
affine. They have both an obvious significance.

In the subsequent example, an eleven dimension global space is defined and two
subspaces of this space are specified. Notice that no indexrange has been declared
for the entire space. However, the indexrange declaration is compulsory for sub-
spaces otherwise the package will improperly work when dealing with numeric
indices.

define_spaces wholespace={11,signature=1}; ==> t

define_spaces mink=

{4,signature=1,indexrange=0 .. 3}; ==> t

define_spaces eucl=

{6,euclidian,indexrange=4 .. 9}; ==> t

To remind ones the space context in which one is working, the use of the func-
tion show_spaces is required. Its output is an algebraic value from which the
user can retrieve all the informations displayed. After the declarations above, this
function gives:

show_spaces(); ==>

{{wholespace,11,signature=1}

{mink,4,signature=1,indexrange=0..3},

{eucl,6,euclidian,indexrange=4..9}}

If an input error is made or if one wants to change the space framework, one cannot
directly redefine the relevant space(s). For instance, the input

define_spaces eucl=

{7,euclidian,indexrange=4 .. 9}; ==>

*** Warning: eucl cannot be (or is already)
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defined as space identifier
t

which aims to fill all dimensions present in wholespace tells that the space
eucl cannot be redefined. To redefine it effectively, one is to remove the exist-
ing definition first using the function rem_spaces which takes any number of
space-names as its argument. Here is the illustration:

rem_spaces eucl; ==> t

show_spaces(); ==>

{{wholespace,11,signature=1},

{mink,4,signature=1,indexrange=0..3}}

define_spaces eucl=

{7,euclidian,indexrange=4 .. 10}; ==> t

show_spaces(); ==>

{{wholespace,11,signature=1},

{mink,4,signature=1,indexrange=0..3},

{eucl,7,euclidian,indexrange=4..10}}

Here, the user is entirely responsible of the coherence of his construction. The
system does NOT verify it but will incorrectly run if there is a mistake at this level.

When two spaces are direct product of each other (as the color and Minkowski
spaces in quantum chromodynamics), it is not necessary to introduce the global
space wholespace.

“Tensors” and symbolic indices can be declared to belong to a specific space or
subspace. It is in fact an essential ingredient of the package and make it able
to handle expressions which involve quantities belonging to several (sub-)spaces
or to handle bloc-diagonal “tensors”. This will be discussed in the next section.
Here, we just mention how to declare that some set of symbolic indices belong to
a specific (sub-)space or how to declare them to belong to any space. The relevant
command is mk_ids_belong_space whose syntax is

mk_ids_belong_space(〈list of indices〉,〈space〉 | 〈subspace identifier〉)
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For example, within the above declared spaces one could write:

mk_ids_belong_space({a0,a1,a2,a3},mink); ==> t

mk_ids_belong_space({x,y,z,u,v},eucl); ==> t

The command mk_ids_belong_anyspace allows to remake them usable ei-
ther in wholespace if it is defined or in anyone among the defined spaces. For
instance, the declaration:

mk_ids_belong_anyspace a1,a2; ==> t

tells that a1 and a2 belong either to mink or to eucl or to wholespace.

20.9.3 Generic tensors and their manipulation

Definition

The generic tensors handled by CANTENS are objects much more general than
usual tensors. The reason is that they are not supposed to obey well defined trans-
formation properties under a change of coordinates. They are only indexed quan-
tities. The indices are either contravariantly (upper indices) or covariantly (lower
indices) placed. They can be symbolic or numeric. When a given index is found
both in one upper and in one lower place, it is supposed to be summed over all
space-coordinates it belongs to viz. it is a dummy index and automatically recog-
nized as such. So they are supposed to obey the summation rules of tensor calcu-
lus. This why and only why they are called tensors. Moreover, aside from indices
they may also depend implicitly or explicitly on any number of variables. Within
this definition, tensors may also be spinors, they can be non-commutative or anti-
commutative, they may also be algebra generators and represent fields or quantum
fields.

Implications of TENSOR declaration

The procedure tensor which takes an arbitrary number of identifiers as argument
defines them as operator-like objects which admit an arbitrary number of indices.
Each component has a formal character and may or may not belong to a specific
(sub-)space. Numeric indices are also allowed. The way to distinguish upper and
lower indices is the same as the one in the package EXCALC e.g. −a is a lower
index and a is an upper index. A special printing function has been created so as
to mimic as much as possible the way of writing such objects on a sheet of paper.
Let us illustrate the use of tensor:
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tensor te; ==> t

te(3,a,-4,b,-c,7); ==>
3 a b 7

te
4 c

te(3,a,{x,y},-4,b,-c,7); ==>

3 a b 7
te (x,y)

4 c

te(3,a,-4,b,{u,v},-c,7); ==>

3 a b 7
te (u,v)

4 c

te({x,y}); ==> te(x,y)

Notice that the system distinguishes indices from variables on input solely on the
basis that the user puts variables inside a list.

The dependence can also be declared implicit through the REDUCE command
depend which is generalized so as to allow to declare a tensor to depend on

another tensor irrespective of its components. It means that only one declaration
is enough to express the dependence with respect to all its components. A simple
example:

tensor te,x;

depend te,x;

df(te(a,-b),x(c)); ==>

a c
df(te ,x )

b
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Therefore, when all objects are tensors, the dependence declaration is valid for all
indices.

One can also avoid the trouble to place the explicit variables inside a list if one de-
clare them as variables through the command make_variables. This property
can also be removed17 using remove_variables:

make_variables x,y; ==> t

te(x,y); ==> te(x,y)

te(x,y,a); ==>

a
te (x,y)

remove_variables x; ==> t

te(x,y,a); ==>

x a
te (y)

If one does that one must be careful not to substitute a number to such declared
variables because this number would be considered as an index and no longer as a
variable. So it is only useful for formal variables.

A tensor can be easily eliminated using the function rem_tensor. It has the
syntax

rem_tensor t1,t2,t3 ....;

Dummy indices recognition

For all individual tensors met by the evaluator, the system will analyse the writ-
ten indices and will detect those which must be considered dummy according to
the usual rules of tensor calculus. Those indices will be given the dummy prop-
erty and will no longer be allowed to play the role of free indices unless the user

17One important feature of this package is its reversibility viz. it gives the user the means to erase
its previous operations at any time. So, most functions described below do possess “removing” action
companions.
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removes this dummy property. In that way, the system checks immediately the
consistency of an input. Three functions are at the disposal of the user to con-
trol dummy indices. They are dummy_indices, rem_dummy_indices The
following illustrates their use as well as the behaviour of the system:

dummy_indices(); ==> {} % In a fresh environment

te(a,b,-c,-a); ==>

a b
te

c a

dummy_indices(); ==> {a}

te(a,b,-c,a); ==>

***** ((c)(a b a)) are inconsistent lists of indices

% a cannot be found twice as an upper index

te(a,b,-b,-a); ==>

a b
te

b a

dummy_indices(); ==> {b,a}

te(d,-d,d); ==>

***** ((d)(d d)) are inconsistent lists of indices

dummy_indices(); ==> {d,b,a}

rem_dummy_indices d; ==> t

dummy_indices(); ==> {b,a}

te(d,d); ==>

d d
te % This is allowed again.
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dummy_indices(); ==> {b,a}

rem_dummy_indices(); ==> t

dummy_indices(); ==> {}

Other verifications of coherence are made when space specifications are introduced
both in the ON and OFF onespace environment. We shall discuss them later.

Substitutions, assignments and rewriting rules

The user must be able to manipulate and give specific characteristics to the generic
tensors he has introduced. Since tensors are essentially REDUCE operators, the
usual commands of the system are available. However, some limitations are im-
plied by the fact that indices and, especially numeric indices, must always be prop-
erly recognized before any substitution or manipulation is done. We have gathered
below a set of examples which illustrate all the “delicate” points. First, the substi-
tutions:

sub(a=-c,te(a,b)); ==>

b
te

c

sub(a=-1,te(a,b)); ==>

b
te

1

sub(a=-0,te(a,b)); ==>

0 b
te % sub has replaced -0 by 0. wrong!

sub(a=-!0,te(a,b)); ==>

b
te % right

0

The substitution of an index by -0 is the only one case where there is a problem.
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The operator sub replaces -0 by 0 because it does not recognize 0 as an index of
course. Such a recognition is context dependent and implies a modification of sub
for this single exceptional case. Therefore,we have opted, not do do so and to use
the index 0 which is simply !0 instead of 0.

Second, the assignments. Here, we advise the user to rely on the operator==18

instead of the operator :=. Again, the reason is to avoid the problem raised above
in the case of substitutions. := does not evaluate its left hand side so that -0 is not
recognized as an index and simplified to 0 while the == operator evaluates both
its left and right hand sides and does recognize it. The disadvantage of == is that
it demands that a second assignement on a given component be made only after
having suppressed explicitly the first assignement. This is done by the function
rem_value_tens which can be applied on any component. We stress, however,
that if one is willing to use -!0 instead of -0 as the lower 0 index, the use of := is
perfectly legitimate:

te({x,y},a,-0)==x*y*te(a,-0); ==>

a
te *x*y

0

te({x,y},a,-0); ==>

a
te *x*y

0

te({x,y},a,0); ==>

a 0
te (x,y)

te({x,y},a,-0)==x*y*te(a,-0); ==>

a

***** te *x*y invalid as setvalue kernel
0

rem_value_tens te({x,y},a,-0);

18See the ASSIST documentation for its description.
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te({x,y},a,-0); ==>

a
te (x,y)

0

te({x,y},a,-0)==(x+y)*te(a,-0); ==>

a
te *(x + y)

0

In the elementary application below, the use of a tensor avoids the introduction of
two different operators and makes the calculation more readable.

te(1)==sin th * cos phi; ==> cos(phi)*sin(th)

te(-1)==sin th * cos phi; ==> cos(phi)*sin(th)

te(2)==sin th * sin phi; ==> sin(phi)*sin(th)

te(-2)==sin th * sin phi; ==> sin(phi)*sin(th)

te(3)==cos th ; ==> cos(th)

te(-3)==cos th ; ==> cos(th)

for i:=1:3 sum te(i)*te(-i); ==>

2 2 2 2 2
cos(phi) *sin(th) + cos(th) + sin(phi) *sin(th)

rem_value_tens te;

te(2); ==>

2
te

There is no difference in the manipulation of numeric indices and numeric tensor
indices. The function rem_value_tens when applied to a tensor prefix sup-
presses the value of all its components. Finally, there is no “interference” with i as
a dummy index and i as a numeric index in a loop.
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Third, rewriting rules. They are either global or local and can be used as in RE-
DUCE. Again, here, the -0 index problem exists each time a substitution by the
index -0 must be made in a template.

% LET:

let te({x,y},-0)=x*y;

te({x,y},-0); ==> x*y

te({x,y},+0); ==>

0
te (x,y)

te({x,u},-0); ==>

te (x,u)
0

% FOR ALL .. LET:

for all x,a let te({x},a,-b)=x*te(a,-b);

te({u},1,-b); ==>

1
te *u

b

te({u},c,-b); ==>

c
te *u

b

te({u},b,-b); ==>

b
te *u

b

te({u},a,-a); ==>
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a
te (u)

a

for all x,a clear te({x},a,-b);

te({u},c,-b); ==>

c
te (u)

b

for all a,b let te({x},a,-b)=x*te(a,-b);

te({x},c,-b); ==>

c
te *x

b

te({x},a,-a); ==>

a
te *x

a

% The index -0 problem:

te({x},a,-0); ==> % -0 becomes +0 in the template

a
te (x) % the rule does not apply.

0

te({x},0,-!0); ==>

0
te *x % here it applies.

0

% WHERE:
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rul:={te(~a) => sin a}; ==>

a
rul := {te => sin(a)}

te(1) where rul; ==> sin(1)

te(1); ==>

1
te

% with variables:

rul1:={te(~a,{~x,~y}) => x*y*sin(a)}; ==>

~a
rul1 := {te (~x,~y) => x*y*sin(a)}

te(a,{x,y}) where rul1; ==> sin(a)*x*y

te({x,y},a) where rul1; ==> sin(a)*x*y

rul2:={te(-~a,{~x,~y}) => x*y*sin(-a)};

rul2 := {te (~x,~y) => x*y*sin(-a)}
~a

te(-a,{x,y}) where rul2; ==> -sin(a)*x*y

te({x,y},-a) where rul2; ==> -sin(a)*x*y

Notice that the position of the list of variables inside the rule may be chosen at will.
It is an irrelevant feature of the template. This may be confusing, so, we advise to
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write the rules not as above but placing the list of variables in front of all indices
since it is in that canonical form which it is written by the simplification function
of individual tensors.

Behaviour under space specifications

The characteristics and the behaviour of generic tensors described up to now are
independent of all space specifications. They are complete as long as we confine
to the default space which is active when starting CANTENS. However, as soon as
some space specification is introduced, it has some consequences one the generic
tensor properties. This is true both when onespace is switched ON or OFF. Here
we shall describe how to deal with these features.

When onespace is ON, if the space dimension is set to an integer, numeric in-
dices of any generic tensors are forced to be less or equal that integer if the sig-
nature is 0 or less than that integer if the signature is equal to 1. The following
illustrates what happens.

on onespace;

wholespace_dim 4; ==> 4

signature 0; ==> 0

te(3,a,-b,7); ==> ***** numeric indices out of range

te(3,a,-b,3); ==>

3 a 3
te

b

te(4,a,-b,4); ==>

4 a 4
te

b

sub(a=5,te(3,a,-b,3));

==> ***** numeric indices out of range
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signature 1; ==> 1

% Now indices range from 0 to 3:

te(4,a,-b,4);

==> ***** numeric indices out of range

te(0,a,-b,3); ==>

0 a 3
te

b

When onespace is OFF, many more possibilities to control the input or to give
specific properties to tensors are open. For instance, it is possible to declare that
a tensor belongs to one of them. It is also possible to declare that some indices
belongs to one of them. It is even possible to do that for numeric indices thanks
to the declaration indexrange included optionally in the space definition generated
by define_spaces. First, when onespace is OFF, the run equivalent to the
previous one is like the following:

off onespace;

define_spaces wholespace={6,signature=1); ==> t

show_spaces(); ==> {{wholespace,6,signature=1}}

make_tensor_belong_space(te,wholespace);

==> wholespace

te(4,a,-b,6); ==>

***** numeric indices out of range

te(4,a,-b,5); ==>

4 a 5
te

b
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rem_spaces wholespace;

define_spaces wholespace={4,euclidean}; ==> t

te(a,5,-b); ==> ***** numeric indices out of range

te(a,4,-b); ==>

a 4
te

b

define_spaces eucl={1,signature=0}; ==> t

show_spaces(); ==>

{{wholespace,5,signature=1},

{eucl,1,signature=0}}

make_tensor_belong_space(te,eucl); ==> eucl

te(1); ==>

1
te

te(2); ==> ***** numeric indices out of range

te(0); ==>

0
te

In the run, the new function make_tensor_belong_space has been used.
One may be surprised that te(0) is allowed in the end of the previous run and,
indeed, it is incorrect that the system allows two different components to te. This
is due to an incomplete definition of the space. When one deals with spaces of inte-
ger dimensions, if one wants to control numeric indices correctly when onespace
is switched off one must also give the indexrange. So the previous run must be cor-
rected to

define_spaces eucl=
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{1,signature=0,indexrange=1 .. 1}; ==> t

make_tensor_belong_space(te,eucl); ==> eucl

te(0); ==>

***** numeric indices do not belong to (sub)-space

te(1); ==>

1
te

te(2); ==>

***** numeric indices do not belong to (sub)-space

Notice that the error message has also changed accordingly. So, now one can even
constrain the 0 component to belong to an euclidian space.

Let us go back to symbolic indices. By default, any symbolic index belongs
to the global space or to all defined partial spaces. In many cases, this is, of
course, not consistent. So, the possibility exists to declare that one or several
indices belong to a specific (sub-)space. To this end, one is to use the function
mk_ids_belong_space. Its syntax is

mk_ids_belong_space(〈list of indices〉, 〈(sub-)space identifier〉)

The function mk_ids_belong_anyspace whose syntax is the same do the
reverse operation.

Combined with the declaration make_tensor_belong_space, it allows to
express all problems which involve tensors belonging to different spaces and do
the dummy summations correctly. One can also define a tensor which has a “bloc-
diagonal” structure. All these features are illustrated in the next sections which
describe specific tensors and the properties of the extended function canonical.

20.9.4 Specific tensors

The means provided in the two previous subsection to handle generic tensors al-
ready allow to construct any specific tensor we may need. That the package con-
tains a certain number of them is already justified on the level of conviviality. How-
ever, a more important justification is that some basic tensors are so universaly and
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frequently used that a careful programming of these improves considerably the ro-
bustness and the efficiency of most calculations. The choice of the set of specific
tensors is not clearcut. We have tried to keep their number to a minimum but, ex-
perience, may lead us extend it without dificulty. So, up to now, the list of specific
tensors is:

- delta tensor,
- eta Minkowski tensor,
- epsilon tensor,
- del generalised delta tensor,
- metric generic tensor metric.

It is important to realize that the typewriter font names in the list are keywords for
the corresponding tensors and do not necessarily correspond to their actual names.
Indeed, the choice of the names of particular tensors is left to the user. When
startting CANTENS specific tensors are NOT available. They must be activated by
the user using the function make_partic_tens whose syntax is:

make_partic_tens(〈tensor name〉 , 〈keyword〉);

The name chosen may be the same as the keyword. As we shall see, it is never
needed to define more than one delta tensor but it is often needed to define
several epsilon tensors. Hereunder, we describe each of the above tensors espe-
cially their behaviour in a multi-space environment.

DELTA tensor

It is the simplest example of a bloc-diagonal tensor we mentioned in the previous
section. It can also work in a space which is a direct product of two spaces. There-
fore, one never needs to introduce more than one such tensor. If one is working
in a graphic environment, it is advantageous to choose the keyword as its name.
Here we choose delt. We illustrate how it works when the switch onespace is
successively switched ON and OFF.

on onespace;

make_partic_tens(delt,delta); ==> t

delt(a,b); ==>

***** bad choice of indices for DELTA tensor

% order of upper and lower indices irrelevant:
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delt(a,-b); ==>

a
delt

b

delt(-b,a); ==>

a
delt

b

delt(-a,b); ==>

b
delt

a

wholespace_dim ?; ==> dim

delt(1,-5); ==> 0

% dummy summation done:

delt(-a,a); ==> dim

wholespace_dim 4; ==> 4

delt(1,-5); ==> ***** numeric indices out of range

wholespace_dim 3; ==> 3

delt(-a,a); ==> 3

There is a peculiarity of this tensor, viz. it can serve to represent the Dirac delta
function when it has no indices and an explicit variable dependency as hereunder

delt({x-y}) ==> delt(x-y)

Next we work in the context of several spaces:
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off onespace;

define_spaces wholespace={5,signature=1}; ==> t

% we need to assign delta to wholespace
% when it exists:

make_tensor_belong_space(delt,wholespace);

delt(a,-a); ==> 5

delt(0,-0); ==>1

rem_spaces wholespace; ==> t

define_spaces wholespace={5,signature=0}; ==> t

delt(a,-a); ==> 5

delt(0,-a); ==>

***** bad value of indices for DELTA tensor

The checking of consistency of chosen indices is made in the same way as for
generic tensor. In fact, all the previous functions which act on generic ten-
sors may also affect, in the same way, a specific tensor. For instance, it was
compulsory to explicitly tell that we want delt to belong to the wholespace
make_tensor_belong_space, otherwise delt would remain defined on the
default space. In the next sample run, we display the bloc-diagonal property of the
delta tensor.

onespace ?; ==> no

rem_spaces wholespace; ==> t

define_spaces wholespace={10,signature=1}$

define_spaces d1={5,euclidian}$

define_spaces d2={2,euclidian}$

mk_ids_belong_space({a},d1); ==> t
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mk_ids_belong_space({b},d2); ==> t

% c belongs to wholespace so:

delt(c,-b); ==>

c
delt

b

delt(c,-c); ==> 10

delt(b,-b); ==> 2

delt(a,-a); ==> 5

% this is especially important:

delt(a,-b); ==> 0

The bloc-diagonal property of delt is made active under two conditions. The first
is that the system knows to which space it belongs, the second is that indices must
be declared to belong to a specific space. To enforce the same property on a generic
tensor, we have to make the make_bloc_diagonal declaration:

make_bloc_diagonal t1,t2, ...;

and to make it active, one proceeds as in the above run. Starting from a fresh
environment, the following sample run is illustrative:

off onespace;

define_spaces wholespace={6,signature=1}$

define_spaces mink={4,signature=1,indexrange=0 .. 3}$

define_spaces eucl={3,euclidian,indexrange=4 .. 6}$

tensor te;

make_tensor_belong_space(te,eucl); ==> eucl
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% the key declaration:

make_bloc_diagonal te; ==> t

% bloc-diagonal property activation:

mk_ids_belong_space({a,b,c},eucl); ==> t

mk_ids_belong_space({m1,m2},mink); ==> t

te(a,b,m1); ==> 0

te(a,b,m2); ==> 0

% bloc-diagonal property suppression:

mk_ids_belong_anyspace a,b,c,m1,m2; ==> t

te(a,b,m2); ==>

a b m2
te

ETA Minkowski tensor

The use of make_partic_tens with the keyword eta allows to create a
Minkowski diagonal metric tensor in a one or multi-space context either with the
convention of high energy physicists or in the convention of astrophysicists. Any
eta-like tensor is assumed to work within a space of signature 1. Therefore, if the
space whose metric, it is supposed to describe has a signature 0, an error message
follows if one is working in an ON onespace context and a warning when in an
OFF onespace context. Illustration:

on onespace;

make_partic_tens(et,eta); ==> t

signature 0; ==> 0;

et(-b,-a); ==>
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***** signature must be equal to 1 for ETA tensor

off onespace;

et(a,b); ==>

*** ETA tensor not properly assigned to a space

% it is then evaluated to zero:

0

on onespace;

signature 1; ==> 1

et(-b,-a); ==>

et
a b

Since et(a,-a) is evaluated to the corresponding delta tensor, one cannot
define properly an eta tensor without a simultaneous introduction of a delta
tensor. Otherwise one gets the following message:

et(a,-a); ==> ***** no name found for (delta)

So we need to issue, for instance,

make_partic_tens(delta,delta); ==> t

The value of its diagonal elements depends on the chosen global sign. The next
run illustrates this:

global_sign ?; ==> 1

et(0,0); ==> 1

et(3,3); ==> - 1

global_sign(-1); ==> -1
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et(0,0); ==> - 1

et(3,3); ==> 1

The tensor is of course symmetric . Its indices are checked in the same way as for
a generic tensor. In a multi_space context, the eta tensor must belong to a well
defined space of signature 1:

off onespace;

define_spaces wholespace={4,signature=1}$

make_tensor_belong_space(et,wholespace)$

et(a,-a); ==> 4

If the space to which et belongs to is a subspace, one must also take care to give
a space-identity to dummy indices which may appear inside it. In the following
run, the index a belongs to wholespace if it is not told to the system that it is a
dummy index of the space mink:

make_tensor_belong_anyspace et; ==> t

rem_spaces wholespace; ==> t

define_spaces wholespace={8,signature=1}; ==> t

define_spaces mink={5,signature=1}; ==> t

make_tensor_belong_space(et,mink); ==> mink

% a sits in wholespace:

et(a,-a); ==> 8

mk_ids_belong_space({a},mink); ==> t

% a sits in mink:

et(a,-a); ==> 5
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EPSILON tensors

It is an antisymmetric tensor which is the invariant tensor for the unitary group
transformations in n-dimensional complex space which are continuously connected
to the identity transformation. The number of their indices are always stricty equal
to the number of space dimensions. So, to each specific space is associated a
specific epsilon tensor. Its properties are also dependent on the signature of the
space. We describe how to define and manipulate it in the context of a unique space
and, next, in a multi-space context.

Switch onespace is on

The use of make_partic_tens places it, by default, in an euclidian space if
the signature is 0 and in a Minkowski-type space if the signature is 1. For higher
signatures it is not constructed. For a space of symbolic dimension, the number
of its indices is not constrained. When it appears inside an expression, its indices
are all currently upper or lower indices. However, the system allows for mixed
positions of the indices. In that case, the output of the system is changed compared
to the input only to place all contravariant indices to the left of the covariant ones.

make_partic_tens(eps,epsilon); ==> t

eps(a,d,b,-g,e,-f); ==>

a d b e
- eps

g f

eps(a,d,b,-f,e,-f); ==> 0

% indices have all the same variance:

eps(-b,-a); ==>

- eps
a b

signature ?; ==> 0

eps(1,2,3,4); ==> 1

eps(-1,-2,-3,-4); ==> 1
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wholespace_dim 3; ==> 3

eps(-1,-2,-3); ==> 1

eps(-1,-2,-3,-4); ==>

***** numeric indices out of range

eps(-1,-2,-3,-3); ==>

***** bad number of indices for (eps) tensor

eps(a,b); ==>

***** bad number of indices for (eps) tensor

eps(a,b,c); ==>

a b c
eps

eps(a,b,b); ==> 0

When the signature is equal to 1, it is known that there exists two conventions
which are linked to the chosen value 1 or -1 of the (0, 1, . . . , n) component. So,
the sytem does evaluate all components in terms of the (0, 1, . . . , n) upper index
component. It is left to the user to assign it to 1 or -1.

signature 1; ==> 1

eps(0,1,2); ==>

0 1 2
eps

eps(-0,-1,-2); ==>

0 1 2
eps

wholespace_dim 4; ==> 4
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eps(0,1,2,3); ==>

0 1 2 3
eps

eps(-0,-1,-2,-3); ==>

0 1 2 3
- eps

% change of the global_sign convention:

global_sign(-1);

wholespace_dim 3; ==> 3

% compare with second input:

eps(-0,-1,-2); ==>

0 1 2
- eps

Switch onespace is off

As already said, several epsilon tensors may be defined. They must be assigned
to a well defined (sub-)space otherwise the simplifying function canonical will
not properly work. The set of epsilon tensors defined associated to their space-
name may be retrieved using the function show_epsilons. An important word
of caution here. The output of this function does NOT show the epsilon tensor
one may have defined in the ON onespace context. This is so because the de-
fault space has NO name. Starting from a fresh environment, the following run
illustrates this point:

show_epsilons(); ==> {}

onespace ?; ==> yes

make_partic_tens(eps,epsilon); ==> t

show_epsilons(); ==> {}

To make the epsilon tensor defined in the single space environment visible in
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the multi-space environment, one needs to associate it to a space. For example:

off onespace;

define_spaces wholespace={7,signature=1}; ==> t

show_epsilons(); ==> {} % still invisible

make_tensor_belong_space(eps,wholespace); ==>

wholespace

show_epsilons(); ==> {{eps,wholespace}}

Next, let us define an additional epsilon-type tensor:

define_spaces eucl={3,euclidian}; ==> t

make_partic_tens(ep,epsilon); ==>

*** Warning: ep MUST belong to a space
t

make_tensor_belong_space(ep,eucl); ==> eucl

show_epsilons(); ==> {{ep,eucl},{eps,wholespace}}

% We show that it is indeed working inside eucl:

ep(-1,-2,-3); ==> 1

ep(1,2,3); ==> 1

ep(a,b,c,d); ==>

***** bad number of indices for (ep) tensor

ep(1,2,4); ==>

***** numeric indices out of range

As previously, the discrimation between symbolic indices may be introduced by
assigning them to one or another space :
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rem_spaces wholespace;

define_spaces wholespace={dim,signature=1}; ==> t

mk_ids_belong_space({e1,e2,e3},eucl); ==> t

mk_ids_belong_space({a,b,c},wholespace); ==> t

ep(e1,e2,e3); ==>

e1 e2 e3
ep % accepted

ep(e1,e2,z); ==>

e1 e2 z
ep % accepted because z

% not attached to a space.

ep(e1,e2,a);==>

***** some indices are not in the space of ep

eps(a,b,c); ==>

a b c
eps % accepted because *symbolic*

% space dimension.

epsilon-like tensors can also be defined on disjoint spaces. The subsequent
sample run starts from the environment of the previous one. It suppresses the space
wholespace as well as the space-assignment of the indices a,b,c. It defines
the new space mink. Next, the previously defined eps tensor is attached to this
space. ep remains unchanged and e1,e2,e3 still belong to the space eucl.

rem_spaces wholespace; ==> t

make_tensor_belong_anyspace eps; ==> t

show_epsilons(); ==> {{ep,eucl}}

show_spaces(); ==> {{eucl,3,signature=0}}
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mk_ids_belong_anyspace a,b,c; ==> t

define_spaces mink={4,signature=1}; ==> t

show_spaces(); ==>

{{eucl,3,signature=0},

{mink,4,signature=1}}

make_tensor_belong_space(eps,mink); ==> mink

show_epsilons(); ==> {{eps,mink},{ep,eucl}}

eps(a,b,c,d); ==>

a b c d
eps

eps(e1,b,c,d); ==>

***** some indices are not in the space of eps

ep(e1,b,c,d); ==>

***** bad number of indices for (ep) tensor

ep(e1,b,c); ==>

b c e1
ep

ep(e1,e2,e3); ==>

e1 e2 e3
ep

DEL generalized delta tensor

The generalized delta function comes from the contraction of two epsilons. It is
totally antisymmetric. Suppose its name has been chosen to be gd, that the space
to which it is attached has dimension n while the name of the chosen delta tensor
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is δ, then one can define it as follows:

gda1,a2,...,anb1,b2,...,bn
=

∣∣∣∣∣∣∣∣∣
δa1b1 δa1b2 . . . δa1bn
δa2b1 δa2b2 . . . δa2bn

...
...

. . .
...

δanb1 δanb1 . . . δanb1

∣∣∣∣∣∣∣∣∣
It is, in general uneconomical to explicitly write that determinant except for par-
ticular numeric values of the indices or when almost all upper and lower indices
are recognized as dummy indices. In the sample run below, gd is defined as the
generalized delta function in the default space. The main automatic evaluations are
illustrated. The indices which are summed over are always simplified:

onespace ? ==> yes

make_partic_tens(delta,delta); ==> t

make_partic_tens(gd,del); ==> t

% immediate simplifications:

gd(1,2,-3,-4); ==> 0

gd(1,2,-1,-2); ==> 1

gd(1,2,-2,-1); ==> -1 % antisymmetric

gd(a,b,-a,-b);

==> dim*(dim - 1) % summed over dummy indices

gd(a,b,c,-a,-d,-e); ==>

b c
gd *(dim - 2)
d e

gd(a,b,c,-a,-d,-c); ==>

b 2
delta *(dim - 3*dim + 2)

d

% no simplification:
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gd(a,b,c,-d,-e,-f); ==>

a b c
gd

d e f

One can force evaluation in terms of the determinant in all cases. To this end, the
switch exdelt is provided. It is initially OFF. Switching it ON will most often
give inconveniently large outputs:

on exdelt;

gd(a,b,c,-d,-e,-f); ==>

a b c a b c
delta *delta *delta - delta *delta *delta

d e f d f e

a b c
- delta *delta *delta

e d f

a b c
+ delta *delta *delta

e f d

a b c
+ delta *delta *delta

f d e

a b c
- delta *delta *delta

f e d

In a multi-space environment, it is never necessary to define several such tensor.
The reason is that canonical uses it always from the contraction of a pair of
epsilon-like tensors. Therefore the control of indices is already done, the space-
dimension in which del is working is also well defined.
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METRIC tensors

Very often, one has to define a specific metric. The metric-type of tensors in-
clude all generic properties. The first one is their symmetry, the second one is
their equality to the delta tensor when they get mixed indices, the third one is
their optional bloc-diagonality. So, a metric (generic) tensor is generated by the
declaration

make_partic_tens(〈tensor-name〉,metric);

By default, when one is working in a multi-space environment, it is defined in
wholespace One uses the usual means of REDUCE to give it specific values. In
particular, the metric ’delta’ tensor of the euclidian space can be defined that way.
Implicit or explicit dependences on variables are allowed. Here is an illustration in
the single space environment:

make_partic_tens(g,metric); ==> t

make_partic_tens(delt,delta); ==> t

onespace ?; ==> yes

g(a,b); ==>

a b
g

g(b,a); ==>

a b
g

g(a,b,c); ==>

***** bad choice of indices for a METRIC tensor

g(a,b,{x,y}); ==>

a b
g (x,y)

g(a,-b,{x,z}); ==>
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a
delt

b

let g({x,y},1,1)=1/2(x+y);

g({x,y},1,1); ==>

x + y
-------

2

rem_value_tens g({x,y},1,1);

g({x,y},1,1); ==>

1 1
g (x,y)

20.9.5 The simplification function canonical

Tensor expressions

Up to now, we have described the behaviour of individual tensors and how they
simplify themselves whenever possible. However, this is far from being sufficient.
In general, one is to deal with objects which involve several tensors together with
various dummy summations between them. We define a tensor expression as an
arbitrary multivariate polynomial. The indeterminates of such a polynomial may
be either an indexed object, an operator, a variable or a rational number. A tensor-
type indeterminate cannot appear to a degree larger than one except if it is a trace.
The following is a tensor expression:

aa:= delt({x - y})*delt(a, - g)*delt(d, - g)

*delt(g, -r)

*eps( - d, - e, - f)*eps(a,b,c)*op(x,y) + 1; ==>
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a d g
aa := delt(x - y)*delt *delt *delt *eps

g g r d e f

a b c

*eps *op(x,y) + 1

In the above expression, delt and eps are, respectively, the delta and the
epsilon tensors, op is an operator. and delt(x-y) is the Dirac delta func-
tion. Notice that the above expression is not cohérent since the first term has a
variance while the second term is a scalar. Moreover, the dummy index g appears
three times in the first term. In fact, on input, each factor is simplified and each fac-
tor is checked for coherence not more. Therefore, if a dummy summation appears
inside one factor, it will be done whenever possible. Hereunder delt(a,-a) is
summed over:

sub(g=a,aa); ==>

a d a b c
delt(x - y)*delt *delt *eps *eps

r a d e f

*op(x,y)*dim + 1

The use of canonical

canonical is an offspring of the function with the same name of the package
DUMMY. It applies to tensor expressions as defined above. When it acts, this
functions has several features which are worth to realise:

1. It tracks the free indices in each term and checks their identity. It identifies
and verify the coherence of the various dummy index summations.

2. Dummy indices summations are done on tensor products whenever possible
since it recognises the particular tensors defined above or defined by the user.

3. It seeks a canonical form for the various simplified terms, makes the compar-
ison between them. In that way it maximises simplifications and generates a
canonical form for the output polynomial.

Its capabilities have been extended in four directions:

• It is able to work within several spaces.
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• It manages correctly expressions where formal tensor derivatives are present19.

• It takes into account all symmetries even if partial.

• As its parent function, it can deal with non-commutative and anticommuta-
tive indexed objects. So, Indexed objects may be spinors or quantum fields.

We describe most of these features in the rest of this documentation.

Check of tensor indices

Dummy indices for individual tensors are kept in the memory of the system. If
they are badly distributed over several tensors, it is canonical which gives an
error message:

tensor te,tf; ==> t

bb:=te(a,b,b)*te(-b); ==>

a b b
bb := te *te

b

canonical bb; ==>

***** ((b)(a b b)) are inconsistent lists of indices

aa:=te(b,-c)*tf(b,-c); ==>

b b
aa := te *tf % b and c are free.

c c

canonical aa; ==>

b b
te *tf

c c

bb:=te(a,c,b)*te(-b)*tf(a)$

19In DUMMY it does not take them into account
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canonical bb; ==>

a c b a
te *te *tf

b

delt(a,-a); ==> dim % a is now a dummy index

canonical bb; ==>

***** wrong use of indices (a)

The message of canonical is clear, the first sublist contains the list of all lower in-
dices, and the second one the list of all upper indices. The index b is repeated three
times. In the second example, b and c are considered as free indices, so they may
be repeated. The last example shows the interference between the check on indi-
vidual tensors and the one of canonical. The use of a as dummy index inside delt
does no longer allow a to be used as a free index in expression bb. To be usable,
one must explicitly remove it as dummy index using rem_dummy_indices.
In the fourth example there are no problems as b and c are both free indices.
canonical checks that in a tensor polynomial all do possess the same variance:

aa:=te(a,c)+x^2; ==>

a c 2
aa := te + x

canonical aa; ==>

***** scalar added with tensor(s)

aa:=te(a,b)+tf(a,c); ==>

a b a c
aa := te + tf

canonical aa; ==>

***** mismatch in free indices : ((a c) (a b))
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In the message the first two lists of incompatible indices are explicitly indicated.
So, it is not an exhaustive message and a more complete correction may be needed.
Of course, no message of that kind appears if the indices are inside ordinary oper-
ators20

dummy_names b; ==> t

cc:=op(b)*op(a,b,b); ==> cc := op(a,b,b)*op(b)

canonical cc; ==> op(a,b,b)*op(b)

clear_dummy_names; ==> t

Position and renaming of dummy indices

For a specific tensor, contravariant dummy indices are place in front of covariant
ones. This already leads to some useful simplifications. For instance:

pp:=te(a,-a)+te(-a,a)+1; ==>

a a
pp := te + te + 1

a a

canonical pp; ==>

a
2*te + 1

a

pp:=te(a,-a)+te(-b,b); ==>

b a
pp := te + te

b a

canonical pp; ==>

a
2*te

a
20This is the case inside the DUMMY package.



495

pp:=te(r,a,c,d,-a,f)+te(r,-b,c,d,b,f); ==>

r c d b f r a c d f
pp := te + te

b a

canonical pp; ==>

r a c d f
2*te

a

In the second and third example, there is also a renaming of the dummy variable
b whih becomes a. There is a loophole at this point. For some expressions one
will never reach a stable expression. This is the case for the following very simple
monom:

tensor nt; ==> t

a1:=nt(-a,d)*nt(-c,a); ==>

d a
nt *nt
a c

canonical a1; ==>

a d
nt *nt
c a

a12:=a1-canonical a1; ==>

d a a d
a12 := nt *nt - nt *nt

a c c a

canonical a12; ==>
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d a a d
- nt *nt + nt *nt % changes sign.

a c c a

In the above example, no canonical form can be reached. When applied twice on
the tensor monom a1 it gives back a1!

No change of dummy index position is allowed if a tensor belongs to an affine
space. With the tensor polynomial pp introduced above one has:

off onespace;

define_spaces aff={dd,affine}; ==> t

make_tensor_belong_space(te,aff); ==> aff

mk_ids_belong_space({a,b},aff); ==> t

canonical pp; ==>

r c d a f r a c d f
te + te

a a

The renaming of b has been made however.

Contractions and summations with particular tensors

This is a central part of the extension of canonical. The required contractions
and summations can be done in a multi-space environment as well in a single space
environment.

The case of delta

Dummy indices are recognized contracted and summed over whenever possible:

aa:=delt(a,-b)*delt(b,-c)*delt(c,-a) + 1; ==>

a b c
aa := delt *delt *delt + 1

b c a

canonical aa; ==> dim + 1
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aa:=delt(a,-b)*delt(b,-c)*delt(c,-d)*te(d,e)$

canonical aa; ==>

a e
te

canonical will not attempt to make contraction with dummy indices included
inside ordinary operators:

operator op;

aa:=delt(a,-b)*op(b,b)$

canonical aa; ==>

a
delt *op(b,b)

b

dummy_names b; ==> t

canonical aa; ==>

a
delta *op(b,b)

b

The case of eta

First, we introduce eta:

make_partic_tens(eta,eta); ==> t

signature 1; ==> 1 % necessary

aa:=delta(a,-b)*eta(b,c); ==>

a b c
aa := delt *eta

b
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canonical aa; ==>

a c
eta

canonical(eta(a,b)*eta(-b,c)); ==>

a c
eta

canonical(eta(a,b)*eta(-b,-c)); ==>

a
delt

c

canonical(eta(a,b)*eta(-b,-a)); ==> dim

canonical (eta(-a,-b)*te(d,-e,f,b)); ==>

d f
te

e a

aa:=eta(a,b)*eta(-b,-c)*te(-a,c)+1; ==>

a b c
aa := eta *eta *te + 1

b c a

canonical aa; ==>

a
te + 1

a

aa:=eta(a,b)*eta(-b,-c)*delta(-a,c)+

1+eta(a,b)*eta(-b,-c)*te(-a,c)$
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canonical aa; ==>

a
te + dim + 1

a

Let us add a generic metric tensor:

aa:=g(a,b)*g(-b,-d); ==>

a b
aa := g *g

b d

canonical aa; ==>

a
delt

d

aa:=g(a,b)*g(c,d)*eta(-c,-e)*eta(e,f)*te(-f,g); ==>

e f a b c d g
aa := eta *eta *g *g *te

c e f

canonical aa; ==>

a b d g
g *te

The case of epsilon

The epsilon tensor plays an important role in many contexts. canonical realises
the contraction of two epsilons if and only if they belong to the same space. The
proper use of canonical on expressions which contains it requires a prelimi-
nary definition of the tensor DEL. When the signature is 0; the contraction of two
epsilons gives a del-like tensor. When the signature is equal to 1, it is equal to
minus a del-like tensor. Here we choose 1 for the signature and we work in a
single space. We define the del tensor:

on onespace;

wholespace_dim dim; ==> dim
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make_partic_tens(gd,del); ==> t

signature 1; ==> 1

We define the epsilon tensor and show how canonical contracts expression
containing two21 of them:

aa:=eps(a,b)*eps(-c,-d); ==>

a b
aa := eps *eps

c d

canonical aa; ==>

a b
- gd

c d

aa:=eps(a,b)*eps(-a,-b); ==>

a b
aa := eps *eps

a b

canonical aa; ==> dim*( - dim + 1)

on exdelt;

gd(-a,-b,a,b); ==> dim*(dim - 1)

aa:=eps(a,b,c)*eps(-b,-d,-e)$

canonical aa; ==>

a c a c
delt *delt *dim - 2*delt *delt -

d e d e

21No contractions are done on expressions containing three or more epsilons which sit in the same
space. We are not sure whether it is useful to be more general than we are presently.
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a c a c
- delt *delt *dim + 2*delt * delt

e d e d

Several expressions which contain the epsilon tensor together with other special
tensors are given below as examples to treat with canonical:

aa:=eps( - b, - c)*eta(a,b)*eta(a,c); ==>

a b a c
eps *eta *eta

b c

canonical aa; ==> 0

aa:=eps(a,b,c)*te(-a)*te(-b); ==> % te is generic.

a b c
aa := eps *te *te

a b

canonical aa; ==> 0

tensor tf,tg;

aa:=eps(a,b,c)*te(-a)*tf(-b)*tg(-c)

+ eps(d,e,f)*te(-d)*tf(-e)*tg(-f); ==>

canonical aa; ==>

a b c
2*eps *te *tf *tg

a b c

aa:=eps(a,b,c)*te(-a)*tf(-c)*tg(-b)

+ eps(d,e,f)*te(-d)*tf(-e)*tg(-f)$

canonical aa; ==> 0

Since canonical is able to work inside several spaces, we can introduce also
several epsilons and make the relevant simplifications on each (sub)-spaces. This
is the goal of the next illustration.
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off onespace;

define_spaces wholespace=

{dim,signature=1}; ==> t

define_spaces subspace=

{3,signature=0}; ==> t

show_spaces(); ==>

{{wholespace,dim,signature=1},

{subspace,3,signature=0}}

make_partic_tens(eps,epsilon); ==> t

make_partic_tens(kap,epsilon); ==> t

make_tensor_belong_space(eps,wholespace);

==> wholespace

make_tensor_belong_space(kap,subspace);

==> subspace

show_epsilons(); ==>

{{eps,wholespace},{kap,subspace}}

off exdelt;

aa:=kap(a,b,c)*kap(-d,-e,-f)*eps(i,j)*eps(-k,-l)$

canonical aa; ==>

a b c i j
- gd *gd

d e f k l

If there are no index summation, as in the expression above, one can develop both
terms into the delta tensor with exdelt switched ON. In fact, the previous calcu-
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lation is correct only if there are no dummy index inside the two gd’s. If some of
the indices are dummy, then we must take care of the respective spaces in which
the two gd tensors are considered. Since, the tensor themselves do not belong to
a given space, the space identification can only be made through the indices. This
is enough since the delta-like tensor is bloc-diagonal. With aa the result of the
above illustration, one gets, for example,:

mk_ids_belong_space({a,b,c,d,e,f},wholespace)$

mk_ids_belong_space({i,j,k,l},subspace)$

sub(d=a,e=b,k=i,aa); ==>

c j 2
2*delt *delt *( - dim + 3*dim - 2)

f l

sub(k=i,l=j,aa); ==>
a b c

- 6*gd
d e f

canonical and symmetries

Most of the time, indexed objects have some symmetry property. When this prop-
erty is either full symmetry or antisymmetry, there is no difficulty to implement it
using the declarations symmetric or antisymmetric of REDUCE. However,
most often, indexed objects are neither fully symmetric nor fully antisymmetric:
they have partial or mixed symmetries . In the DUMMY package, the declaration
symtree allows to impose such type of symmetries on operators. This command
has been improved and extended to apply to tensors. In order to illustrate it, we
shall take the example of the wellknown Riemann tensor in general relativity. Let
us remind the reader that this tensor has four indices. It is separately antisymmet-
ric with respect to the interchange of the first two indices and with respect to the
interchange of the last two indices. It is symmetric with respect to the interchange
of the first two and the last two indices. In the illustration below, we show how to
express this and how canonical is able to recognize mixed symmetries:

tensor r; ==> t

symtree(r,{!+,{!-,1,2},{!-,3,4}});

rem_dummy_indices a,b,c,d; % free indices
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ra:=r(b,a,c,d); ==>

b a c d
ra := r

canonical ra; ==>

a b c d
- r

ra:=r(c,d,a,b); ==>
c d a b

ra := r

canonical ra; ==>

a b c d
r

canonical r(-c,-d,a,b); ==>

a b
r

c d

r(-c,-c,a,b); ==> 0

ra:=r(-c,-d,c,b); ==>

c b
ra := r

c d

canonical ra; ==>

b c
- r

c d

In the last illustration, contravariant indices are placed in front of covariant indices
and the contravariant indices are transposed. The superposition of the two partial
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symmetries gives a minus sign.

There exists an important (though natural) restriction on the use of SYMTREE
which is linked to the algorithm itself: Integer used to localize indices must start
from 1, be contiguous and monotoneously increasing. For instance, one is not
allow to introduce

symtree(r,{!*,{!+,1,3},{!*,2,4}});

symtree(r,{!*,{!+,1,2},{!*,4,5}};

symtree(r,{!*,{!-,1,3},{!*,2}});

but the subsequent declarations are allowed:

symtree(r,{!*,{!+,1,2},{!*,3,4}});

symtree(r,{!*,{!+,1,2},{!*,3,4,5}});

symtree(r,{!*,{!-,1,2},{!*,3}});

The first declaration endows r with a partial symmetry with respect to the first two
indices.

A side effect of symtree is to restrict the number of indices of a generic tensor.
For instance, the second declaration in the above illustrations makes r depend on
5 indices as illustrated below:

symtree(r,{!*,{!+,1,2},{!*,3,4,5}});

canonical r(-b,-a,d,c); ==>

***** Index ‘5’ out of range for

((minus b) (minus a) d c) in nth

canonical r(-b,-a,d,c,e); ==>

d c e
r % correct
a b

canonical r(-b,-a,d,c,e,g); ==>

d c e
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r % The sixth index is forgotten!
a b

Finally, the function remsym applied on any tensor identifier removes all symme-
try properties.

Another related question is the frequent need to symmetrize a tensor polynomial.
To fulfill it, the function symmetrize of the package ASSIST has been improved
and generalised. For any kernel (which may be either an operator or a tensor) that
function generates

- the sum over the cyclic permutations of indices,

- the symetric or antisymetric sums over all permutations of the indices.

Moreover, if it is given a list of indices, it generates a new list which contains
sublists which contain the relevant permutations of these indices

symmetrize(te(x,y,z,{v}),te,cyclicpermlist); ==>

x y z y z x z x y
te (v) + te (v) + te (v)

symmetrize(te(x,y),te,permutations); ==>

x y y x
te + te

symmetrize(te(x,y),te,permutations,perm_sign); ==>

x y y x
te - te

symmetrize(te(y,x),te,permutations,perm_sign); ==>

x y y x
- te + te

If one wants to symmetrise an expression which is not a kernel, one can also use
symmetrize to obtain the desired result as the next example shows:

ex:=te(a,-b,c)*te1(-a,-d,-e); ==>

a c
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ex := te *te1
b a d e

ll:=list(b,c,d,e)$ % the chosen relevant indices

lls:=symmetrize(ll,list,cyclicpermlist); ==>

lls := {{b,c,d,e},{c,d,e,b},{d,e,b,c},{e,b,c,d}}

% The sum over the cyclic permutations is:

excyc:=for each i in lls sum

sub(b=i.1,c=i.2,d=i.3,e=i.4,ex); ==>

a c a d
excyc := te *te1 + te *te1

b a d e c a e b

a e a b
+ te *te1 + te *te1

d a b c e a c d

canonical and tensor derivatives

Only ordinary (partial) derivatives are fully correctly handled by canonical.
This is enough, to explicitly construct covariant derivatives. We recognize here
that extensions should still be made. The subsequent illustrations show how
canonical does indeed manage to find the canonical form and simplify ex-
pressions which contain derivatives. Notice, the use of the (modified) depend
command.

on onespace;

tensor te,x; ==> t

depend te,x;

aa:=df(te(a,-b),x(-b))-df(te(a,-c),x(-c))$
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canonical aa; ==> 0

make_partic_tens(eta,eta); ==> t

signature 1;

aa:=df(te(a,-b),x(-b))$

aa:=aa*eta(-a,-d);

a
aa := df(te ,x )*eta

b b a d

canonical aa; ==>

a a
df(te ,x )

d

In the last example, after contraction, the covariant dummy index b has been
changed into the contravariant dummy index a. This is allowed since the space
is metric.
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20.10 CDE: A Package for Integrability of PDEs

Author: Raffaele Vitolo

We describe CDE, a REDUCE package devoted to differential-geometric compu-
tations on Differential Equations (DEs, for short).

We will give concrete recipes for computations in the geometry of differential
equations: higher symmetries, conservation laws, Hamiltonian operators and their
Schouten bracket, recursion operators. All programs discussed here are shipped
together with the CDE sources, inside the REDUCE sources. The mathematical
theory on which computations are based can be found in refs. [BCD+99, KKV04].
We invite the interested reader to have a look at the website [gde] which contains
useful resources in the above mathematical area. There is also a book on integrable
systems and CDE [KVV18] with more examples and more detailed explanations
about the mathematical part.

20.10.1 Introduction: why CDE?

CDE is a REDUCE package for differential-geometric computations for DEs. The
package aims at defining differential operators in total derivatives and computing
with them. Such operators are called C-differential operators (see [BCD+99]).

CDE depends on the REDUCE package CDIFF for constructing total derivatives.
CDIFF was developed by Gragert and Kersten for symmetry computations in DEs,
and later extended by Roelofs and Post.

There are many software packages that can compute symmetries and conserva-
tion laws; many of them run on Mathematica or Maple. Those who run on RE-
DUCE were written by M. C. Nucci [Nuc92, Nuc96], F. Oliveri (RELIE, [Oli]),
F. Schwartz (SPDE, 20.56), T. Wolf (APPLYSYM (20.1) and CONLAW in the
official REDUCE distribution, [Wol02a, Wol95, BW95, BW92]).

The development of CDE started from the idea that a computer algebra tool for
the investigation of integrability-related structures of PDEs still does not exist in
the public domain. We are only aware of a Mathematica package that may find
recursion operators under quite restrictive hypotheses [BH10].

CDE is especially designed for computations of integrability-related structures
(such as Hamiltonian, symplectic and recursion operators) for systems of differ-
ential equations with an arbitrary number of independent or dependent variables.
On the other hand CDE is also capable of (generalized) symmetry and conservation
laws computations. The aim of this guide is to introduce the reader to computations
of integrability related structures using CDE.

The current version of CDE, 3.0, has the following features:
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1. It is able to do standard computations in integrable systems like determining
systems for generalized symmetries and conservation laws. However, CDE
has not been programmed with this purpose in mind.

2. CDE is able to compute linear overdetermined systems of partial differential
equations whose solutions are Hamiltonian, symplectic or recursion oper-
ators. Such equations may be solved by different techniques; one of the pos-
sibilities is to use CRACK, a REDUCE package for solving overdetermined
systems of PDEs [WB].

3. CDE can compute linearization (or Fréchet derivatives) of vector functions
and adjoints of differential operators.

4. CDE can do calculations on supermanifolds. In particular it can compute
variational derivatives of superdensities, linearization of superfunctions, ad-
joint of superdifferential operators. Some of the features are still undocu-
mented as they will be published in forthcoming papers.

5. CDE is able to compute Schouten brackets between local multivectors. This
can be used eg to check Hamiltonianity of an operator or to check their com-
patibility.

6. CDE can calculate the Schouten bracket of weakly nonlocal differential
operators; these are distinguished pseudodifferential operators in one inde-
pendent variable. The algorithm has been published in [CLV20], while a
user guide is being written and will appear soon (interested readers can ask
the author of CDE for details).

At the moment the papers [FPV14, FPV16, KKVV09, KVV12, PV15, SV14] have
been written using CDE, and more research by CDE on integrable systems is in
progress.

The readers are warmly invited to send questions, comments, etc., both on the
computations and on the technical aspects of installation and configuration of RE-
DUCE, to the author of this document.

Acknowledgements. I’d like to thank Paul H.M. Kersten, who explained to me
how to use the original CDIFF package for several computations of interest in the
Geometry of Differential Equations. When I started writing CDE I was substan-
tially helped by A.C. Norman in understanding many features of Reduce which
were deeply hidden in the source code and not well documented. This also led to
writing a manual of Reduce’s internals for programmers [NV]. Moreover, I’d like
to thank the developers of the REDUCE mailing list for their prompt replies with
solutions to my problems. On the mathematical side, I would like to thank J.S.
Krasil’shchik and A.M. Verbovetsky for constant support and stimulating discus-
sions which led me to write the software. Thanks are also due to B.A. Dubrovin,
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M. Casati, E.V. Ferapontov, P. Lorenzoni, M. Marvan, V. Novikov, A. Savoldi, A.
Sergyeyev, M.V. Pavlov for many interesting discussions.

20.10.2 Jet space of even and odd variables, and total derivatives

The mathematical theory for jets of even (ie standard) variables and total deriva-
tives can be found in [BCD+99, Olv93].

Let us consider the space Rn×Rm, with coordinates (xλ, ui), 1 ≤ λ ≤ n, 1 ≤ i ≤
m. We say xλ to be independent variables and ui to be dependent variables. Let
us introduce the jet space Jr(n,m). This is the space with coordinates (xλ, uiσ),
where uiσ is defined as follows. If s : Rn → Rm is a differentiable function, then

uiσ ◦ s(x) =
∂|σ|(ui ◦ s)

(∂x1)σ1 · · · (∂xn)σn
.

Here σ = (σ1, . . . , σn) ∈ Nn is a multiindex. We set |σ| = σ1 + · · · + σn. If
σ = (0, . . . , 0) we set uiσ = ui.

CDE is first of all a program which is able to create a finite order jet space inside
REDUCE. To this aim, issue the command

load_package cde;

Then, CDE needs to know the variables and the maximal order of derivatives. The
input can be organized as in the following example:

indep_var:={x,t}$
dep_var:={u,v}$
total_order:=10$

Here

• indep_var is the list of independent variables;

• dep_var is the list of dependent variables;

• total_order is the maximal order of derivatives.

Two more parameters can be set for convenience:

statename:="jetuv_state.red"$
resname:="jetuv_res.red"$

These are the name of the output file for recording the internal state of the program
cde.red (and for debugging purposes), and the name of the file containing results
of the computation.
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The main routine in cde.red is called as follows:

cde({indep_var,dep_var,{},total_order},{})$

Here the two empty lists are placeholders; they are of interest for computations with
odd variables/differential equations. The function cde defines derivative symbols
of the type:

u_x,v_t,u_2xt,v_xt,v_2x3t,...

Note that the symbol v_tx does not exist in the jet space. Indeed, introducing
all possible permutations of independent variables in indices would increase the
complexity and slow down every computation.

Two lists generated by CDE can be useful: all_der_id and all_odd_id,
which are, respectively, the lists of identifiers of all even and odd variables.

Other lists are generated by CDE, but they are accessible in REDUCE symbolic
mode only. Please check the file global.txt to know the names of the lists.

It can be useful to inspect the output generated by the function cde and the above
lists in particular. All that data can be saved by the function:

save_cde_state(statename)$

CDE has a few procedures involving the jet space, namely:

• jet_fiber_dim(jorder) returns the number of derivative coordinates
uiσ with |σ| equal to jorder;

• jet_dim(jorder) returns the number of derivative coordinates uiσ with
0 ≤ |σ| and |σ| equal to jorder;

• selectvars(par,orderofder,depvars,vars) returns all deriva-
tive coordinates (even if par=0, odd if par=1) of order orderofder of
the list of dependent variables depvars which belong to the set of deriva-
tive coordinates vars.

The function cde defines total derivatives truncated at the order total_order.
Their coordinate expressions are of the form

Dλ =
∂

∂xλ
+ uiσλ

∂

∂uiσ
, (20.46)

where σ is a multiindex.

The total derivative of an argument φ is invoked as follows:
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td(phi,x,2);
td(phi,x,t,3);

the syntax closely follows REDUCE’s syntax for standard derivatives df; the
above expression translates to DxDxφ, or D{2,0}φ in multiindex notation.

When in total derivatives there is a coefficient of order higher than maximal this is
replaced by the identifier letop, which is a function that depends on independent
variables. If such a function (or its derivatives) appears during computations it is
likely that we went too close to the highest order variables that we defined in the
file. All results of computations are scanned for the presence of such variables by
default, and if the presence of letop is detected the computation is stopped with
an error message. This usually means that we need to extend the order of the jet
space, just by increasing the number total_order.

Note that in the folder containing all examples there is also a shell script, rrr.sh
(works only under bash, a GNU/Linux command interpreter) which can be used
to run reduce on a given CDE program. When an error message about letop is
issued the script reruns the computation with a new value of total_order one
unity higher than the previous one.

The function check_letop checks an expression for the presence of letop. If
you wish to switch off this kind of check in order to increase the speed, the switch
checkord must be set off:

off checkord;

The computation of total derivatives of a huge expression can be extremely time
and resources consuming. In some cases it is a good idea to disable the expansion
of the total derivative and leave an expression of the type Dσφ as indicated. This
is achieved by the command

noexpand_td();

If you wish to restore the default behaviour, do

expand_td();

CDE can also compute on jets of supermanifolds. The theory can be found in
[IVV04, KKV04, KV11]. The input can be organized as follows:

indep_var:={x,t}$
dep_var:={u,v}$
odd_var:={p,q}
total_order:=10$
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Here odd_var is the list of odd variables. The call

cde({indep_var,dep_var,odd_var,total_order},{})$

will create the jet space of the supermanifold described by the independent vari-
ables and the even and odd dependent variables, up to the order total_order.
Total derivatives truncated at the order total_order will also include odd
derivatives:

Dλ =
∂

∂xλ
+ uiσλ

∂

∂uiσ
+ piσλ

∂

∂piσ
, (20.47)

where σ is a multiindex. The considerations on expansion and letop apply in this
case too.

Odd variables can appear in anticommuting products; this is represented as

ext(p,p_2xt),ext(p_x,q_t,q_x2t),...

where ext(p_2xt,p) = - ext(p,p_2xt) and the variables are arranged
in a unique way terms of an internal ordering. Indeed, the internal representation
of odd variables and their products (not intended for normal users!) is

ext(3,23),ext(1,3,5),...

as all odd variables and their derivatives are indexed by integers. Note that p
and ext(p) are just the same. The odd product of two expressions φ and ψ is
achieved by the CDIFF function

super_product(phi,psi);

The derivative of an expression φ with respect to an odd variable p is achieved by

df_odd(phi,p);

20.10.3 Differential equations in even and odd variables

We now give the equation in the form of one or more derivatives equated to right-
hand side expressions. The left-hand side derivatives are called principal, and the
remaining derivatives are called parametric22. Parametric coordinates are coor-
dinates on the equation manifold and its differential consequences, and principal
coordinates are determined by the differential equation and its differential conse-
quences. For scalar evolutionary equations with two independent variables para-
metric derivatives are of the type (u, ux, uxx, . . .). Note that the system must be

22This terminology dates back to Riquier, see [Mar09]
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in passive orthonomic form; this also means that there will be no nontrivial inte-
grability conditions between parametric derivatives. (Lines beginning with % are
comments for REDUCE.) The input is formed as follows (Burger’s equation).

% left-hand side of the differential equation
principal_der:={u_t}$
% right-hand side of the differential equation
de:={u_2x+2*u*u_x}$

Systems of PDEs are input in the same way: of course, the above two lists must
have the same length. See 20.10.11 for an example.

The main routine in cde.red is called as follows:

cde({indep_var,dep_var,{},total_order},
{principal_der,de,{},{}})$

Here the three empty lists are placeholders; they are important for computations
with odd variables. The function cde computes principal and parametric deriva-
tives of even and odd variables, they are stored in the lists all_parametric_der,
all_principal_der, all_parametric_odd, all_principal_odd.

The function cde also defines total derivatives truncated at the order total_order
and restricted on the (even and odd) equation; this means that total derivatives are
tangent to the equation manifold. Their coordinate expressions are of the form

Dλ =
∂

∂xλ
+

∑
ui
σ parametric

uiσλ
∂

∂uiσ
+

∑
piσ parametric

piσλ
∂

∂piσ
, (20.48)

where σ is a multiindex. It can happen that uiσλ (or piσλ) is principal and must be
replaced with differential consequences of the equation. Such differential conse-
quences are called primary differential consequences, and are computed; in general
they will depend on other, possibly new, differential consequences, and so on. Such
newly appearing differential consequences are called secondary differential conse-
quences. If the equation is in passive orthonomic form, the system of all differential
consequences (up to the maximal order total_order) must be solvable in terms
of parametric derivatives only. The function cde automatically computes all neces-
sary and sufficient differential consequences which are needed to solve the system.
The solved system is available in the form of REDUCE let-rules in the variables
repprincparam_der and repprincparam_odd.

The syntax and properties (expansion and letop) of total derivatives remain the
same. For exmaple:

td(u,t);
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returns

u_2x+2*u*u_x;

It is possible to deal with mixed systems on eve and odd variables. For example,
in the case of Burgers equation we can input the linearized equation as a PDE on
a new odd variable as follows (of course, in addition to what has been defined
before):

odd_var:={q}$
principal_odd:={q_t}$
de_odd:={q_2x + 2*u_x*q + 2*u*q_x}$

The main routine in cde.red is called as follows:

cde({indep_var,dep_var,odd_var,total_order},
{principal_der,de,principal_odd,de_odd})$

20.10.4 Calculus of variations

CDE can compute variational derivatives of any function (usually a Lagrangian
density) or superfunction L. We have the following coordinate expression

δL
δui

= (−1)|σ|Dσ
∂L
∂uiσ

,
δL
δpi

= (−1)|σ|Dσ
∂L
∂piσ

(20.49)

which translates into the CDE commands

pvar_df(0,lagrangian_dens,ui);
pvar_df(1,lagrangian_dens,pi);

where

• the first argument can be 0 or 1 and is the parity of the variable ui or pi;

• lagrangian_dens is L;

• ui or pi are the given dependent variables.

The Euler operator computes variational derivatives with respect to all even and
odd variables in the jet space, and arranges them in a list of two lists, the list of even
variational derivatives and the list of odd variational derivatives. The command is

euler_df(lagrangian_dens);

All the above is used in the definition of Schouten brackets, as we will see in
Subsection 20.10.6.
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20.10.5 C-differential operators

Linearizing (or taking the Fréchet derivative) of a vector function that defines a dif-
ferential equation yields a differential operator in total derivatives. This operator
can be restricted to the differential equation, which may be regarded as a differen-
tial constraint; the kernel of the restricted operator is the space of all symmetries
(including higher or generalized symmetries) [BCD+99, Olv93].

The formal adjoint of the linearization operator yields by restriction to the cor-
responding differential equation a differential operator whose kernel contains all
characteristic vectors or generating functions of conservation laws [BCD+99,
Olv93].

Such operators are examples of C-differential operators. The (still incomplete)
REDUCE implementation of the calculus of C-differential operators is the subject
of this section.

C-differential operators

Let us consider the spaces

P = {φ : Jr(n,m)→ Rk}, Q = {ψ : Jr(n,m)→ Rs}.

A C-differential operator ∆: P → Q is defined to be a map of the type

∆(φ) = (
∑
σ,i

aσji Dσφ
i), (20.50)

where aσji are differentiable functions on Jr(n,m), 1 ≤ i ≤ k, 1 ≤ j ≤ s. The
order of δ is the highest length of σ in the above formula.

We may consider a generalization to k-C-differential operators of the type

∆: P1 × · · · × Ph → Q

∆(φ1, . . . , φh) = (
∑

σ1,...,σh,i1,...,ih

aσ1,...,σh, j
i1···ih Dσ1φ

i1
1 · · ·Dσh

φih
h ), (20.51)

where the enclosing parentheses mean that the value of the operator is a vector
function in Q.

A C-differential operator in CDE must be declared as follows:

mk_cdiffop(opname,num_arg,length_arg,length_target)

where

• opname is the name of the operator;
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• num_arg is the number of arguments eg k in (20.51);

• length_arg is the list of lengths of the arguments: eg the length of the
single argument of ∆ (20.50) is k, and the corresponding list is {k}, while in
(20.51) one needs a list of k items {k_1,...,k_h}, each corresponding
to number of components of the vector functions to which the operator is
applied;

• length_target is the numer of components of the image vector function.

The syntax for one component of the operator opname is

opname(j,i1,...,ih,phi1,...,phih)

The above operator will compute

∆(φ1, . . . , φh) =
∑

σ1,...,σh

aσ1,...,σh, j
i1···ih Dσ1φ

i1
1 · · ·Dσh

φih
h , (20.52)

for fixed integer indices i1,. . . ,ih and j.

There are several operations which involve differential operators. Obviously they
can be summed and multiplied by scalars.

An important example of C-differential operator is that of linearization, or Fréchet
derivative, of a vector function

F : Jr(n,m)→ Rk.

This is the operator

ℓF : κ → P, φ 7→
∑
σ,i

∂F k

∂uiσ
Dσφ

i,

where κ = {φ : Jr(n,m)→ Rm} is the space of generalized vector fields on jets
[BCD+99, Olv93].

Linearization can be extended to an operation that, starting from a k-C-differential
operator, generates a k + 1-C-differential operator as follows:

ℓ∆(p1, . . . , pk, φ) = (
∑

σ,σ1,...,σk,i,i1,...,ik

∂aσ1,...,σk, j
i1···ik
∂uiσ

Dσφ
iDσ1p

i1
1 · · ·Dσk

pikk )

(The above operation is also denoted by ℓ∆,p1,...,pk(φ).)

At the moment, CDE is only able to compute the linearization of a vector function
(Section 20.10.8).
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Given a C-differential operator ∆ like in (20.50) we can define its adjoint as

∆∗((qj)) = (
∑
σ,i

(−1)|σ|Dσ(a
σj
i qj)). (20.53)

Note that the matrix of coefficients is transposed. Again, the coefficients of the
adjoint operator can be found by computing ∆∗(xσej) for every basis vector ej and
every count xσ, where |σ| ≤ r, and r is the order of the operator. This operation
can be generalized to C-differential operators with h arguments.

At the moment, CDE can compute the adjoint of an operator with one argument
(Section 20.10.8).

Now, consider two operators ∆: P → Q and ∇ : Q → R. Then the composition
∇ ◦∆ is again a C-differential operator. In particular, if

∆(p) = (
∑
σ,i

aσji Dσp
i), ∇(q) = (

∑
τ,j

bτkj Dτq
j),

then
∇ ◦∆(p) = (

∑
τ,j

bτkj Dτ (
∑
σ,i

aσji Dσp
i))

This operation can be generalized to C-differential operators with h arguments.

There is another important operation between C-differential operators with h argu-
ments: the Schouten bracket [BCD+99]. We will discuss it in next Subsection, in
the context of another formalism, where it takes an easier form [KKV04].

20.10.6 C-differential operators as superfunctions

In the papers [IVV04, KKV04] (and independently in [Get02]) a scheme for deal-
ing with (skew-adjoint) variational multivectors was devised. The idea was that
operators of the type (20.51) could be represented by homogeneous vector super-
functions on a supermanifold, where odd coordinates qiσ would correspond to total
derivatives Dσφ

i.

The isomorphism between the two languages is given by( ∑
σ1,...,σh,i1,...,ih

aσ1,...,σh, j
i1···ih Dσ1φ

i1
1 · · ·Dσh

φih
h

)
−→

( ∑
σ1,...,σh,i1,...,ih

aσ1,...,σh, j
i1···ih qi1σ1

· · · qihσh

) (20.54)

where qiσ is the derivative of an odd dependent variable (and an odd variable itself).

A superfunction in CDE must be declared as follows:
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mk_superfun(sfname,num_arg,length_arg,length_target)

where

• sfname is the name of the superfunction;

• num_arg is the degree of the superfunction eg h in (20.54);

• length_arg is the list of lengths of the arguments: eg the length of the
single argument of ∆ (20.50) is k, and the corresponding list is {k}, while in
(20.51) one needs a list of k items {k_1,...,k_h}, each corresponding
to number of components of the vector functions to which the operator is
applied;

• length_target is the numer of components of the image vector function.

The above parameters of the operator opname are stored in the property list23

of the identifier opname. This means that if one would like to know how many
arguments has the operator opname the answer will be the output of the command

get(’cdnarg,cdiff_op);

and the same for the other parameters.

The syntax for one component of the superfunction sfname is

sfname(j)

CDE is able to deal with C-differential operators in both formalisms, and provides
conversion utilities:

• conv_cdiff2superfun(cdop,superfun)

• conv_superfun2cdiff(superfun,cdop)

where in the first case a C-differential operator cdop is converted into a vector
superfunction superfun with the same properties, and conversely.

20.10.7 The Schouten bracket

We are interested in the operation of Schouten bracket between variational mul-
tivectors [IVV04]. These are differential operators with h arguments in κ with

23The property list is a lisp concept, see [NV] for details.



521

values in densities, and whose image is defined up to total divergencies:

∆: κ × · · · × κ →
{Jr(n,m)→ λnT ∗R⋉}/d̄({Jr(n,m)→ λn−1T ∗R⋉}) (20.55)

It is known [Get02, KKV04] that the Schouten bracket between two variational
multivectorsA1,A2 can be computed in terms of their corresponding superfunction
by the formula

[A1, A2] =
[δA1

δuj
δA2

δpj
+
δA2

δuj
δA1

δpj

]
(20.56)

where δ/δui, δ/δpj are the variational derivatives and the square brackets at the
right-hand side should be understood as the equivalence class up to total divergen-
cies.

If the operators A1, A2 are compatible, ie [A1, A2] = 0, the expression (20.56)
must be a total derivative. This means that:

[A1, A2] = 0 ⇔ E
(
δA1

δuj
δA2

δpj
+
δA2

δuj
δA1

δpj

)
= 0. (20.57)

IfA1 is an h-vector andA2 is a k-vector the formula (20.56) produces a (h+k−1)-
vector, or a C-differential operator with h + k − 1 arguments. If we would like to
check that this multivector is indeed a total divergence, we should apply the Euler
operator, and check that it is zero. This procedure is considerably simpler than the
analogue formula with operators (see for example [KKV04]). All this is computed
by CDE:

schouten_bracket(biv1,biv2,tv12),

where biv1 and biv2 are bivectors, or C-differential operators with 2 arguments,
and tv12 is the result of the computation, which is a three-vector (it is automat-
ically declared to be a superfunction). Examples of this computation are given in
Section 20.10.12.

20.10.8 Computing linearization and its adjoint

Currently, CDE supports linearization of a vector function, or a C-differential op-
erator with 0 arguments. The computation is performed in odd coordinates.

Suppose that we would like to linearize the vector function that defines the (disper-
sionless) Boussinesq equation [KKV06]:{

ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

(20.58)
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where σ is a constant. Then a jet space with independent variables x,t, dependent
variables u,v and odd variables in the same number as dependent variables p,q
must be created:

indep_var:={x,t}$
dep_var:={u,v}$
odd_var:={p,q}$
total_order:=8$
cde({indep_var,dep_var,odd_var,total_order},{})$

The linearization of the above system and its adjoint are, respectively

ℓBou =

(
Dt − vDx − vx −ux − uDx − σDxxx

−Dx Dt − vx − vDx

)
,

ℓ∗Bou =

(
−Dt + vDx Dx

uDx + σDxxx −Dt + vDx

)
Let us introduces the vector function whose zeros are the Boussinesq equation:

f_bou:={u_t - (u_x*v + u*v_x + sig*v_3x),
v_t - (u_x + v*v_x)};

The following command assigns to the identifier lbou the linearization C-
differential operator ℓBou of the vector function f_bou

ell_function(f_bou,lbou);

moreover, a superfunction lbou_sf is also defined as the vector superfunction
corresponding to ℓBou. Indeed, the following sequence of commands:

2: lbou_sf(1);

- p*v_x + p_t - p_x*v - q*u_x - q_3x*sig - q_x*u

3: lbou_sf(2);

- p_x - q*v_x + q_t - q_x*v

shows the vector superfunction corresponding to ℓBou. To compute the value of the
(1, 1) component of the matrix ℓBou applied to an argument psi do

lbou(1,1,psi);

In order to check that the result is correct one could define the linearization as a
C-differential operator and then check that the corresponding superfunctions are
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the same:

mk_cdiffop(lbou2,1,{2},2);
for all phi let lbou2(1,1,phi)

= td(phi,t) - v*td(phi,x) - v_x*phi;
for all phi let lbou2(1,2,phi)

= - u_x*phi - u*td(phi,x) - sig*td(phi,x,3);
for all phi let lbou2(2,1,phi)

= - td(phi,x);
for all phi let lbou2(2,2,phi)

= td(phi,t) - v*td(phi,x) - v_x*phi;

conv_cdiff2superfun(lbou2,lbou2_sf);
lbou2_sf(1) - lbou_sf(1);
lbou2_sf(2) - lbou_sf(2);

the result of the two last commands must be zero.

The formal adjoint of lbou can be computed and assigned to the identifier
lbou_star by the command

adjoint_cdiffop(lbou,lbou_star);

Again, the associated vector superfunction lbou_star_sf is computed, with
values

4: lbou_star_sf(1);

- p_t + p_x*v + q_x

5: lbou_star_sf(2);

p_3x*sig + p_x*u - q_t + q_x*v

Again, the above operator can be checked for correctness.

Once the linearization and its ajdoint are computed, in order to do computations
with symmetries and conservation laws such operator must be restricted to the
corresponding equation. This can be achieved with the following steps:

1. compute linearization of a PDE of the form F = 0 and its adjoint, and save
them in the form of a vector superfunction;

2. start a new computation with the given even PDE as a constraint on the (even)
jet space;
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3. load the superfunctions of item 1;

4. restrict them to the even PDE.

Only the last step needs to be explained. If we are considering, eg the Boussinesq
equation, then ut and its differential consequences (ie the principal derivatives) are
not automatically expanded to the right-hand side of the equation and its differen-
tial consequences. At the moment this step is not fully automatic. More precisely,
only principal derivatives which appear as coefficients in total derivatives can be
replaced by their expression. The lists of such derivatives with the corresponding
expressions are repprincparam_der and repprincparam_odd (see Sec-
tion 20.10.3). They are in the format of REDUCE’s replacement list and can be
used in let-rules. If the linearization or its adjoint happen to depend on another
principal derivative this must be computed separately. A forthcoming release of
REDUCE will automatize this procedure.

However, note that for evolutionary equations this step is trivial, as the restriction
of linearization and its adjoint on the given PDE will only affect total derivatives
which are restricted by CDE to the PDE.

20.10.9 Higher symmetries

In this section we show the computation of (some) higher [BCD+99] (or general-
ized, [Olv93]) symmetries of Burgers’equation B = ut − uxx + 2uux = 0.

We provide two ways to solve the equations for higher symmetries. The first pos-
sibility is to use dimensional analysis. The idea is that one can use the scale sym-
metries of Burgers’equation to assign “gradings” to each variable appearing in the
equation (in other words, one can use dimensional analisys). As a consequence,
one could try different ansatz for symmetries with polynomial generating funct-
ions. For example, it is possible to require that they are sum of monomials of given
degrees. This ansatz yields a simplification of the equations for symmetries, be-
cause it is possible to solve them in a “graded” way, i.e., it is possible to split them
into several equations made by the homogeneous components of the equation for
symmetries with respect to gradings.

In particular, Burgers’equation translates into the following dimensional equation:

[ut] = [uxx], [uxx] = [2uux].

By the rules [uz] = [u] − [z] and [uv] = [u] + [v], and choosing [x] = −1, we
have [u] = 1 and [t] = −2. This will be used to generate the list of homogeneous
monomials of given grading to be used in the ansatz about the structure of the
generating function of the symmetries.

The file for the above computation is bur_hsy1.red and the results of the com-
putation are in results/bur_hsy1_res.red.
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Another possibility to solve the equation for higher symmetries is to use a PDE
solver that is especially devoted to overdetermined systems, which is the distin-
guishing feature of systems coming from the symmetry analysis of PDEs. This ap-
proach is described below. The file for the above computation is bur_hsy2.red
and the results of the computation are in results/bur_hsy2_res.red.

Setting up the jet space and the differential equation. After loading CDE:

indep_var:={x,t}$
dep_var:={u}$
deg_indep_var:={-1,-2}$
deg_dep_var:={1}$
total_order:=10$

Here the new lists are scale degrees:

• deg_indep_var is the list of scale degrees of the independent variables;

• deg_dep_var is the list of scale degrees of the dependent variables;

We now give the equation and call CDE:

principal_der:={u_t}$
de:={u_2x+2*u*u_x}$
cde({indep_var,dep_var,{},total_order},

{principal_der,de,{},{}})$

Solving the problem via dimensional analysis. Higher symmetries of the given
equation are functions sym depending on parametric coordinates up to some jet
space order. We assume that they are graded polynomials of all parametric deriva-
tives. In practice, we generate a linear combination of graded monomials with
arbitrary coefficients, then we plug it in the equation of the problem and find con-
ditions on the coefficients that fulfill the equation. To construct a good ansatz, it
is required to make several attempts with different gradings, possibly including
independent variables, etc.. For this reason, ansatz-constructing functions are es-
pecially verbose. In order to use such functions they must be initialized with the
following command:

cde_grading(deg_indep_var,deg_dep_var,{})$

Note the empty list at the end; it playe a role only for computations involving odd
variables.
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We need one operator equ whose components will be the equation of higher sym-
metries and its consequences. Moreover, we need an operator c which will play
the role of a vector of constants, indexed by a counter ctel:

ctel:=0;
operator c,equ;

We prepare a list of variables ordered by scale degree:

l_grad_var:=der_deg_ordering(0,all_parametric_der)$

The function der_deg_ordering is defined in cde.red. It produces the
given list using the list all_parametric_der of all parametric derivatives of
the given equation up to the order total_order. The first two parameters can
assume the values 0 or 1 and say that we are considering even variables and that
the variables are of parametric type.

Then, due to the fact that all parametric variables have positive scale degree then
we prepare the list ansatz of all graded monomials of scale degree from 0 to 5

gradmon:=graded_mon(1,5,l_grad_var)$
gradmon:={1} . gradmon$
ansatz:=for each el in gradmon join el$

More precisely, the command graded_mon produces a list of monomials of de-
grees from i to j, formed from the list of graded variables l_grad_var; the
second command adds the zero-degree monomial; and the last command produces
a single list of all monomials.

Finally, we assume that the higher symmetry is a graded polynomial obtained from
the above monomials (so, it is independent of x and t!)

sym:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

Next, we define the equation ℓB(sym) = 0. Here, ℓB stands for the linearization
(Section 20.10.8). A function sym that fulfills the above equation, on account of
B = 0, is an higher symmetry.

We cannot define the linearization as a C-differential operator in this way:

bur:={u_t - (2*u*u_x+u_2x)};
ell_function(bur,lbur);

as the linearization is performed with respect to parametric derivatives only! This
means that the linearization has to be computed beforehand in a free jet space, then
it may be used here.
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So, the right way to go is

mk_cdiffop(lbur,1,{1},1);
for all phi let lbur(1,1,phi)

= td(phi,t)-td(phi,x,2)-2*u*td(phi,x)-2*u_x*phi;

Note that for evolutionary equations the restriction of the linearization to the equat-
ion is equivalent to just restricting total derivatives, which is automatic in CDE.

The equation becomes

equ 1:=lbur(1,1,sym);

At this point we initialize the equation solver. This is a part of the CDIFF pack-
age called integrator.red (see the original documentation inside the folder
packages/cdiff in REDUCE’s source code). In our case the above package
will solve a large sparse linear system of algebraic equations on the coefficients of
sym.

The list of variables, to be passed to the equation solver:

vars:=append(indep_var,all_parametric_der);

The number of initial equation(s):

tel:=1;

Next command initializes the equation solver. It passes

• the equation vector equ togeher with its length tel (i.e., the total number
of equations);

• the list of variables with respect to which the system must not split the equat-
ions, i.e., variables with respect to which the unknowns are not polynomial.
In this case this list is just {};

• the constants’vector c, its length ctel, and the number of negative indexes
if any; just 0 in our example;

• the vector of free functions f that may appear in computations. Note that in
{f,0,0 } the second 0 stands for the length of the vector of free functions.
In this example there are no free functions, but the command needs the pres-
ence of at least a dummy argument, f in this case. There is also a last zero
which is the negative length of the vector f , just as for constants.

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});
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Run the procedure splitvars_opequ on the first component of equ in order
to obtain equations on coefficiens of each monomial.

tel:=splitvars_opequ(equ,1,1,vars);

Note that splitvars_opequ needs to know the indices of the first and the last
equation in equ, and here we have only one equation as equ(1). The output
tel is the final number of splitted equations, starting just after the initial equation
equ(1).

Next command tells the solver the total number of equations obtained after running
splitvars.

put_equations_used tel;

This command solves the equations for the coefficients. Note that we have to skip
the initial equations!

for i:=2:tel do integrate_equation i;

The output is written in the result file by the commands

off echo$
off nat$
out <<resname>>;
sym:=sym;
write ";end;";
shut <<resname>>;
on nat$
on echo$

The command off nat turns off writing in natural notation; results in this form
are better only for visualization, not for writing or for input into another computa-
tion. The command «resname» forces the evaluation of the variable resname
to its string value. The commands out and shut are for file opening and closing.
The command sym:=sym is evaluated only on the right-hand side.

One more example file is available; it concerns higher symmetries of the KdV
equation. In order to deal with symmetries explicitely depending on x and t
it is possible to use REDUCE and CDE commands in order to have sym =
x*(something of degree 3) + t*(something of degree 5) + (something of degree
2); this yields scale symmetries. Or we could use sym = x*(something of degree
1) + t*(something of degree 3) + (something of degree 0); this yields Galilean
boosts.
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Solving the problem using CRACK. CRACK is a PDE solver which is devoted
mostly to the solution of overdetermined PDE systems [BW95, WB]. Several
mathematical problems have been solved by the help of CRACK, like finding sym-
metries [Wol95, BW92] and conservation laws [Wol02a]. The aim of CDE is to
provide a tool for computations with total derivatives, but it can be used to compute
symmetries too. In this subsection we show how to interface CDE with CRACK in
order to find higher (or generalized) symmetries for the Burgers’equation. To do
that, after loading CDE and introducing the equation, we define the linearization
of the equation lbur.

We introduce the new unknown function ‘ansatz’. We assume that the function
depends on parametric variables of order not higher than 3. The variables are
selected by the function selectvars of CDE as follows:

even_vars:=for i:=0:3 join
selectvars(0,i,dep_var,all_parametric_der)$

In the arguments of selectvars, 0 means that we want even variables, i
stands for the order of variables, dep_var stands for the dependent vari-
ables to be selected by the command (here we use all dependent variables),
all_parametric_der is the set of variables where the function will extract
the variables with the required properties. In the current example we wish to get
all higher symmetries depending on parametric variables of order not higher than
3.

The dependency of ansatz from the variables is given with the standard RE-
DUCE command depend:

for each el in even_vars do depend(ansatz,el)$

The equation to be solved is the equation lbur(ansatz)=0, hence we give the
command

total_eq:=lbur(1,1,ansatz)$

The above command will issue an error if the list {total_eq} depends on the
flag variable letop. In this case the computation has to be redone within a jet
space of higher order.

The equation ell_b(ansatz)=0 is polynomial with respect to the variables of
order higher than those appearing in ansatz. For this reason, its coefficients can
be put to zero independently. This is the reason why the PDEs that determine
symmetries are overdetermined. To tell this to CRACK, we issue the command

split_vars:=diffset(all_parametric_der,even_vars)$



530 CHAPTER 20. USER CONTRIBUTED PACKAGES

The list split_vars contains variables which are in the current CDE jet space
but not in even_vars.

Then, we load the package CRACK and get results.

load_package crack;
crack_results:=crack(total_eq,{},{ansatz},split_vars);

The results are in the variable crack_results:

{{{},
{ansatz=(2*c_12*u_x + 2*c_13*u*u_x + c_13*u_2x
+ 6*c_8*u**2*u_x + 6*c_8*u*u_2x + 2*c_8*u_3x
+ 6*c_8*u_x**2)/2},{c_8,c_13,c_12},

{}}}$

So, we have three symmetries; of course the generalized symmetry corresponds
to c_8. Remember to check always the output of CRACK to see if any of the
symbols c_n is indeed a free function depending on some of the variables, and not
just a constant.

20.10.10 Local conservation laws

In this section we will find (some) local conservation laws for the KdV equation
F = ut − uxxx + uux = 0. Concretely, we have to find non-trivial 1-forms
f = fxdx+ftdt on F = 0 such that d̄f = 0 on F = 0. “Triviality” of conservation
laws is a delicate matter, for which we invite the reader to have a look in [BCD+99].

The files containing this example are kdv_lcl1,kdv_lcl2 and the correspond-
ing results and debug files.

We suppose that the conservation law has the form ω = fxdx + ftdt. Using the
same ansatz as in the previous example we assume

fx:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$
ft:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

Next we define the equation d̄(ω) = 0, where d̄ is the total exterior derivative
restricted to the equation.

equ 1:=td(fx,t)-td(ft,x)$

After solving the equation as in the above example we get

fx := c(3)*u_x + c(2)*u + c(1)$
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ft := (2*c(8) + 2*c(3)*u*u_x + 2*c(3)*u_3x + c(2)*u**2 +
2*c(2)*u_2x)/2$

Unfortunately it is clear that the conservation law corresponding to c(3) is trivial,
because it is just the KdV equation. Here this fact is evident; how to get rid of less
evident trivialities by an ‘automatic’ mechanism? We considered this problem in
the file kdv_lcl2, where we solved the equation

equ 1:=fx-td(f0,x);
equ 2:=ft-td(f0,t);

after having loaded the values fx and ft found by the previous program. In order
to do that we have to introduce two new counters:

operator cc,equ;
cctel:=0;

We make the following ansatz on f0:

f0:=(for each el in ansatz sum (cc(cctel:=cctel+1)*el))$

After solving the system, issuing the commands

fxnontriv := fx-td(f0,x);
ftnontriv := ft-td(f0,t);

we obtain

fxnontriv := c(2)*u$
ftnontriv := (c(2)*(u**2 + 2*u_2x))/2$

This mechanism can be easily generalized to situations in which the conservation
laws which are found by the program are difficult to treat by pen and paper. How-
ever, we will present another approach to the computation of conservation laws in
subsection 20.10.15.

20.10.11 Local Hamiltonian operators

In this section we will show how to compute local Hamiltonian operators for
Korteweg–de Vries, Boussinesq and Kadomtsev–Petviashvili equations. It is inter-
esting to note that we will adopt the same computational scheme for all equations,
even if the latter is not in evolutionary form and it has more than two independent
variables. This comes from a new mathematical theory which started in [KKV04]
for evolution equations and was later extended to general differential equations in
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[KKVV09].

Korteweg–de Vries equation. Here we will find local Hamiltonian operators
for the KdV equation ut = uxxx + uux. A necessary condition for an operator to
be Hamiltonian is that it sends generating functions (or characteristics, according
with [Olv93]) of conservation laws to higher (or generalized) symmetries. As it is
proved in [KKV04], this amounts at solving ℓ̄KdV (phi) = 0 over the equation{

ut = uxxx + uux
pt = pxxx + upx

or, in geometric terminology, find the shadows of symmetries on the ℓ∗-covering
of the KdV equation, with the further condition that the shadows must be linear in
the p-variables. Note that the second equation (in odd variables!) is just the adjoint
of the linearization of the KdV equation applied to an odd variable.

The file containing this example is kdv_lho1.

We stress that the linearization ℓ̄KdV (phi) = 0 is the equation

td(phi,t)-u*td(phi,x)-u_x*phi-td(phi,x,3)=0

but the total derivatives are lifted to the ℓ∗ covering, hence they contain also deriva-
tives with respect to p’s. We can define a linearization operator lkdv as usual.

In order to produce an ansatz which is a superfunction of one odd variable (or a
linear function in odd variables) we produce two lists: the list l_grad_var of all
even variables collected by their gradings and a similar list l_grad_odd for odd
variables:

l_grad_var := der_deg_ordering(0,all_parametric_der)$
l_grad_odd := {1} .

der_deg_ordering(1,all_parametric_odd)$
gradmon := graded_mon(1,10,l_grad_var)$
gradmon := {1} . gradmon$

We need a list of graded monomials which are linear in odd variables. The func-
tion mkalllinodd produces all monomials which are linear with respect to the
variables from l_grad_odd, have (monomial) coefficients from the variables in
l_grad_var, and have total scale degrees from 1 to 6. Such monomials are then
converted to the internal representation of odd variables.

linodd:=mkalllinodd(gradmon,l_grad_odd,1,6)$

Note that all odd variables have positive scale degrees thanks to our initial choice
deg_odd_var:=1;. Finally, the ansatz for local Hamiltonian operators:
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sym:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

After having set

equ 1:=lkdv(1,1,sym);

and having initialized the equation solver as before, we do splitext

tel:=splitext_opequ(equ,1,1);

in order to split the polynomial equation with respect to the ext variables, then
splitvars

tel2:=splitvars_opequ(equ,2,tel,vars);

in order to split the resulting polynomial equation in a list of equations on the
coefficients of all monomials.

Now we are ready to solve all equations:

put_equations_used tel;
for i:=2:tel do integrate_equation i;
end;

Note that we want all equations to be solved!

The results are the two well-known Hamiltonian operators for the KdV. After inte-
gration the function sym becomes

sym := (c(5)*p*u_x + 2*c(5)*p_x*u +
3*c(5)*p_3x + 3*c(2)*p_x)/3$

Of course, the results correspond to the operators

px → Dx,
1

3
(3p3x + 2upx + uxp)→

1

3
(3Dxxx + 2uDx + ux).

Note that each operator is multiplied by one arbitrary real constant, c(5) and
c(2).

The same problem can be approached using CRACK (see file kdv_lho2.red).
An ansatz is constructed by the following instructions:

even_vars:=for i:=0:3 join
selectvars(0,i,dep_var,all_parametric_der)$

odd_vars:=for i:=0:3 join
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selectvars(1,i,odd_var,all_parametric_odd)$
ext_vars:=replace_oddext(odd_vars)$

ctemp:=0$
ansatz:=for each el in ext_vars sum

mkid(s,ctemp:=ctemp+1)*el$

Note that we have

ansatz := p*s1 + p_2x*s3 + p_3x*s4 + p_x*s2$

Indeed, we are looking for a third-order operator whose coefficients depend on
variables of order not higher than 3. This last property has to be introduced by

unk:=for i:=1:ctemp collect mkid(s,i)$
for each ell in unk do
for each el in even_vars do depend ell,el$

Then, we introduce the linearization (lifted on the cotangent covering)

operator ell_f$
for all sym let ell_f(sym)=

td(sym,t) - u*td(sym,x) - u_x*sym - td(sym,x,3)$

and the equation to be solved, together with the usual test that checks for the nedd
to enlarge the jet space:

total_eq:=ell_f(ansatz)$

Finally, we split the above equation by collecting all coefficients of odd variables:

system_eq:=splitext_list({total_eq})$

and we feed CRACK with the equations that consist in asking to the above coeffi-
cients to be zero:

load_package crack;
crack_results:=crack(system_eq,{},unk,

diffset(all_parametric_der,even_vars));

The results are the same as in the previous section:

crack_results := {{{},
{s4=(3*c_17)/2,s3=0,s2=c_16 + c_17*u,s1=(c_17*u_x)/2},



535

{c_17,c_16},
{}}}$

Boussinesq equation. There is no conceptual difference when computing for
systems of PDEs with respect to the previous computations for scalar equations.
We will look for Hamiltonian structures for the dispersionless Boussinesq equat-
ion (20.58).

We will proceed by dimensional analysis. Gradings can be taken as

[t] = −2, [x] = −1, [v] = 1, [u] = 2, [p] = 1, [q] = 2

where p, q are the two odd coordinates. We have the ℓ∗Bou covering equation
−pt + vpx + qx = 0
upx + σpxxx − qt + vqx = 0
ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

We have to find Hamiltonian operators as shadows of symmetries on the above
covering. At the level of source file (bou_lho1) the input data is:

indep_var:={x,t}$
dep_var:={u,v}$
odd_var:={p,q}$
deg_indep_var:={-1,-2}$
deg_dep_var:={2,1}$
deg_odd_var:={1,2}$
total_order:=8$
principal_der:={u_t,v_t}$
de:={u_x*v+u*v_x+sig*v_3x,u_x+v*v_x}$
principal_odd:={p_t,q_t}$
de_odd:={v*p_x+q_x,u*p_x+sig*p_3x+v*q_x}$

The ansatz for the components of the Hamiltonian operator, of scale degree be-
tween 1 and 6, is

linodd:=mkalllinodd(gradmon,l_grad_odd,1,6)$
phi1:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$
phi2:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$

and the equation for shadows of symmetries is (lbou2 is taken from Sec-
tion 20.10.8)

equ 1:=lbou2(1,1,phi1) + lbou2(1,2,phi2);



536 CHAPTER 20. USER CONTRIBUTED PACKAGES

equ 2:=lbou2(2,1,phi1) + lbou2(2,2,phi2);

After the usual procedures for decomposing polynomials we obtain three local
Hamiltonian operators:

phi1_odd := (2*c(31)*p*sig*v_3x + 2*c(31)*p*u*v_x
+ 2*c(31)*p*u_x*v + 6*c(31)*p_2x*sig*v_x
+ 4*c(31)*p_3x*sig*v + 6*c(31)*p_x*sig*v_2x
+ 4*c(31)*p_x*u*v + 2*c(31)*q*u_x + 4*c(31)*q_3x*sig
+ 4*c(31)*q_x*u + c(31)*q_x*v**2 + 2*c(16)*p*u_x
+ 4*c(16)*p_3x*sig + 4*c(16)*p_x*u
+ 2*c(16)*q_x*v + 2*c(10)*q_x)/2$

phi2_odd := (2*c(31)*p*u_x + 2*c(31)*p*v*v_x
+ 4*c(31)*p_3x*sig + 4*c(31)*p_x*u
+ c(31)*p_x*v**2 + 2*c(31)*q*v_x + 4*c(31)*q_x*v
+ 2*c(16)*p*v_x + 2*c(16)*p_x*v
+ 4*c(16)*q_x + 2*c(10)*p_x)/2$

There is a whole hierarchy of nonlocal Hamiltonian operators [KKV04].

Kadomtsev–Petviashvili equation. There is no conceptual difference in symb-
olic computations of Hamiltonian operators for PDEs in 2 independent variables
and in more than 2 independent variables, regardless of the fact that the equation
at hand is written in evolutionary form. As a model example, we consider the KP
equation

uyy = utx − u2x − uuxx −
1

12
uxxxx. (20.59)

Proceeding as in the above examples we input the following data:

indep_var:={t,x,y}$
dep_var:={u}$
odd_var:={p}$
deg_indep_var:={-3,-2,-1}$
deg_dep_var:={2}$
deg_odd_var:={1}$
total_order:=6$
principal_der:={u_2y}$
de:={u_tx-u_x**2-u*u_2x-(1/12)*u_4x}$
principal_odd:={p_2y}$
de_odd:={p_tx-u*p_2x-(1/12)*p_4x}$

and look for Hamiltonian operators of scale degree between 1 and 5:
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linodd:=mkalllinodd(gradmon,l_grad_odd,1,5)$
phi:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$

After solving the equation for shadows of symmetries in the cotangent covering

equ 1:=td(phi,y,2) - td(phi,x,t) + 2*u_x*td(phi,x)
+ u_2x*phi + u*td(phi,x,2) + (1/12)*td(phi,x,4);

we get the only local Hamiltonian operator

phi := c(13)*p_2x$

As far as we know there are no further local Hamiltonian operators.

Remark: the above Hamiltonian operator is already known in an evolutionary
presentation of the KP equation [Kup94]. Our mathematical theory of Hamiltonian
operators for general differential equations [KKVV09] allows us to formulate and
solve the problem for any presentation of the KP equation. Change of coordinate
formulae could also be provided.

20.10.12 Examples of Schouten bracket of local Hamiltonian oper-
ators

In this Section we will discuss examples of calculation of Schouten bracket in
order to check the Hamiltonian property for C-differential operators and/or the
compatibility of two distinct Hamiltonian operators. This subject is treated in a
much greater detail in the recent paper [Vit19], where many examples of Schouten
bracket calculations with CDE have been described.

We observe that a package that is capable to calculate the Schouten bracket of
weakly nonlocal operators (in one independent variable) is currently part of CDE,
version 3.0. Documentation for the package is being written; interested readers
may contact the author of CDE for questions.

Let F = 0 be a system of PDEs. Here F ∈ P , where P is the module (in the
algebraic sense) of vector functions P = {Jr(n,m)→ Rk}.

The Hamiltonian operators which have been computed in the previous Section are
differential operators sending generating functions of conservation laws into gen-
erating functions of symmetries for the above system of PDEs:

H : P̂ → κ (20.60)

• P̂ = {Jr(n,m)→ (Rk)∗ ⊗ ∧nT ∗Rn} is the space of covector-valued den-
sities,
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• κ = {Jr(n,m) → Rm} is the space of generalized vector fields on jets;
generating functions of higher symmetries of the system of PDEs are ele-
ments of this space.

As the operators are mainly used to define a bracket operation and a Lie alge-
bra structure on conservation laws, two properties are required: skew-adjointness
H∗ = −H (corresponding with skew-symmetry of the bracket) and [H,H] = 0
(corresponding with the Jacobi property of the bracket).

In order to compute the two properties we proceed as follows. Skew-adjointness
is checked by computing the adjoint and verifying that the sum with the initial
operator is zero.

In the case of evolutionary equations, P = κ, and Hamiltonian operators (20.60)
can also be interpreted as variational bivectors, ie

Ĥ : κ̂ × κ̂ → ∧nT ∗Rn (20.61)

where the correspondence is given by

H(ψ) = (aijσDσψj) → Ĥ(ψ1, ψ2) = (aijσDσψ1 jψ2 i) (20.62)

In terms of the corresponding superfunctions:

H = aik σpk σ → Ĥ = aik σpk σpi.

Note that the product pk σpi is anticommutative since p’s are odd variables.

After that a C-differential operator of the type of H has been converted into a
bivector it is possible to apply the formulae (20.56) and (20.57) in order to compute
the Schouten bracket. This is what we will see in next section.

Bi-Hamiltonian structure of the KdV equation. We can do the above compu-
tations using KdV equation as a test case (see the file kdv_lho3.red).

Let us load the above operators:

operator ham1;
for all psi1 let ham1(psi1)=td(psi1,x);
operator ham2;
for all psi2 let ham2(psi2)=
(1/3)*u_x*psi2 + td(psi2,x,3) + (2/3)*u*td(psi2,x);

We may convert the two operators into the corresponding superfunctions

conv_cdiff2superfun(ham1,sym1);
conv_cdiff2superfun(ham2,sym2);
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The result of the conversion is

sym1(1) := {p_x};
sym2(2) := {(1/3)*p*u_x + p_3x + (2/3)*p_x*u};

Skew-adjointness is checked at once:

adjoint_cdiffop(ham1,ham1_star);
adjoint_cdiffop(ham2,ham2_star);
ham1_star_sf(1)+sym1(1);
ham2_star_sf(1)+sym2(1);

and the result of the last two commands is zero.

Then we shall convert the two superfunctions into bivectors:

conv_genfun2biv(sym1_odd,biv1);
conv_genfun2biv(sym2_odd,biv2);

The output is:

biv1(1) := - ext(p,p_x);
biv2(1) := - (1/3)*( - 3*ext(p,p_3x) - 2*ext(p,p_x)*u);

Finally, the three Schouten brackets [Ĥi, Ĥj ] are computed, with i, j = 1, 2:

schouten_bracket(biv1,biv1,sb11);
schouten_bracket(biv1,biv2,sb12);
schouten_bracket(biv2,biv2,sb22);

the result are well-known lists of zeros.

Bi-Hamiltonian structure of the WDVV equation. This subsection refers to the
the example file wdvv_biham1.red. The simplest nontrivial case of the WDVV
equations is the third-order Monge–Ampère equation, fttt = f2xxt − fxxxfxtt
[Dub96]. This PDE can be transformed into hydrodynamic form,

at = bx, bt = cx, ct = (b2 − ac)x,

via the change of variables a = fxxx, b = fxxt, c = fxtt. This system possesses
two Hamiltonian formulations [FGMN97]:ab

c


t

= Ai

δHi/δa
δHi/δb
δHi/δc

 , i = 1, 2
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with the homogeneous first-order Hamiltonian operator

Â1 =

−3
2Dx

1
2Dxa Dxb

1
2aDx

1
2(Dxb+ bDx)

3
2cDx + cx

bDx
3
2Dxc− cx (b2 − ac)Dx +Dx(b

2 − ac)


with the Hamiltonian H1 =

∫
c dx, and the homogeneous third-order Hamiltonian

operator

A2 = Dx

 0 0 Dx

0 Dx −Dxa
Dx −aDx Dxb+ bDx + aDxa

Dx,

with the nonlocal Hamiltonian

H2 = −
∫ (

1

2
a
(
Dx

−1b
)2

+Dx
−1bDx

−1c

)
dx.

Both operators are of Dubrovin–Novikov type [DN83, DN84]. This means that
the operators are homogeneous with respect to the grading |Dx| = 1. It follows
that the operators are form-invariant under point transformations of the dependent
variables, ui = ui(ũj). Here and in what follows we will use the letters ui to denote
the dependent variables (a, b, c). Under such transformations, the coefficients of
the operators transform as differential-geometric objects.

The operator A1 has the general structure

A1 = gij1 Dx + Γij
k u

k
x

where the covariant metric g1 ij is flat, Γij
k = gis1 Γ

j
sk (here gij1 is the inverse matrix

that represent the contravariant metric induced by g1 ij), and Γj
sk are the usual

Christoffel symbols of g1 ij .

The operator A2 has the general structure

A2 = Dx

(
gij2 Dx + cijk u

k
x

)
Dx, (20.63)

where the inverse g2 ij of the leading term transforms as a covariant pseudo-
Riemannian metric. From now on we drop the subscript 2 for the metric of A2.
It was proved in [FPV14] that, if we set cijk = giqgjpc

pq
k , then

cijk =
1

3
(gik,j − gij,k)

and the metric fulfills the following identity:

gmk,n + gkn,m + gmn,k = 0. (20.64)

This means that the metric is a Monge metric [FPV14]. In particular, its coefficients
are quadratic in the variables ui. It is easy to input the two operators in CDE. Let
us start by A1: we may define its entries one by one as follows



541

operator a1;

for all psi let a1(1,1,psi) = - (3/2)*td(psi,x);
for all psi let a1(1,2,psi) = (1/2)*td(a*psi,x);
...

We could also use one specialized Reduce package for the computation of
the Christoffel symbols, like RedTen or GRG. Assuming that the operators
gamma_hi(i,j,k) have been defined equal to Γij

k and computed in the sys-
tem using the inverse matrix gij of the leading coefficient contravariant metric24

gij =

−3
2

1
2a b

1
2a b 3

2c
b 3

2c 2(b2 − ac)


then, provided we defined a list dep_var of the dependent variables, we could set

operator gamma_hi_con;
for all i,j let gamma_hi_con(i,j) =
(
for k:=1:3 sum gamma_hi(i,j,k)

*mkid(part(dep_var,k),!_x)
)$

and

operator a1$
for all i,j,psi let a1(i,j,psi) =
gu1(i,j)*td(psi,x)+(for k:=1:3 sum gamma_hi_con(i,j)*psi
)$

The third order operator can be reconstructed as follows. Observe that the leading
contravariant metric is

gij =

0 0 1
0 1 −a
1 −a 2b+ a2


Introduce the above matrix in REDUCE as gu3. Then set

gu3:=gl3**(-1)$

and define cijk as

24Indeed in the example file wdvv_biham1.red there are procedures for computing all those
quantities.
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operator c_lo$
for i:=1:3 do
for j:=1:3 do
for k:=1:3 do
<<
c_lo(i,j,k):=
(1/3)*(df(gl3(k,i),part(dep_var,j))
- df(gl3(j,i),part(dep_var,k)))$

>>$

Then define cijk

templist:={}$
operator c_hi$
for i:=1:ncomp do
for j:=1:ncomp do
for k:=1:ncomp do
c_hi(i,j,k):=
<<
templist:=
for m:=1:ncomp join
for n:=1:ncomp collect
gu3(n,i)*gu3(m,j)*c_lo(m,n,k)$

templist:=part(templist,0):=plus
>>$

Introduce the contracted operator

operator c_hi_con$
for i:=1:ncomp do
for j:=1:ncomp do
c_hi_con(i,j):=
<<
templist:=for k:=1:ncomp collect
c_hi(i,j,k)*mkid(part(dep_var,k),!_x)$

templist:=part(templist,0):=plus
>>$

Finally, define the operator A2

operator aa2$
for all i,j,psi let aa2(i,j,psi) =
td(
gu3(i,j)*td(psi,x,2)+c_hi_con(i,j)*td(psi,x)
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,x)$

Now, we can test the Hamiltonian property of A1, A2 and their compatibility:

conv_cdiff2genfun(aa1,sym1)$
conv_cdiff2genfun(aa2,sym2)$

conv_genfun2biv(sym1,biv1)$
conv_genfun2biv(sym2,biv2)$

schouten_bracket(biv1,biv1,sb11);
schouten_bracket(biv1,biv2,sb12);
schouten_bracket(biv2,biv2,sb22);

Needless to say, the result of the last three command is a list of zeroes.

We observe that the same software can be used to prove the bi-Hamiltonianity of a
6-component WDVV system [PV15].

Schouten bracket of multidimensional operators. The formulae (20.56), (20.57)
hold also in the case of multidimensional operators, ie operators with total deriva-
tives in more than one independent variables. Here we give one Hamiltonian op-
erator H and we give two more variational bivectors P1, P2; all operators are
of Dubrovin–Novikov type (homogeneous). We check the compatibility by com-
puting [H,P1] and [H,P2]. Such computations are standard for the problem of
computing the Hamiltonian cohomology of H .

This example has been provided by M. Casati. The file of the computation is
dn2d_sb1.red. The dependent variables are p1, p2.

Let us set

H =

(
Dx 0
0 Dy

)
(20.65)

P1 =

(
P 11
1 P 12

1

P 21
1 P 22

1

)
(20.66)
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where

P 11
1 =2

∂g

∂p1
p2yDx +

∂g

∂p1
p2xy +

∂g

∂p1∂p2
p2xp

2
y +

∂g

∂2p1
p1xp

2
y

P 21
1 =− fD2

x + gD2
y +

∂g

∂p2
p2yDy − (

∂f

∂p1
p1x + 2

∂f

∂p2
p2x)Dx

− ∂f

∂2p2
p2xp

2
x −

∂f

∂p1∂p2
p1xp

2
x −

∂f

∂p2
p22x;

P 12
1 =fD2

x − gD2
y +

∂f

∂p1
p1xDx −

( ∂g
∂p2

p2y + 2
∂g

∂p1
p1y

)
Dy

− ∂g

∂2p1
p1yp

1
y −

∂g

∂p1∂p2
p1yp

2
y −

∂g

∂p1
p12y;

P 22
1 =2

∂f

∂p2
p1xDy +

∂f

∂p2
p1xy +

∂f

∂p1∂p2
p1xp

1
y +

∂f

∂2p2
p1xp

2
y;

and let P2 = P T
1 . This is implemented as follows:

mk_cdiffop(aa2,1,{2},2)$
for all psi let aa2(1,1,psi) =
2*df(g,p1)*p2_y*td(psi,x) + df(g,p1)*p2_xy*psi
+ df(g,p1,p2)*p2_x*p2_y*psi + df(g,p1,2)*p1_x*p2_y*psi;

for all psi let aa2(1,2,psi) =
f*td(psi,x,2) - g*td(psi,y,2) + df(f,p1)*p1_x*td(psi,x)
- (df(g,p2)*p2_y + 2*df(g,p1)*p1_y)*td(psi,y)
- df(g,p1,2)*p1_y*p1_y*psi - df(g,p1,p2)*p1_y*p2_y*psi
- df(g,p1)*p1_2y*psi;

for all psi let aa2(2,1,psi) =
- f*td(psi,x,2) + g*td(psi,y,2)
+ df(g,p2)*p2_y*td(psi,y)
- (df(f,p1)*p1_x+2*df(f,p2)*p2_x)*td(psi,x)
- df(f,p2,2)*p2_x*p2_x*psi - df(f,p1,p2)*p1_x*p2_x*psi
- df(f,p2)*p2_2x*psi;

for all psi let aa2(2,2,psi) =
2*df(f,p2)*p1_x*td(psi,y)
+ df(f,p2)*p1_xy*psi + df(f,p1,p2)*p1_x*p1_y*psi
+ df(f,p2,2)*p1_x*p2_y*psi;

mk_cdiffop(aa3,1,{2},2)$
for all psi let aa3(1,1,psi) = aa2(1,1,psi);
for all psi let aa3(1,2,psi) = aa2(2,1,psi);
for all psi let aa3(2,1,psi) = aa2(1,2,psi);
for all psi let aa3(2,2,psi) = aa2(2,2,psi);
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Let us check the skew-adjointness of the above bivectors:

conv_cdiff2superfun(aa1,sym1)$
conv_cdiff2superfun(aa2,sym2)$
conv_cdiff2superfun(aa3,sym3)$

adjoint_cdiffop(aa1,aa1_star);
adjoint_cdiffop(aa2,aa2_star);
adjoint_cdiffop(aa3,aa3_star);

for i:=1:2 do write sym1(i) + aa1_star_sf(i);
for i:=1:2 do write sym2(i) + aa2_star_sf(i);
for i:=1:2 do write sym3(i) + aa3_star_sf(i);

Of course the last three commands produce two zeros each.

Let us compute Schouten brackets.

conv_cdiff2superfun(aa1,sym1)$
conv_cdiff2superfun(aa2,sym2)$
conv_cdiff2superfun(aa3,sym3)$

conv_genfun2biv(sym1,biv1)$
conv_genfun2biv(sym2,biv2)$
conv_genfun2biv(sym3,biv3)$

schouten_bracket(biv1,biv1,sb11);
schouten_bracket(biv1,biv2,sb12);
schouten_bracket(biv1,biv3,sb13);

sb11(1) is trivially a list of zeros, while sb12(1) is nonzero and sb13(1) is
again zero.

More formulae are currently being implemented in the system, like symplecticity
and Nijenhuis condition for recursion operators [KKV06]. Interested readers are
warmly invited to contact R. Vitolo for questions/feature requests.

20.10.13 Non-local operators

In this section we will show an experimental way to find nonlocal operators. The
word ‘experimental’ comes from the lack of a comprehensive mathematical theory
of nonlocal operators; in particular, it is still missing a theoretical framework for
Schouten brackets of nonlocal opeartors in the odd variable language.

In any case we will achieve the results by means of a covering of the cotangent
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covering. Indeed, it can be proved that there is a 1 − 1 correspondence between
(higher) symmetries of the initial equation and conservation laws on the cotangent
covering. Such conservation laws provide new potential variables, hence a cover-
ing (see [BCD+99] for theoretical details on coverings).

In Section 20.10.15 we will also discuss a procedure for finding conservation laws
from their generating functions that is of independent interest.

Non-local Hamiltonian operators for the Korteweg–de Vries equation. Here
we will compute some nonlocal Hamiltonian operators for the KdV equation.
The result of the computation (without the details below) has been published in
[KKV04].

We have to solve equations of the type ddx(ct)-ddt(cx) as in 20.10.10. The
main difference is that we will attempt a solution on the ℓ∗-covering (see Subsec-
tion 20.10.11). For this reason, first of all we have to determine covering variables
with the usual mechanism of introducing them through conservation laws, this time
on the ℓ∗-covering.

As a first step, let us compute conservation laws on the ℓ∗-covering whose compo-
nents are linear in the p’s. This computation can be found in the file kdv_nlcl1
and related results and debug files.

The conservation laws that we are looking for are in 1 − 1 correspondence with
symmetries of the initial equation [KKV04]. We will look for conservatoin laws
which correspond to Galilean boost, x-translation, t-translation at the same time.
In the case of 2 independent variables and 1 dependent variable, one could prove
that one component of such conservation laws can always be written as sym*p as
follows:

c1x:=(t*u_x+1)*p$ % degree 1
c2x:=u_x*p$ % degree 4
c3x:=(u*u_x+u_3x)*p$ % degree 6

The second component must be found by solving an equation. To this aim we
produce the ansatz

c1t:=f1*p+f2*p_x+f3*p_2x$
% degree 6
c2t:=(for each el in linodd6 sum (c(ctel:=ctel+1)*el))$
% degree 8
c3t:=(for each el in linodd8 sum (c(ctel:=ctel+1)*el))$

where we already introduced the sets linodd6 and linodd8 of 6-th and 8-th
degree monomials which are linear in odd variables (see the source code). For the
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first conservation law solutions of the equation

equ 1:=td(c1t,x) - td(c1x,t);

are found by hand due to the presence of ‘t’ in the symmetry:

f3:=t*u_x+1$
f2:=-td(f3,x)$
f1:=u*f3+td(f3,x,2)$

We also have the equations

equ 2:=td(c2t,x)-td(c2x,t);
equ 3:=td(c3t,x)-td(c3x,t);

They are solved in the usual way (see the source code of the example and the results
file kdv_nlcl1_res).

Now, we solve the equation for shadows of nonlocal symmetries in a covering of
the ℓ∗-covering (source file kdv_nlho1). We can produce such a covering by
introducing three new nonlocal (potential) variables ra,rb,rc. We are going to
look for non-local Hamiltonian operators depending linearly on one of these vari-
ables. To this aim we modify the odd part of the equation to include the components
of the above conservation laws as the derivatives of the new non-local variables r1,
r2, r3:

principal_odd:={p_t,r1_x,r1_t,r2_x,r2_t,r3_x,r3_t}$
de_odd:={u*p_x+p_3x,
p*(t*u_x + 1),
p*t*u*u_x + p*t*u_3x + p*u + p_2x*t*u_x + p_2x
- p_x*t*u_2x,
p*u_x,
p*u*u_x + p*u_3x + p_2x*u_x - p_x*u_2x,
p*(u*u_x + u_3x),
p*u**2*u_x + 2*p*u*u_3x + 3*p*u_2x*u_x + p*u_5x
+ p_2x*u*u_x + p_2x*u_3x - p_x*u*u_2x
- p_x*u_4x - p_x*u_x**2}$

The scale degree analysis of the local Hamiltonian operators of the KdV equation
leads to the formulation of the ansatz

phi:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$

where linext is the list of graded mononials which are linear in odd variables
and have degree 7 (see the source file). The equation for shadows of nonlocal
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symmetries in ℓ∗-covering

equ 1:=td(phi,t)-u*td(phi,x)-u_x*phi-td(phi,x,3);

is solved in the usual way, obtaining (in odd variables notation):

phi := (c(5)*(4*p*u*u_x + 3*p*u_3x + 18*p_2x*u_x
+ 12*p_3x*u + 9*p_5x + 4*p_x*u**2
+ 12*p_x*u_2x - r2*u_x))/4$

Higher non-local Hamiltonian operators could also be found [KKV04]. The
CRACK approach also holds for non-local computations.

20.10.14 Non-local recursion operator for the Korteweg–de Vries
equation.

Following the ideas in [KKV04], a differential operator that sends symmetries into
symmetries can be found as a shadow of symmetry on the ℓ-covering of the KdV
equation, with the further condition that the shadows must be linear in the covering
q-variables. The tangent covering of the KdV equation is{

ut = uxxx + uux
qt = uxq + uqx + qxxx

and we have to solve the equation ℓ̄KdV (phi) = 0, where ℓ̄KdV means that the
linearization of the KdV equation is lifted over the tangent covering.

The file containing this example is kdv_ro1.red. The example closely follows
the computational scheme presented in [KVV12].

Usually, recursion operators are non-local: operators of the form D−1
x appear in

their expression. Geometrically we interpret this kind of operator as follows. We
introduce a conservation law on the cotangent covering of the form

ω = rt dx+ rx dt

where rt = uq + qxx and rx = q. It has the remarkable feature of being linear
with respect to q-variables. A non-local variable r can be introduced as a potential
of ω, as rx = rx, rt = rt. A computation of shadows of symmetries on the system
of PDEs 

ut = uxxx + uux
qt = uxq + uqx + qxxx
rt = uq + qxx
rx = q

yields, analogously to the previous computations,
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2*c(5)*q*u + 3*c(5)*q_2x + c(5)*r*u_x + c(2)*q.

The operator q stands for the identity operator, which is (and must be!) always a
solution; the other solution corresponds to the Lenard–Magri operator

3Dxx + 2u+ uxD
−1
x .

20.10.15 Non-local Hamiltonian-recursion operators for Plebanski
equation.

The Plebanski (or second Heavenly) equation

F = uttuxx − u2tx + uxz + uty = 0 (20.67)

is Lagrangian. This means that its linearization is self-adjoint: ℓF = ℓ∗F , so that
the tangent and cotangent covering coincide, its odd equation being

ℓF (p) = pxz + pty − 2utxptx + u2xp2t + u2tp2x = 0. (20.68)

It is not difficult to realize that the above equation can be written in explicit con-
servative form as

pxz + pty + uttpxx + uxxptt − 2utxptx

= Dx(pz + uttpx − utxpt) +Dt(py + uxxpt − utxpx) = 0,

thus the corresponding conservation law is

υ(1) = (py+uxxpt−utxpx) dx∧dy∧dz+(utxpt−pz−uttpx) dt∧dy∧dz. (20.69)

We can introduce a potential r for the above 2-component conservation law.
Namely, we can assume that

rx = py + uxxpt − utxpx, rt = utxpt − pz − uttpx. (20.70)

This is a new nonlocal variable for the (co)tangent covering of the Plebanski equat-
ion. We can load the Plebanski equation together with its nonlocal variable r as
follows:

indep_var:={t,x,y,z}$
dep_var:={u}$
odd_var:={p,r}$
deg_indep_var:={-1,-1,-4,-4}$
deg_dep_var:={1}$
deg_odd_var:={1,4}$
total_order:=6$
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principal_der:={u_xz}$
de:={-u_ty+u_tx**2-u_2t*u_2x}$
% rhs of the equations that define the nonlocal variable
rt:= - p_z - u_2t*p_x + u_tx*p_t$
rx:= p_y + u_2x*p_t - u_tx*p_x$
% We add conservation laws as new nonlocal odd variables
principal_odd:={p_xz,r_x,r_t}$
%
de_odd:={-p_ty+2*u_tx*p_tx-u_2x*p_2t-u_2t*p_2x,rx,rt}$

We can easily verify that the integrability condition for the new nonlocal variable
holds:

td(r,t,x) - td(r,x,t);

the result is 0.

Now, we look for nonlocal recursion operators in the tangent covering using the
new nonlocal odd variable r. We can load the equation exactly as before. We look
for recursion operators which depend on r (which has scale degree 4); we produce
the following ansatz for phi:

linodd:=mkalllinodd(gradmon,l_grad_odd,1,4)$
phi:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$

then we solve the equation of shadows of symmetries:

equ 1:=td(phi,x,z)+td(phi,t,y)-2*u_tx*td(phi,t,x)
+u_2x*td(phi,t,2)+u_2t*td(phi,x,2)$

The solution is

phi := c(28)*r + c(1)*p

hence we obtain the identity operator p and the new nonlocal operator r. It can be
proved that changing coordinates to the evolutionary presentation yields the local
operator (which has a much more complex expression than the identity operator)
and one of the nonlocal operators of [NNS05]. More details on this computation
can be found in [KVV12].
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20.11 CDIFF: A Package for Computations in Geometry
of Differential Equations

Authors: P. Gragert, P.H.M. Kersten, G. Post and G. Roelofs

Author of this Section: R. Vitolo.

We describe CDIFF, a Reduce package for computations in geometry of Differen-
tial Equations (DEs, for short) developed by P. Gragert, P.H.M. Kersten, G. Post
and G. Roelofs from the University of Twente, The Netherlands.

The package is part of the official REDUCE distribution at Sourceforge [RED], but
it is also distributed on the Geometry of Differential Equations web site http:
//gdeq.org (GDEQ for short).

We start from an installation guide for Linux and Windows. Then we focus on con-
crete usage recipes for the computation of higher symmetries, conservation laws,
Hamiltonian and recursion operators for polynomial differential equations. All
programs discussed here are shipped together with this manual and can be found
at the GDEQ website. The mathematical theory on which computations are based
can be found in refs. [BCD+99, KKV04].

NOTE: The new REDUCE package CDE [Vit], also distributed on http://
gdeq.org, simplifies the use of CDIFF and extends its capabilities. Interested
users may read the manual of CDE where the same computations described here
for CDIFF are done in a simpler way, and further capabilities allow CDE to solve a
greater variety of problems.

20.11.1 Introduction

This brief guide refers to using CDIFF, a set of symbolic computation programs
devoted to computations in geometry of DEs and developed by P. Gragert, P.H.M.
Kersten, G. Post and G. Roelofs at the University of Twente, The Netherlands.

Initially, the development of the CDIFF packages was started by Gragert and Ker-
sten for symmetry computations in DEs, then they have been partly rewritten and
extended by Roelofs and Post. The CDIFF packages consist of 3 program files plus
a utility file; only the main three files are documented [Roe92b, Roe92a, Pos96].
The CDIFF packages, as well as a copy of the documentation (including this man-
ual) and several example programs, can be found both at Sourceforge in the sources
of REDUCE [RED] and in the Geometry of Differential Equations (GDEQ for
short) web site [gde]. The name of the packages, CDIFF, comes from the fact that
the package is aimed at defining differential operators in total derivatives and do
computations involving them. Such operators are called C-differential operators
(see [BCD+99]).

http://gdeq.org
http://gdeq.org
http://gdeq.org
http://gdeq.org
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The main motivation for writing this manual was that REDUCE 3.8 recently be-
came free software, and can be downloaded here [RED]. For this reason, we are
able to make our computations accessible to a wider public, also thanks to the in-
clusion of CDIFF in the official REDUCE distribution. The readers are warmly
invited to send questions, comments, etc., both on the computations and on the
technical aspects of installation and configuration of REDUCE, to the author of
the present manual.

Acknowledgements. My warmest thanks are for Paul H.M. Kersten, who ex-
plained to me how to use the CDIFF packages for several computations of in-
terest in the Geometry of Differential Equations. I also would like to thank I.S.
Krasil’shchik and A.M. Verbovetsky for constant support and stimulating discus-
sions which led me to write this text.

20.11.2 Computing with CDIFF

In order to use CDIFF it is necessary to load the package by the command

load_package cdiff;

All programs that we will discuss in this manual can be found inside the subfolder
examples in the folder which contains this manual. In order to run them just do

in "filename.red";

at the REDUCE command prompt.

There are some conventions that I adopted on writing programs which use CDIFF.

• Program files have the extension .red. This will load automatically the
reduce-ide mode in emacs (provided you made the installation steps de-
scribed in the reduce-ide guides).

• Program files have the following names:

equationname_typeofcomputation_version.red

where equationname stands for the shortened name of the equation (e.g.
Korteweg–de Vries is always indicated by KdV), typeofcomputation
stands for the type of geometric object which is computed with the given file,
for example symmetries, Hamiltonian operators, etc., version is a version
number.

• More specific information, like the date and more details on the computation
done in each version, are included as comment lines at the very beginning of
each file.
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Now we describe some examples of computations with CDIFF. The parts of ex-
amples which are shared between all examples are described only once. We stress
that all computations presented in this document are included in the official RE-
DUCE distribution and can be also downloaded at the GDEQ website [gde]. The
examples can be run with REDUCE by typing in "program.red"; at the
REDUCE prompt, as explained above.

Remark. The mathematical theories on which the computations are based can be
found in [BCD+99, KKV04].

Higher symmetries

In this section we show the computation of (some) higher symmetries of Burgers’
equationB = ut−uxx+2uux = 0. The corresponding file is Burg_hsym_1.red
and the results of the computation are in Burg_hsym_1_res.red.

The idea underlying this computation is that one can use the scale symmetries of
Burgers’ equation to assign “gradings” to each variable appearing in the equation.
As a consequence, one could try different ansatz for symmetries with polynomial
generating function. For example, it is possible to require that they are sum of
monomials of given degrees. This ansatz yields a simplification of the equations
for symmetries, because it is possible to solve them in a “graded” way, i.e., it is
possible to split them into several equations made by the homogeneous components
of the equation for symmetries with respect to gradings.

In particular, Burgers’ equation translates into the following dimensional equation:

[ut] = [uxx], [uxx = 2uux].

By the rules [uz] = [u] − [z] and [uv] = [u] + [v], and choosing [x] = −1, we
have [u] = 1 and [t] = −2. This will be used to generate the list of homogeneous
monomials of given grading to be used in the ansatz about the structure of the
generating function of the symmetries.

The following instructions initialize the total derivatives. The first string is the
name of the vector field, the second item is the list of even variables (note that
u1, u2, ... are ux, uxx, . . . ), the third item is the list of odd (non-commuting)
variables (‘ext’ stands for ‘external’ like in external (wedge) product). Note that in
this example odd variables are not strictly needed, but it is better to insert some of
them for syntax reasons.

super_vectorfield(ddx,{x,t,u,u1,u2,u3,u4,u5,u6,u7,
u8,u9,u10,u11,u12,u13,u14,u15,u16,u17},
{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,
ext 10,ext 11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,
ext 18,ext 19,ext 20,ext 21,ext 22,ext 23,ext 24,ext 25,
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ext 26,ext 27,ext 28,ext 29,ext 30,ext 31,ext 32,ext 33,
ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,ext 41,
ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,
ext 50,ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,
ext 58,ext 59,ext 60,ext 61,ext 62,ext 63,ext 64,ext 65,
ext 66,ext 67,ext 68,ext 69,ext 70,ext 71,ext 72,ext 73,
ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80
});

super_vectorfield(ddt,{x,t,u,u1,u2,u3,u4,u5,u6,u7,
u8,u9,u10,u11,u12,u13,u14,u15,u16,u17},
{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,
ext 10,ext 11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,
ext 18,ext 19,ext 20,ext 21,ext 22,ext 23,ext 24,ext 25,
ext 26,ext 27,ext 28,ext 29,ext 30,ext 31,ext 32,ext 33,
ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,ext 41,
ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,
ext 50,ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,
ext 58,ext 59,ext 60,ext 61,ext 62,ext 63,ext 64,ext 65,
ext 66,ext 67,ext 68,ext 69,ext 70,ext 71,ext 72,ext 73,
ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80
});

Specification of the vectorfield ddx. The meaning of the first index is the par-
ity of variables. In particular here we have just even variables. The second in-
dex parametrizes the second item (list) in the super_vectorfield declara-
tion. More precisely, ddx(0,1) stands for ∂/∂x, ddx(0,2) stands for ∂/∂t,
ddx(0,3) stands for ∂/∂u, ddx(0,4) stands for ∂/∂ux, . . . , and all coordi-
nates x, t, ux, . . . , are treated as even coordinates. Note that ‘$’ suppresses the
output.

ddx(0,1):=1$
ddx(0,2):=0$
ddx(0,3):=u1$
ddx(0,4):=u2$
ddx(0,5):=u3$
ddx(0,6):=u4$
ddx(0,7):=u5$
ddx(0,8):=u6$
ddx(0,9):=u7$
ddx(0,10):=u8$
ddx(0,11):=u9$
ddx(0,12):=u10$
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ddx(0,13):=u11$
ddx(0,14):=u12$
ddx(0,15):=u13$
ddx(0,16):=u14$
ddx(0,17):=u15$
ddx(0,18):=u16$
ddx(0,19):=u17$
ddx(0,20):=letop$

The string letop is treated as a variable; if it appears during computations it is
likely that we went too close to the highest order variables that we defined in the
file. This could mean that we need to extend the operators and variable list. In
case of large output, one can search in it the string letop to check whether errors
occurred.

Specification of the vectorfield ddt. In the evolutionary case we never have more
than one time derivative, other derivatives are utxxx···.

ddt(0,1):=0$
ddt(0,2):=1$
ddt(0,3):=ut$
ddt(0,4):=ut1$
ddt(0,5):=ut2$
ddt(0,6):=ut3$
ddt(0,7):=ut4$
ddt(0,8):=ut5$
ddt(0,9):=ut6$
ddt(0,10):=ut7$
ddt(0,11):=ut8$
ddt(0,12):=ut9$
ddt(0,13):=ut10$
ddt(0,14):=ut11$
ddt(0,15):=ut12$
ddt(0,16):=ut13$
ddt(0,17):=ut14$
ddt(0,18):=letop$
ddt(0,19):=letop$
sddt(0,20):=letop$

We now give the equation in the form one of the derivatives equated to a right-hand
side expression. The left-hand side derivative is called principal, and the remaining
derivatives are called parametric25. For scalar evolutionary equations with two
independent variables internal variables are of the type (t, x, u, ux, uxx, . . .).

25This terminology dates back to Riquier, see [Mar09]
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ut:=u2+2*u*u1;

ut1:=ddx ut;
ut2:=ddx ut1;
ut3:=ddx ut2;
ut4:=ddx ut3;
ut5:=ddx ut4;
ut6:=ddx ut5;
ut7:=ddx ut6;
ut8:=ddx ut7;
ut9:=ddx ut8;
ut10:=ddx ut9;
ut11:=ddx ut10;
ut12:=ddx ut11;
ut13:=ddx ut12;
ut14:=ddx ut13;

Test for verifying the commutation of total derivatives. Highest order defined terms
may yield some letop.

operator ev;

for i:=1:17 do
write ev(0,i):=ddt(ddx(0,i))-ddx(ddt(0,i));

This is the list of variables with respect to their grading, starting from degree one.

all_graded_der:={{u},{u1},{u2},{u3},{u4},{u5},
{u6},{u7},{u8},{u9},{u10},{u11},{u12},{u13},{u14},
{u15},{u16},{u17}};

This is the list of all monomials of degree 0, 1, 2, . . . which can be constructed from
the above list of elementary variables with their grading.

grd0:={1};
grd1:= mkvarlist1(1,1)$
grd2:= mkvarlist1(2,2)$
grd3:= mkvarlist1(3,3)$
grd4:= mkvarlist1(4,4)$
grd5:= mkvarlist1(5,5)$
grd6:= mkvarlist1(6,6)$
grd7:= mkvarlist1(7,7)$
grd8:= mkvarlist1(8,8)$
grd9:= mkvarlist1(9,9)$
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grd10:= mkvarlist1(10,10)$
grd11:= mkvarlist1(11,11)$
grd12:= mkvarlist1(12,12)$
grd13:= mkvarlist1(13,13)$
grd14:= mkvarlist1(14,14)$
grd15:= mkvarlist1(15,15)$
grd16:= mkvarlist1(16,16)$

Initialize a counter ctel for arbitrary constants c; initialize equations:

operator c,equ;

ctel:=0;

We assume a generating function sym, independent of x and t, of degree ≤ 5.

sym:=
(for each el in grd0 sum (c(ctel:=ctel+1)*el))+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))+
(for each el in grd4 sum (c(ctel:=ctel+1)*el))+
(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

This is the equation ℓ̄B(sym) = 0, where B = 0 is Burgers’ equation and sym is
the generating function. From now on all equations are arranged in a single vector
whose name is equ.

equ 1:=ddt(sym)-ddx(ddx(sym))-2*u*ddx(sym)-2*u1*sym ;

This is the list of variables, to be passed to the equation solver.

vars:={x,t,u,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,
u12,u13,u14,u15,u16,u17};

This is the number of initial equation(s)

tel:=1;

The following procedure uses multi_coeff (from the package tools). It gets
all coefficients of monomials appearing in the initial equation(s). The coefficients
are put into the vector equ after the initial equations.

procedure splitvars i;
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begin;
ll:=multi_coeff(equ i,vars);
equ(tel:=tel+1):=first ll;
ll:=rest ll;
for each el in ll do equ(tel:=tel+1):=second el;
end;

This command initializes the equation solver. It passes

• the equation vector equ togeher with its length tel (i.e., the total number
of equations);

• the list of variables with respect to which the system must not split the equat-
ions, i.e., variables with respect to which the unknowns are not polynomial.
In this case this list is just {};

• the constants’vector c, its length ctel, and the number of negative indexes
if any; just 0 in our example;

• the vector of free functions f that may appear in computations. Note that in
{f,0,0 } the second 0 stands for the length of the vector of free functions.
In this example there are no free functions, but the command needs the pres-
ence of at least a dummy argument, f in this case. There is also a last zero
which is the negative length of the vector f , just as for constants.

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

Run the procedure splitvars in order to obtain equations on coefficiens of each
monomial.

splitvars 1;

Next command tells the solver the total number of equations obtained after running
splitvars.

put_equations_used tel;

It is worth to write down the equations for the coefficients.

for i:=2:tel do write equ i;

This command solves the equations for the coefficients. Note that we have to skip
the initial equations!

for i:=2:tel do integrate_equation i;
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;end;

In the folder computations/NewTests/Higher_symmetries it is possi-
ble to find the following files:

Burg_hsym_1.red The above file, together with its results file.

KdV_hsym_1.red Higher symmetries of KdV, with the ansatz: deg(sym) ≤ 5.

KdV_hsym_2.red Higher symmetries of KdV, with the ansatz:

sym = x*(something of degree 3) + t*(something of degree 5)
+ (something of degree 2).

This yields scale symmetries.

KdV_hsym_3.red Higher symmetries of KdV, with the ansatz:

sym = x*(something of degree 1) + t*(something of degree 3)
+ (something of degree 0).

This yields Galilean boosts.

Local conservation laws

In this section we will find (some) local conservation laws for the KdV equation
F = ut − uxxx + uux = 0. Concretely, we have to find non-trivial 1-forms
f = fxdx+ftdt on F = 0 such that d̄f = 0 on F = 0. “Triviality” of conservation
laws is a delicate matter, for which we invite the reader to have a look in [BCD+99].

The files for this example are KdV_loc-cl_1.red and KdV_loc-cl_2.red
and the corresponding results files.

We make use of ddx and ddt, which in the even part are the same as in the previ-
ous example (subsection 20.11.2). After defining the total derivatives we prepare
the list of graded variables (recall that in KdV u is of degree 2):

all_graded_der:={{},{u},{u1},{u2},{u3},{u4},{u5},
{u6},{u7},{u8},{u9},{u10},{u11},{u12},{u13},{u14},
{u15},{u16},{u17}};

We make the ansatz

fx:=
(for each el in grd0 sum (c(ctel:=ctel+1)*el))+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))+



560 CHAPTER 20. USER CONTRIBUTED PACKAGES

(for each el in grd2 sum (c(ctel:=ctel+1)*el))+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))$
ft:=
(for each el in grd2 sum (c(ctel:=ctel+1)*el))+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))+
(for each el in grd4 sum (c(ctel:=ctel+1)*el))+
(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

for the components of the conservation law. We have to solve the equation

equ 1:=ddt(fx)-ddx(ft);

the fact that ddx and ddt are expressed in internal coordinates on the equation
means that the objects that we consider are already restricted to the equation.

We shall split the equation in its graded summands with the procedure splitvars,
then solve it

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});
splitvars 1;
pte tel;
for i:=2:tel do es i;
end;

As a result we get

fx := c(3)*u1 + c(2)*u + c(1)$
ft := (2*c(3)*u*u1 + 2*c(3)*u3

+ c(2)*u**2 + 2*c(2)*u2)/2$

Unfortunately it is clear that the conservation law corresponding to c(3) is trivial,
because it is the total x-derivative of F ; its restriction on the infinite prolonga-
tion of the KdV is zero. Here this fact is evident; how to get rid of less evident
trivialities by an ‘automatic’ mechanism? We considered this problem in the file
KdV_loc-cl_2.red, where we solved the equation

equ 1:=fx-ddx(f0);
equ 2:=ft-ddt(f0);

after having loaded the values fx and ft found by the previous program. We make
the following ansatz on f0:

f0:=
(for each el in grd0 sum (cc(cctel:=cctel+1)*el))+
(for each el in grd1 sum (cc(cctel:=cctel+1)*el))+
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(for each el in grd2 sum (cc(cctel:=cctel+1)*el))+
(for each el in grd3 sum (cc(cctel:=cctel+1)*el))$

Note that this gives a grading which is compatible with the gradings of fx and ft.
After solving the system

initialize_equations(equ,tel,{},{cc,cctel,0},{f,0,0});
for i:=1:2 do begin splitvars i;end;
pte tel;
for i:=3:tel do es i;
end;

issuing the commands

fxnontriv := fx-ddx(f0);
ftnontriv := ft-ddt(f0);

we obtain

fxnontriv := c(2)*u + c(1)$
ftnontriv := (c(2)*(u**2 + 2*u2))/2$

This mechanism can be easily generalized to situations in which the conservation
laws which are found by the program are difficult to treat by pen and paper.

Local Hamiltonian operators

In this section we will find local Hamiltonian operators for the KdV equation ut =
uxxx + uux. Concretely, we have to solve ℓ̄KdV (phi) = 0 over the equation{

ut = uxxx + uux
pt = pxxx + upx

or, in geometric terminology, find the shadows of symmetries on the ℓ∗-covering of
the KdV equation. The reference paper for this type of computations is [KKV04].

The file containing this example is KdV_Ham_1.red.

We make use of ddx and ddt, which in the even part are the same as in the previ-
ous example (subsection 20.11.2). We stress that the linearization ℓ̄KdV (phi) = 0
is the equation

ddt(phi)-u*ddx(phi)-u1*phi-ddx(ddx(ddx(phi)))=0

but the total derivatives are lifted to the ℓ∗ covering, hence they must contain also
derivatives with respect to p’s. This will be achieved by treating p variables as odd
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and introducing the odd parts of ddx and ddt,

ddx(1,1):=0$
ddx(1,2):=0$
ddx(1,3):=ext 4$
ddx(1,4):=ext 5$
ddx(1,5):=ext 6$
ddx(1,6):=ext 7$
ddx(1,7):=ext 8$
ddx(1,8):=ext 9$
ddx(1,9):=ext 10$
ddx(1,10):=ext 11$
ddx(1,11):=ext 12$
ddx(1,12):=ext 13$
ddx(1,13):=ext 14$
ddx(1,14):=ext 15$
ddx(1,15):=ext 16$
ddx(1,16):=ext 17$
ddx(1,17):=ext 18$
ddx(1,18):=ext 19$
ddx(1,19):=ext 20$
ddx(1,20):=letop$

In the above definition the first index ‘1’ says that we are dealing with odd vari-
ables, ext indicates anticommuting variables. Here, ext 3 is p0, ext 4 is px,
ext 5 is pxx, . . . so ddx(1,3):=ext 4 indicates px∂/∂p, etc..

Now, remembering that the additional equation is again evolutionary, we can get
rid of pt by letting it be equal to ext 6 + u*ext 4, as follows:

ddt(1,1):=0$
ddt(1,2):=0$
ddt(1,3):=ext 6 + u*ext 4$
ddt(1,4):=ddx(ddt(1,3))$
ddt(1,5):=ddx(ddt(1,4))$
ddt(1,6):=ddx(ddt(1,5))$
ddt(1,7):=ddx(ddt(1,6))$
ddt(1,8):=ddx(ddt(1,7))$
ddt(1,9):=ddx(ddt(1,8))$
ddt(1,10):=ddx(ddt(1,9))$
ddt(1,11):=ddx(ddt(1,10))$
ddt(1,12):=ddx(ddt(1,11))$
ddt(1,13):=ddx(ddt(1,12))$
ddt(1,14):=ddx(ddt(1,13))$
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ddt(1,15):=ddx(ddt(1,14))$
ddt(1,16):=ddx(ddt(1,15))$
ddt(1,17):=ddx(ddt(1,16))$
ddt(1,18):=letop$
ddt(1,19):=letop$
ddt(1,20):=letop$

Let us make the following ansatz about the Hamiltonian operators:

phi:=
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6
$

Note that we are looking for generating functions of shadows which are linear
with respect to p’s. Moreover, having set [p] = −2 we will look for solutions of
maximal possible degree +1.

After having set

equ 1:=ddt(phi)-u*ddx(phi)-u1*phi-ddx(ddx(ddx(phi)));
vars:={x,t,u,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12,
u13,u14,u15,u16,u17};
tel:=1;

we define the procedures splitvars as in subsection 20.11.2 and splitext
as follows:

procedure splitext i;
begin;
ll:=operator_coeff(equ i,ext);
equ(tel:=tel+1):=first ll;
ll:=rest ll;
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for each el in ll do equ(tel:=tel+1):=second el;
end;

Then we initialize the equations:

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

do splitext

splitext 1;

then splitvars

tel1:=tel;
for i:=2:tel1 do begin splitvars i;equ i:=0;end;

Now we are ready to solve all equations:

put_equations_used tel;
for i:=2:tel do write equ i:=equ i;
pause;
for i:=2:tel do integrate_equation i;
end;

Note that we want all equations to be solved!

The results are the two well-known Hamiltonian operators for the KdV:

phi := c(4)*ext(4) + 3*c(3)*ext(6) + 2*c(3)*ext(4)*u
+ c(3)*ext(3)*u1$

Of course, the results correspond to the operators

ext(4)→ Dx,
3*c(3)*ext(6) + 2*c(3)*ext(4)*u + c(3)*ext(3)*u1→

3Dxxx + 2uDx + ux.

Note that each operator is multiplied by one arbitrary real constant, c(4) and
c(3).

Non-local Hamiltonian operators

In this section we will show an experimental way to find nonlocal Hamiltonian
operators for the KdV equation. The word ‘experimental’ comes from the lack of a
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consistent mathematical theory. The result of the computation (without the details
below) has been published in [KKV04].

We have to solve equations of the type ddx(ft)-ddt(fx) as in 20.11.2. The
main difference is that we will attempt a solution on the ℓ∗-covering (see Subsec-
tion 20.11.2). For this reason, first of all we have to determine covering variables
with the usual mechanism of introducing them through conservation laws, this time
on the ℓ∗-covering.

As a first step, let us compute conservation laws on the ℓ∗-covering whose
components are linear in the p’s. This computation can be found in the file
KdV_nloc-cl_1.red and related results file. When specifying odd variables
in ddx and ddt, we have something like

ddx(1,1):=0$
ddx(1,2):=0$
ddx(1,3):=ext 4$
ddx(1,4):=ext 5$
ddx(1,5):=ext 6$
ddx(1,6):=ext 7$
ddx(1,7):=ext 8$
ddx(1,8):=ext 9$
ddx(1,9):=ext 10$
ddx(1,10):=ext 11$
ddx(1,11):=ext 12$
ddx(1,12):=ext 13$
ddx(1,13):=ext 14$
ddx(1,14):=ext 15$
ddx(1,15):=ext 16$
ddx(1,16):=ext 17$
ddx(1,17):=ext 18$
ddx(1,18):=ext 19$
ddx(1,19):=ext 20$
ddx(1,20):=letop$
ddx(1,50):=(t*u1+1)*ext 3$ % degree -2
ddx(1,51):=u1*ext 3$ % degree +1
ddx(1,52):=(u*u1+u3)*ext 3$ % degree +3

and

ddt(1,1):=0$
ddt(1,2):=0$
ddt(1,3):=ext 6 + u*ext 4$
ddt(1,4):=ddx(ddt(1,3))$
ddt(1,5):=ddx(ddt(1,4))$
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ddt(1,6):=ddx(ddt(1,5))$
ddt(1,7):=ddx(ddt(1,6))$
ddt(1,8):=ddx(ddt(1,7))$
ddt(1,9):=ddx(ddt(1,8))$
ddt(1,10):=ddx(ddt(1,9))$
ddt(1,11):=ddx(ddt(1,10))$
ddt(1,12):=ddx(ddt(1,11))$
ddt(1,13):=ddx(ddt(1,12))$
ddt(1,14):=ddx(ddt(1,13))$
ddt(1,15):=ddx(ddt(1,14))$
ddt(1,16):=ddx(ddt(1,15))$
ddt(1,17):=ddx(ddt(1,16))$
ddt(1,18):=letop$
ddt(1,19):=letop$
ddt(1,20):=letop$
ddt(1,50):=f1*ext 3+f2*ext 4+f3*ext 5$
ddt(1,51):=f4*ext 3+f5*ext 4+f6*ext 5$
ddt(1,52):=f7*ext 3+f8*ext 4+f9*ext 5$

The variables corresponding to the numbers 50,51,52 here play a dummy role,
the coefficients of the corresponding vector are the unknown generating functions
of conservation laws on the ℓ∗-covering. More precisely, we look for conservation
laws of the form

fx= phi*ext 3
ft= f1*ext3+f2*ext4+f3*ext5

The ansatz is chosen because, first of all, ext 4 and ext 5 can be removed from
fx by adding a suitable total divergence (trivial conservation law); moreover it can
be proved that phi is a symmetry of KdV. We can write down the equations

equ 1:=ddx(ddt(1,50))-ddt(ddx(1,50));
equ 2:=ddx(ddt(1,51))-ddt(ddx(1,51));
equ 3:=ddx(ddt(1,52))-ddt(ddx(1,52));

However, the above choices make use of a symmetry which contains ‘t’ in the
generator. This would make automatic computations more tricky, but still possible.
In this case the solution of equ 1 has been found by hand and passed to the
program:

f3:=t*u1+1$
f1:=u*f3+ddx(ddx(f3))$
f2:=-ddx(f3)$
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together with the ansatz on the coefficients for the other equations

f4:=(for each el in grd5 sum (c(ctel:=ctel+1)*el))$
f5:=(for each el in grd4 sum (c(ctel:=ctel+1)*el))$
f6:=(for each el in grd3 sum (c(ctel:=ctel+1)*el))$

f7:=(for each el in grd7 sum (c(ctel:=ctel+1)*el))$
f8:=(for each el in grd6 sum (c(ctel:=ctel+1)*el))$
f9:=(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

The previous ansatz keep into account the grading of the starting symmetry in
phi*ext 3. The resulting equations are solved in the usual way (see the example
file).

Now, we solve the equation for shadows of nonlocal symmetries in a covering of
the ℓ∗-covering. We can choose between three new nonlocal variables ra,rb,rc.
We are going to look for non-local Hamiltonian operators depending linearly on
one of these variables. Higher non-local Hamiltonian operators could be found by
introducing total derivatives of the r’s. As usual, the new variables are specified
through the components of the previously found conservation laws according with
the rule

ra_x=fx, ra_t=ft,

and analogously for the others. We define

ddx(1,50):=(t*u1+1)*ext 3$ % degree -2
ddx(1,51):=u1*ext 3$ % degree +1
ddx(1,52):=(u*u1+u3)*ext 3$ % degree +3

and

ddt(1,50) := ext(5)*t*u1 + ext(5) - ext(4)*t*u2
+ ext(3)*t*u*u1 + ext(3)*t*u3 + ext(3)*u$
ddt(1,51) := ext(5)*u1 - ext(4)*u2 + ext(3)*u*u1
+ ext(3)*u3$
ddt(1,52) := ext(5)*u*u1 + ext(5)*u3 - ext(4)*u*u2
- ext(4)*u1**2 - ext(4)*u4 + ext(3)*u**2*u1
+ 2*ext(3)*u*u3 + 3*ext(3)*u1*u2 + ext(3)*u5$

as it results from the computation of the conservation laws. The following ansatz
for the nonlocal Hamiltonian operator comes from the fact that local Hamiltonian
operators have gradings−1 and +1 when written in terms of p’s. So we are looking
for a nonlocal Hamiltonian operator of degree 3.
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phi:=
(for each el in grd6 sum (c(ctel:=ctel+1)*el))*ext 50+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 51+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 52+

(for each el in grd5 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd4 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 6+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 7+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 8
$

As a solution, we obtain

phi := c(1)*(ext(51)*u1 - 9*ext(8) - 12*ext(6)*u
- 18*ext(5)*u1 - 4*ext(4)*u**2 - 12*ext(4)*u2
- 4*ext(3)*u*u1 - 3*ext(3)*u3)$

where ext51 stands for the nonlocal variable rb fulfilling

rb_x:=u1*ext 3$
rb_t:=ext(5)*u1 - ext(4)*u2 + ext(3)*u*u1 + ext(3)*u3$

Remark. In the file KdV_nloc-Ham_2.red it is possible to find another ansatz
for a non-local Hamiltonian operator of degree +5.

Computations for systems of PDEs

There is no conceptual difference when computing for systems of PDEs. We will
look for Hamiltonian structures for the following Boussinesq equation:{

ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

(20.71)

where σ is a constant. This example also shows how to deal with jet spaces with
more than one dependent variable. Here gradings can be taken as

[t] = −2, [x] = −1, [v] = 1, [u] = 2, [p] = [
∂

∂u
] = −2, [q] = [

∂

∂v
] = −1

where p, q are the two coordinates in the space of generating functions of conser-
vation laws.
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The linearization of the above system and its adjoint are, respectively

ℓBou =

(
Dt − vDx − vx −ux − uDx − σDxxx

−Dx Dt − vx − vDx

)
,

ℓ∗Bou =

(
−Dt + vDx Dx

uDx + σDxxx −Dt + vDx

)
and lead to the ℓ∗Bou covering equation

−pt + vpx + qx = 0
upx + σpxxx − qt + vqx = 0
ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

We have to find shadows of symmetries on the above covering. Total derivatives
must be defined as follows:

super_vectorfield(ddx,{x,t,u,v,u1,v1,u2,v2,u3,v3,u4,v4,
u5,v5,u6,v6,u7,v7,u8,v8,u9,v9,u10,v10,u11,v11,u12,v12,
u13,v13,u14,v14,u15,v15,u16,v16,u17,v17},
{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,
ext 10,ext 11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,
ext 18,ext 19,ext 20,ext 21,ext 22,ext 23,ext 24,ext 25,
ext 26,ext 27,ext 28,ext 29,ext 30,ext 31,ext 32,ext 33,
ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,ext 41,
ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,
ext 50,ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,
ext 58,ext 59,ext 60,ext 61,ext 62,ext 63,ext 64,ext 65,
ext 66,ext 67,ext 68,ext 69,ext 70,ext 71,ext 72,ext 73,
ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80
});

super_vectorfield(ddt,{x,t,u,v,u1,v1,u2,v2,u3,v3,u4,v4,
u5,v5,u6,v6,u7,v7,u8,v8,u9,v9,u10,v10,u11,v11,u12,v12,
u13,v13,u14,v14,u15,v15,u16,v16,u17,v17},
{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,
ext 10,ext 11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,
ext 18,ext 19,ext 20,ext 21,ext 22,ext 23,ext 24,ext 25,
ext 26,ext 27,ext 28,ext 29,ext 30,ext 31,ext 32,ext 33,
ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,ext 41,
ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,
ext 50,ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,
ext 58,ext 59,ext 60,ext 61,ext 62,ext 63,ext 64,ext 65,
ext 66,ext 67,ext 68,ext 69,ext 70,ext 71,ext 72,ext 73,
ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80
});
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In the list of coordinates we alternate derivatives of u and derivatives of v. The
same must be done for coefficients; for example,

ddx(0,1):=1$
ddx(0,2):=0$
ddx(0,3):=u1$
ddx(0,4):=v1$
ddx(0,5):=u2$
ddx(0,6):=v2$
...

After specifying the equation

ut:=u1*v+u*v1+sig*v3;
vt:=u1+v*v1;

we define the (already introduced) time derivatives:

ut1:=ddx ut;
ut2:=ddx ut1;
ut3:=ddx ut2;
...
vt1:=ddx vt;
vt2:=ddx vt1;
vt3:=ddx vt2;
...

up to the required order (here the order can be stopped at 15). Odd variables p and q
must be specified with an appropriate length (here it is OK to stop at ddx(1,36)).
Recall to replace pt, qt with the internal coordinates of the covering:

ddt(1,1):=0$
ddt(1,2):=0$
ddt(1,3):=+v*ext 5+ext 6$
ddt(1,4):=u*ext 5+sig*ext 9+v*ext 6$
ddt(1,5):=ddx(ddt(1,3))$
...

The list of graded variables:

all_graded_der:={{v},{u,v1},{u1,v2},{u2,v3},{u3,v4},
{u4,v5},{u5,v6},{u6,v7},{u7,v8},{u8,v9},{u9,v10},
{u10,v11},{u11,v12},{u12,v13},{u13,v14},{u14,v15},
{u15,v16},{u16,v17},{u17}};



571

The ansatz for the components of the Hamiltonian operator is

phi1:=
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6
$

phi2:=
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 4
$

and the equation for shadows of symmetries is

equ 1:=ddt(phi1)-v*ddx(phi1)-v1*phi1-u1*phi2-u*ddx(phi2)
-sig*ddx(ddx(ddx(phi2)));
equ 2:=-ddx(phi1)-v*ddx(phi2)-v1*phi2+ddt(phi2);

After the usual procedures for decomposing polynomials we obtain the following
result:

phi1 := c(6)*ext(6)$
phi2 := c(6)*ext(5)$

which corresponds to the vector (Dx, Dx). Extending the ansatz to

phi1:=
(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 7+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 9+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 6+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 8
$

phi2:=
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 7+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+
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(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6
$

allows us to find a second (local) Hamiltonian operator

phi1 := (c(3)*(2*ext(9)*sig + ext(6)*v + 2*ext(5)*u
+ ext(3)*u1))/2$

phi2 := (c(3)*(2*ext(6) + ext(5)*v + ext(3)*v1))/2$

There is one more higher local Hamiltonian operator, and a whole hierarchy of
nonlocal Hamiltonian operators [KKV04].

Explosion of denominators and how to avoid it

Here we propose the computation of the repeated total derivative of a denominator.
This computation fills up the whole memory after some time, and can be used as a
kind of speed test for the system. The file is KdV_denom_1.red.

After having defined total derivatives on the KdV equation, run the following iter-
ation:

phi:=1/(u3+u*u1)$
for i:=1:100 do begin

phi:=ddx(phi)$
write i;

end;

The program shows the iteration number. At the 18th iteration the program uses
about 600MB of RAM, as shown by top run from another shell, and 100% of one
processor.

There is a simple way to avoid denominator explosion. The file for this example is
KdV_denom_2.red.

After having defined total derivatives with respect to x (on the KdV equation, for
example) consider in the same ddx a component with a sufficently high index
immediately after ‘letop’ (otherwise super_vectorfield does not work!),
say ddx(0,21), and think of it as being the coefficient to a vector of the type

aa21:=1/(u3+u*u1);

In this case, its coefficient must be

ddx(0,21):=-aa21**2*(u4+u1**2+u*u2)$
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More particularly, here follows the detailed definition of ddx

ddx(0,1):=1$
ddx(0,2):=0$
ddx(0,3):=u1$
ddx(0,4):=u2$
ddx(0,5):=u3$
ddx(0,6):=u4$
ddx(0,7):=u5$
ddx(0,8):=u6$
ddx(0,9):=u7$
ddx(0,10):=u8$
ddx(0,11):=u9$
ddx(0,12):=u10$
ddx(0,13):=u11$
ddx(0,14):=u12$
ddx(0,15):=u13$
ddx(0,16):=u14$
ddx(0,17):=u15$
ddx(0,18):=u16$
ddx(0,19):=u17$
ddx(0,20):=letop$
ddx(0,21):=-aa21**2*(u4+u1**2+u*u2)$

Now, suppose that we want to compute the 5th total derivative of phi. Write the
following code:

phi:=aa30;
for i:=1:5 do begin

phi:=ddx(phi)$
write i;

end;

The result is then a polynomial in the additional ‘denominator’ variable

phi := aa21**2*( - 120*aa21**4*u**5*u2**5
- 600*aa21**4*u**4*u1**2*u2**4
- 600*aa21**4*u**4*u2**4*u4
- 1200*aa21**4*u**3*u1**4*u2**3
- 2400*aa21**4*u**3*u1**2*u2**3*u4
- 1200*aa21**4*u**3*u2**3*u4**2
- 1200*aa21**4*u**2*u1**6*u2**2
- 3600*aa21**4*u**2*u1**4*u2**2*u4
- 3600*aa21**4*u**2*u1**2*u2**2*u4**2
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- 1200*aa21**4*u**2*u2**2*u4**3
- 600*aa21**4*u*u1**8*u2
- 2400*aa21**4*u*u1**6*u2*u4
- 3600*aa21**4*u*u1**4*u2*u4**2
- 2400*aa21**4*u*u1**2*u2*u4**3
- 600*aa21**4*u*u2*u4**4
- 120*aa21**4*u1**10 - 600*aa21**4*u1**8*u4
- 1200*aa21**4*u1**6*u4**2 - 1200*aa21**4*u1**4*u4**3
- 600*aa21**4*u1**2*u4**4 - 120*aa21**4*u4**5
+ 240*aa21**3*u**4*u2**3*u3
+ 720*aa21**3*u**3*u1**2*u2**2*u3
+ 720*aa21**3*u**3*u1*u2**4
+ 240*aa21**3*u**3*u2**3*u5
+ 720*aa21**3*u**3*u2**2*u3*u4
+ 720*aa21**3*u**2*u1**4*u2*u3
+ 2160*aa21**3*u**2*u1**3*u2**3
+ 720*aa21**3*u**2*u1**2*u2**2*u5
+ 1440*aa21**3*u**2*u1**2*u2*u3*u4
+ 2160*aa21**3*u**2*u1*u2**3*u4
+ 720*aa21**3*u**2*u2**2*u4*u5
+ 720*aa21**3*u**2*u2*u3*u4**2 + 240*aa21**3*u*u1**6*u3
+ 2160*aa21**3*u*u1**5*u2**2
+ 720*aa21**3*u*u1**4*u2*u5
+ 720*aa21**3*u*u1**4*u3*u4
+ 4320*aa21**3*u*u1**3*u2**2*u4
+ 1440*aa21**3*u*u1**2*u2*u4*u5
+ 720*aa21**3*u*u1**2*u3*u4**2
+ 2160*aa21**3*u*u1*u2**2*u4**2
+ 720*aa21**3*u*u2*u4**2*u5
+ 240*aa21**3*u*u3*u4**3 + 720*aa21**3*u1**7*u2
+ 240*aa21**3*u1**6*u5
+ 2160*aa21**3*u1**5*u2*u4 + 720*aa21**3*u1**4*u4*u5
+ 2160*aa21**3*u1**3*u2*u4**2
+ 720*aa21**3*u1**2*u4**2*u5
+ 720*aa21**3*u1*u2*u4**3 + 240*aa21**3*u4**3*u5
- 60*aa21**2*u**3*u2**2*u4 - 90*aa21**2*u**3*u2*u3**2
- 120*aa21**2*u**2*u1**2*u2*u4
- 90*aa21**2*u**2*u1**2*u3**2
- 780*aa21**2*u**2*u1*u2**2*u3 - 180*aa21**2*u**2*u2**4
- 60*aa21**2*u**2*u2**2*u6 - 180*aa21**2*u**2*u2*u3*u5
- 120*aa21**2*u**2*u2*u4**2 - 90*aa21**2*u**2*u3**2*u4
- 60*aa21**2*u*u1**4*u4 - 1020*aa21**2*u*u1**3*u2*u3
- 1170*aa21**2*u*u1**2*u2**3
- 120*aa21**2*u*u1**2*u2*u6
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- 180*aa21**2*u*u1**2*u3*u5 - 120*aa21**2*u*u1**2*u4**2
- 540*aa21**2*u*u1*u2**2*u5
- 1020*aa21**2*u*u1*u2*u3*u4
- 360*aa21**2*u*u2**3*u4 - 120*aa21**2*u*u2*u4*u6
- 90*aa21**2*u*u2*u5**2 - 180*aa21**2*u*u3*u4*u5
- 60*aa21**2*u*u4**3 - 240*aa21**2*u1**5*u3
- 990*aa21**2*u1**4*u2**2 - 60*aa21**2*u1**4*u6
- 540*aa21**2*u1**3*u2*u5 - 480*aa21**2*u1**3*u3*u4
- 1170*aa21**2*u1**2*u2**2*u4 - 120*aa21**2*u1**2*u4*u6
- 90*aa21**2*u1**2*u5**2 - 540*aa21**2*u1*u2*u4*u5
- 240*aa21**2*u1*u3*u4**2 - 180*aa21**2*u2**2*u4**2
- 60*aa21**2*u4**2*u6 - 90*aa21**2*u4*u5**2
+ 10*aa21*u**2*u2*u5 + 20*aa21*u**2*u3*u4
+ 10*aa21*u*u1**2*u5 + 110*aa21*u*u1*u2*u4
+ 80*aa21*u*u1*u3**2 + 160*aa21*u*u2**2*u3
+ 10*aa21*u*u2*u7 + 20*aa21*u*u3*u6 + 30*aa21*u*u4*u5
+ 50*aa21*u1**3*u4 + 340*aa21*u1**2*u2*u3
+ 10*aa21*u1**2*u7 + 180*aa21*u1*u2**3
+ 60*aa21*u1*u2*u6 + 80*aa21*u1*u3*u5
+ 50*aa21*u1*u4**2 + 60*aa21*u2**2*u5
+ 100*aa21*u2*u3*u4 + 10*aa21*u4*u7 + 20*aa21*u5*u6
- u*u6 - 6*u1*u5 - 15*u2*u4 - 10*u3**2 - u8)$

where the value of aa21 can be replaced back in the expression.
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20.12 CGB: Computing Comprehensive Gröbner Bases

Authors: Andreas Dolzmann, Thomas Sturm, and Winfried Neun

20.12.1 Introduction

Consider the ideal basis F = {ax, x + y}. Treating a as a parameter, the calling
sequence

torder({x,y},lex)$
groebner{a*x,x+y};

{x,y}

yields {x, y} as reduced Gröbner basis. This is, however, not correct under the spe-
cialization a = 0. The reduced Gröbner basis would then be {x+y}. Taking these
results together, we obtain C = {x + y, ax, ay}, which is correct wrt. all special-
izations for a including zero specializations. We call this set C a comprehensive
Gröbner basis (CGB).

The notion of a CGB and a corresponding algorithm has been introduced bei
Weispfenning [Wei92]. This algorithm works by performing case distinctions
wrt. parametric coefficient polynomials in order to find out what the head monomi-
als are under all possible specializations. It does thus not only determine a CGB, but
even classifies the contained polynomials wrt. the specializations they are relevant
for. If we keep the Gröbner bases for all cases separate and associate information
on the respective specializations with them, we obtain a Gröbner system. For our
example, the Gröbner system is the following;[

a ̸= 0 {x+ y, ax, ay}
a = 0 {x+ y}

]
.

A CGB is obtained as the union of the single Gröbner bases in a Gröbner system.
It has also been shown that, on the other hand, a Gröbner system can easily be
reconstructed from a given CGB [Wei92].

The CGB package provides functions for computing both CGB’s and Gröbner sys-
tems, and for turning Gröbner systems into CGB’s.

20.12.2 Using the REDLOG Package

For managing the conditions occurring with the CGB computations, the CGB
package uses the package REDLOG implementing first-order formulas, [DS97a,
DS99], which is also part of the REDUCE distribution.
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20.12.3 Term Ordering Mode

The CGB package uses the settings made with the function torder of the
GROEBNER package. This includes in particular the choice of the main vari-
ables. All variables not mentioned in the variable list argument of torder are
parameters. The only term ordering modes recognized by CGB are lex and
revgradlex.

20.12.4 CGB: Comprehensive Gröbner Basis

The function cgb expects a list F of expressions. It returns a CGB of F wrt. the
current torder setting.

Example

torder({x,y},lex)$
cgb{a*x+y,x+b*y};

{x + b*y,a*x + y,(a*b - 1)*y}

ws;

{b*y + x,

a*x + y,

y*(a*b - 1)}

Note that the basis returned by the cgb call has not undergone the standard eval-
uation process: The returned polynomials are ordered wrt. the chosen term order.
Reevaluation changes this as can be seen with the output of ws.

20.12.5 GSYS: Gröbner System

The function gsys follows the same calling conventions as cgb. It returns the
complete Gröbner system represented as a nested list{{

c1, {g11, . . . , g1n1}
}
, . . . ,

{
cm, {gm1, . . . , g1nm}

}}
.

The ci are conditions in the parameters represented as quantifier-free REDLOG
formulas. Each choice of parameters will obey at least one of the ci. Whenever a



578 CHAPTER 20. USER CONTRIBUTED PACKAGES

choice of parameters obeys some ci, the corresponding {gi1, . . . , gini} is a Gröbner
basis for this choice.

Example

torder({x,y},lex)$
gsys {a*x+y,x+b*y};

{{a*b - 1 <> 0 and a <> 0,

{a*x + y,x + b*y,(a*b - 1)*y}},

{a <> 0 and a*b - 1 = 0,

{a*x + y,x + b*y}},

{a = 0,{a*x + y,x + b*y}}}

As with the function cgb, the contained polynomials remain unevaluated.

Computing a Gröbner system is not harder than computing a CGB. In fact, cgb
also computes a Gröbner system and then turns it into a CGB.

Switch CGBGEN: Only the Generic Case

If the switch cgbgen is turned on, both gsys and cgb will assume all parametric
coefficients to be non-zero ignoring the other cases. For cgb this means that the re-
sult equals—up to auto-reduction—that of groebner. A call to gsys will return
this result as a single case including the assumptions made during the computation:

Example

torder({x,y},lex)$
on cgbgen;
gsys{a*x+y,x+b*y};

{{a*b - 1 <> 0 and a <> 0,

{a*x + y,x + b*y,(a*b - 1)*y}}}

off cgbgen;
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20.12.6 GSYS2CGB: Gröbner System to CGB

The call gsys2cgb turns a given Gröbner system into a CGB by constructing the
union of the Gröbner bases of the single cases.

Example

torder({x,y},lex)$
gsys{a*x+y,x+b*y}$
gsys2cgb ws;

{x + b*y,a*x + y,(a*b - 1)*y}

20.12.7 Switch CGBREAL: Computing over the Real Numbers

All computations considered so far have taken place over the complex numbers,
more precisely, over algebraically closed fields. Over the real numbers, certain
branches of the CGB computation can become inconsitent though they are not in-
consistent over the complex numbers. Consider, e.g., a condition a2 + 1 = 0.

When turning on the switch cgbreal, all simplifications of conditions are per-
formed over the real numbers. The methods used for this are described in [DS97b].

Example

torder({x,y},lex)$
off cgbreal;
gsys {a*x+y,x-a*y};

2
{{a + 1 <> 0 and a <> 0,

2
{a*x + y,x - a*y,(a + 1)*y}},

2
{a <> 0 and a + 1 = 0,{a*x + y,x - a*y}},

{a = 0,{a*x + y,x - a*y}}}

on cgbreal;
gsys({a*x+y,x-a*y});
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{{a <> 0,

2
{a*x + y,x - a*y,(a + 1)*y}},

{a = 0,{a*x + y,x - a*y}}}

20.12.8 Switches

cgbreal Compute over the real numbers. See Section 20.12.7 for details.

cgbgs Gröbner simplification of the condition. The switch cgbgs can be turned
on for applying advanced algebraic simplification techniques to the condi-
tions. This will, in general, slow down the computation, but lead to a simpler
Gröbner system.

cgbstat Statistics of the CGB run. The switch cgbstat toggles the creation and
output of statistical information on the CGB run. The statistical information
is printed at the end of the run.

cgbfullred Full reduction. By default, the CGB functions perform full reductions
in contrast to pure top reductions. By turning off the switch cgbfullred,
reduction can be restricted to top reductions.
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20.13 COEFF2: A Variant of the coeff Operator

Authors: Fujio Kako and Masaaki Ito

In REDUCE, we can use the coeff operator which returns a list of coefficients of
a polynomial with respect to specified variables. On the other hand, the coeff2
operator gives a polynomial in which each coefficient is replaced by special vari-
ables #1,#2,· · · . It is used with the same syntax as the coeff operator:

coeff2(〈exprn:polynomial〉, 〈var:kernel〉) : algebraic

Example:

off allfac;
f := (a+b)^2*x^2*y+(c+d)^2*x*y;
f2 := coeff2(f,x,y);
g := (2*c+d)*x^2+(3+a)*x*y^3;
g2 := coeff2(g,x,y);

would result in the output

2 2 2 2 2 2
f := a *x *y + 2*a*b*x *y + b *x *y + c *x*y

2
+ 2*c*d*x*y + d *x*y

2
f2 := #1*x *y + #2*x*y

3 2 2 3
g := a*x*y + 2*c*x + d*x + 3*x*y

2 3
g2 := #3*x + #4*x*y

If you want to retrieve the values of special variables #1,#2,· · · , we can use the
operator nm. The syntax for this is:

nm(〈n:integer〉) : algebraic

It returns the value of the variable #n. For example, to get the value of #1 in the
above, one could say:

nm(1);
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yields the result

2 2
a + 2*a*b + b

It is also possible to evaluate an expression including special variables #1,#2,· · ·
by using the eval2 operator. The syntax for this is:

eval2(〈exprn:rational〉) : algebraic

Example:

coeff2(f2*g2,x,y);

4 3 4 3 2 4
#5*x *y + #6*x *y + #7*x *y + #8*x *y

nm(8);

#2*#4

eval2(ws);

2 2 2 2
a*c + 2*a*c*d + a*d + 3*c + 6*c*d + 3*d

The user may remove all values of special variables #1,#2,· · · by the operator
reset, in the form

reset( );
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20.14 CONLAW: Find Conservation Laws for Differen-
tial Equations

This package computes first integrals of ordinary differential equations (ODEs)
or conservation laws (CLs) of partial differential equations (PDEs) or systems of
both. Four different approaches to compute CLs have been implemented in four
different procedures CONLAW1. . .CONLAW4. All use the package CRACK to solve
the overdetermined system of conditions they generate.

Author: Thomas Wolf

20.14.1 Purpose

The procedures CONLAW1, CONLAW2, CONLAW3, CONLAW4 try to find conserva-
tion laws for a given single/system of differential equation(s) (ODEs or PDEs)

uαJ = wα(x, uβ, . . . , uβK , . . .) (20.72)

CONLAW1 tries to find the conserved current P i by solving

DivP = 0 modulo (20.72) (20.73)

directly. CONLAW3 tries to find P i and the characteristic functions (integrating
factors) Qν by solving

DivP =
∑
ν

Qν · (uνJ − wν) (20.74)

identically in all u-derivatives. Applying the Euler operator (variational derivative)
for each uν on (20.74) gives a zero left hand side and therefore conditions involving
only Qν . CONLAW4 tries to solve these conditions identically in all u-derivatives
and to compute P i afterwards. CONLAW2 does substitutions based on (20.72) be-
fore solving these conditions on Qν and therefore computes adjoined symmetries.
These are completed, if possible, to conservation laws by computing P i from the
Qν .

All four procedures have the same syntax. They have two parameters, both lists.
The first parameter specifies the equations (20.72), the second specifies the com-
putation to be done. One can either specify an ansatz for P i, Qν or investigate a
general situation, only specifying the order of the characteristic functions or the
conserved current.

20.14.2 Syntax

The procedures CONLAWi, i = 1, 2, 3, 4, are called through
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CONLAWi(problem, runmode);

where both parameters are lists.

The first parameter problem specifies the DEs to be investigated. It has the form
{equations, ulist, xlist} where . . .

equations is a list of equations, each of the form df(ui,...)=... where the
left-hand side df(ui,...) is selected such that

• the right-hand side of an equation must not include the derivative on
the left-hand side nor a derivative of it;

• the left-hand side of any equation should not occur in any other equat-
ion nor any derivative of the left-hand side.

If CONLAW3 or CONLAW4 are run where no substitutions are made then the
left-hand sides of equations can be df(ui,...)**n=... where n is a
number. No distinction is made between equations and constraints.

ulist is a list of function names, which can be chosen freely; the number of funct-
ions and equations need not be equal.

xlist is a list of variable names, which can be chosen freely.

The second parameter runmode specifies the calculation to be done. It has the form
{minord, maxord, expl, flist, inequ} where . . .

minord and maxord are respectively the minimum and maximum of the highest
order of derivatives of u

• in p_t for CONLAW1, where t is the first variable in xlist;

• in q_j for CONLAW2, CONLAW3 and CONLAW4.

expl is t or nil to indicate whether or not the characteristic functions q_i or
conserved current may depend explicitly on the variables of xlist.

flist is a list of unknown functions in any ansatz for p_i, q_j, also all parameters
and parametric functions in the equation that are to be calculated such that
conservation laws exist; if there are no such unknown functions then flist is
the empty list {}.

inequ is a list of expressions none of which may be identically zero for the conser-
vation law to be found; if there is no such expression then inequ is an empty
list {}.
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The procedures CONLAWi return a list of conservation laws {C1, C2, . . .}; if no
non-trivial conservation law is found they return the empty list {}. Each Ci repre-
senting a conservation law has the form {{P 1, P 2, . . .},{Q1, Q2, . . .}}.

An ansatz for a conservation law can be formulated by specifying one or more of
the components P i for CONLAW1, one or more of the functions Qµ for CONLAW2
and CONLAW4, or one or more of P i, Qµ for CONLAW3. The P i are input as p_i
where i stands for a variable name, and the Qµ are input as q_i where i stands
for an index, which is the number of the equation in the input list equations with
which q_i is multiplied.

There is a restriction in the structure of all the expressions for p_i and q_j that are
specified: they must be homogeneous linear in the unknown functions or constants
which appear in these expressions. The reason for this restriction is not for CRACK

to be able to solve the resulting overdetermined system but for CONLAWi to be able
afterwards to extract the individual conservation laws from the general solution of
the determining conditions.

All such unknown functions and constants must be listed in flist (see above). The
dependencies of such functions must be defined before calling CONLAWi. This is
done with the command DEPEND, e.g.

DEPEND f,t,x,u$

to specify f as a function of t, x, u. If one wants to have f as a function of deriva-
tives of u(t, x), say f depending on utxx, then one cannot write

DEPEND f, df(u,t,x,2)$

but instead must write

DEPEND f, u!`1!`2!`2$

if xlist has been specified as {t,x}, because t is the first variable and x is the
second variable in xlist and u is differentiated once wrt. t and twice wrt. x; we
therefore get u!`1!`2!`2. The character ! is the escape character to allow
special characters like ` to occur in an identifier name.

It is possible to add extra conditions like PDEs for P i, Qµ as a list cl_condi of
expressions that shall vanish.

Remarks

• The input to each of CONLAW1, CONLAW2, CONLAW3 and CONLAW4 is the
same apart from:
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– an ansatz for Qν is ignored in CONLAW1;

– an ansatz for P i is ignored in CONLAW2 and CONLAW4;

– the meaning of mindensord, maxdensord is different in CONLAW1
on the one hand and CONLAW2, CONLAW3, and CONLAW4 on the other
(see above).

• It matters how the differential equations are input, i.e. which derivatives are
eliminated. For example, the Korteweg-de Vries equation if input in the
form uxxx = −uux − ut instead of ut = −uux − uxxx in CONLAW1 and
choosing maxdensord=1 then P i will be of at most first order, DivP of
second order and uxxx will not be substituted and no non-trival conservation
laws can be found. This does not mean that one will not find low order
conservation laws at all with the substitution uxxx; one only has to go to
maxdensord=2 with longer computations as a consequence compared to
the input ut = −uux− uxxx where maxdensord=0 is enough to find non-
trivial conservation laws.

• The drawback of using ut = . . . compared with uxxx = . . . is that when
seeking all conservation laws up to some order then one has to investigate a
higher-order ansatz, because with each substitution ut = −uxxx + . . . the
order increases by 2. For example, if all conservation laws of order up to
two in Qν are to be determined then in order to include a utt-dependence the
dependence of Qν on ux up to u6x has to be considered.

• Although for any equivalence class of conserved currents with P i differing
only by a curl there exist characteristic functions Qµ, this need not be true
for any particular P i. Therefore one cannot specify a known density P i for
CONLAW3 and hope to calculate the remaining P j and the corresponding
Qµ with CONLAW3. What one can do is to use CONLAW1 to calculate the
remaining components P j , and from this a trivial conserved density R and
characteristic functions Qν are computed such that

Div (P −R) =
∑
ν

Qν · (uνJ − wν).

• The Qµ are uniquely determined only modulo ∆ = 0. If one makes an
ansatz for Qµ then this freedom should be removed by having the Qµ in-
dependent of the left-hand sides of the equations and their derivatives. If
the Qµ were allowed to depend on anything, then (20.74) could simply be
solved for one Qν in terms of arbitrary P j and other arbitrary Qρ, giving Qν

that are singular for solutions of the differential equations as the expression
of the differential equation would appear in the denominator of Qν .

• Any ansatz for P i, Qν should as well be independent of the left-hand sides
of equations (20.72) and their derivatives.
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• If in equation (20.74) the right-hand side is of order m then from the con-
served current P i a trivial conserved current can be subtracted such that the
remaining conserved current is of order at most m. If the right hand side
is linear in the highest derivatives of order m then subtraction of a trivial
conserved current can even achieve a conserved current of order m− 1. The
relevance of this result is that if the right-hand side is known to be linear in
the highest derivatives then for P i an ansatz of order only m − 1 is neces-
sary. To take advantage of this relation if the right-hand side is known to be
linear in the highest derivatives, a flag quasilin_rhs can be set to t (see
below).

20.14.3 Flags and Parameters

lisp(print_ := nil/0/1/ ...)$

print_:=nil suppresses all CRACK output; for print_:=n (n an integer)
CRACK prints only equations with at most n factors in their terms.

crackhelp()$

shows other flags controlling the solution of the overdetermined PDE-system.

off batch_mode$

solves the system of conditions with CRACK interactively.

lisp(quasilin_rhs := t)$

reduces in the ansatz for P i the order to m − 1 if the order of the right-hand side
is m. This can be used to speed up computations if the right-hand side is known to
be linear in the highest derivatives (see the note above).

20.14.4 Requirements

load_package crack, conlaw0, conlaw1$

where conlaw1 can be replaced by conlaw2, conlaw3 or conlaw4 as appro-
priate.
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20.14.5 Examples

Below a CRACK procedure nodepnd is used to clean up after each run and
delete all dependencies of each function in the list of functions in the argument
of nodepnd. More details concerning these examples are given when running the
file conlaw.tst (in the REDUCE packages/crack directory).

lisp(print_:=nil); % to suppress output from CRACK

• A single PDE:

depend u,x,t$
conlaw1({{df(u,t)=-u*df(u,x)-df(u,x,3)},

{u}, {t,x}},
{0, 1, t, {}, {}})$

nodepnd {u}$

• A system of equations:

depend u,x,t$
depend v,x,t$
conlaw1({{df(u,t)=df(u,x,3)+6*u*df(u,x)+

2*v*df(v,x),
df(v,t)=2*df(u,x)*v+2*u*df(v,x)},
{u,v}, {t,x}},

{0, 1, t, {}, {}})$
nodepnd {u,v}$

• A system of equations with ansatz:

depend u,x,t$
depend v,x,t$
depend r,t,x,u,v,u!‘2,v!‘2$
q_1:=r*df(u,x,2)$
conlaw2({{df(u,t)=df(v,x),

df(v,t)=df(u,x) }, {u,v}, {t,x}},
{2, 2, t, {r}, {r}})$

nodepnd {u,v,r}$

• For the determination of parameters, such that conservation laws exist:

depend u,x,t;
conlaw1({{df(u,t)=-df(u,x,5)-a*u**2*df(u,x)-

b*df(u,x)*df(u,x,2)-c*u*df(u,x,3)},
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{u}, {t,x}},
{0, 1, t, {a,b,c}, {}});

nodepnd {u};

• For first integrals of an ODE-system including the determination of parame-
ter values s, b, r such that conservation laws exist:

depend {x,y,z},t;
depend a1,x,t;
depend a2,y,t;
depend a3,z,t;

p_t:=a1+a2+a3;
conlaw2({{df(x,t) = - s*x + s*y,

df(y,t) = x*z + r*x - y,
df(z,t) = x*y - b*z},
{x,y,z},{t}
},
{0,0,t,{a1,a2,a3,s,r,b},{}});

nodepnd {x,y,z,a1,a2,a3};
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20.15 CRACK: Solving Overdetermined Systems of ODEs
or PDEs

CRACK is a package for solving overdetermined systems of differential equat-
ions. Examples of programs which make use of CRACK (finding symmetries of
ODEs/PDEs, first integrals, an equivalent Lagrangian or a “differential factoriza-
tion” of ODEs) are included. The packages APPLYSYM and CONLAW use CRACK.

Authors: Andreas Brand, Thomas Wolf

20.15.1 Introduction

Purpose

The package CRACK attempts the solution of an overdetermined system of alge-
braic, ordinary or partial differential equations (ODEs/PDEs) with at most polyno-
mial nonlinearities.

Under ‘normal circumstances’ differential equations (DEs) which describe phys-
ical processes are not overdetermined, i.e. the number of DEs matches the num-
ber of unknown functions which are involved. Although CRACK may be success-
ful in such cases (e.g. for characteristic ODE-systems of first order PDEs) this is
not the typical application. It is rather the qualitative investigations of such dif-
ferential equations, i.e. the investigation of their infinitesimal symmetries (with
LIEPDE and APPLYSYM) and conservation laws (with CONLAW) which result in
over-determined systems which are the main application area of CRACK.

Interactivity

The package was originally developed to run automatically and effort was made
for the program to decide which computational steps are to be done next with a
choice among integrations, separations, substitutions and investigation of integra-
bility conditions. It is known from hand computations that the right sequence of
operations with exactly the right equations at the right time is often crucial to avoid
an explosion of the length of expressions. This statement keeps its truth for the
computerized solution of systems of equations as they become more complex. As
a consequence more and more interactive access has been provided to inspect data,
to specify how to proceed with the computation and how to control it. This al-
lows human intervention in critical stages of the computations (see the switch off
batch_mode below).
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General Structure

A problem consists of a system of equations and a set of inequalities. With each
equation are associated a short name and numerous data, like size, which functions,
derivatives and variables occur but also which investigations have already been
done with this equation and which not in order to avoid unnecessary duplication of
work. These data are constantly updated if the equation is modified in any way.

A set of about 30 modules is available to integrate, substitute, decouple, . . . equat-
ions. A complete list can be inspected in interactive mode with the command p2,
which lists each operation with the number by which it is called. All modules can
be called interactively or automatically. Automatic computation is organized by a
priority list of modules (each represented by a number) where modules are invoked
in the order they appear in the priority list, each module trying to find equations in
the system it can be applied to. The priority list can be inspected with the command
p1. If a module is not successful then the next module in the list is tried; if any one
is successful then execution starts again at the beginning of the priority list. See
the Reference subsection below for further details.

Because each module has access to all the data, it is enough to call a module by
its number. For example, inputting the number 2 in interactive mode will start the
direct separation module (see below) to look for a directly separable equation and
split it.

20.15.2 Syntax

The call

CRACK is called by

crack({equ1, equ2, . . . , equm},
{ineq1, ineq2, . . . , ineqn},
{fun1, fun2, . . . , funp},
{var1, var2, . . . , varq});

where m,n, p, q are arbitrary.

• The equi are identically vanishing partial differential expressions, i.e. they
represent equations 0 = equi, which are to be solved for the functions funj
as far as possible, thereby drawing only necessary conclusions and not re-
stricting the general solution.

• The ineqi are algebraic or differential expressions which must not vanish
identically for any solution to be determined, i.e. only such solutions are
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computed for which none of the expressions ineqi vanishes identically in all
independent variables.

• The dependence of the (scalar) functions funj on independent variables must
be defined beforehand with depend rather than declaring these functions as
operators. Their arguments may themselves only be identifiers representing
variables, not expressions. Also other unknown functions not in funj must
not be represented as operators but only declared using depend.

• The functions funj and their derivatives may only occur polynomially.

• The vark are further independent variables, which are not already arguments
of any of the funj . If there are none then the fourth argument is the empty
list {}, although it does no harm to include arguments of functions funj .

• The dependence of the equi on the independent variables and on constants
and functions other than funj is arbitrary.

• CRACK can be run in automatic batch mode (the default) or interactively
with the switch setting off batch_mode.

The result

The result is a list of solutions
{sol1, . . .},

where each solution is a list of 4 lists

{{con1, con2, . . . , conq},
{funa = exa, funb = exb, . . . , funp = exp},
{func, fund, . . . , funr},
{ineq1, ineq2, . . . , ineqs}}.

For example, in the case of a linear system, the input consists of at most one solu-
tion sol1.

If CRACK finds a contradiction, e.g. 0 = 1, then there exists no solution and it
returns the empty list {}. If CRACK can factorize algebraically a non-linear equat-
ion then factors are set to zero individually and different sub-cases are studied by
CRACK calling itself recursively. If during such a recursive call a contradiction re-
sults, then this sub-case will not have a solution but other sub-cases still may have
solutions. The empty list is also returned if no solution exists which satisfies the
inequalities ineqi ̸= 0.

The expressions coni (if there are any), are the remaining necessary and sufficient
conditions for the functions func, . . . , funr in the third list. Those functions can
be original functions from the equations to be solved (of the second argument of



593

the call of CRACK) or new functions or constants which arose from integrations.
The dependence of new functions on variables is declared with depend and to
visualize this dependence the algebraic mode function fargs(funi) can be used.
If there are no coni then all equations are solved and the functions in the third list
are unconstrained. The second list contains equations funi = exi where each funi
is an original function and exi is the computed expression for funi. The elements
of the fourth list are the expressions that have been assumed to be nonzero in the
derivation of this solution.

Automatic versus Interactive

Under normal circumstances one will try to have problems solved automatically by
CRACK. An alternative is to input off batch_mode; before calling CRACK

and to solve problems interactively. In interactive mode it is possible to

• inspect data, like equations and their properties, unknown functions, vari-
ables, identities, and statistics;

• save, change, add or drop equations;

• add inequalities;

• inspect and change flags and parameters which govern individual modules
as well as their interplay;

• pick a list of methods to be used out of about 30 different ones and specify
their priorities, and in this way very easily compose an automatic solving
strategy;

• or, for more interactive work, to specify how to proceed, i.e. which compu-
tational step to do and how often, like doing

– one automatic step,

– one specific step,

– a number of automatic steps,

– a specific step as often as possible or a specified number of times.

To get interactive help one enters h or ?.

Flags and parameters are stored as symbolic fluid variables which means that they
can be accessed by lisp(...), e.g. lisp( print_:=5 );, before calling
CRACK. print_, for example, is a measure of the maximal length of expressions
to be printed on the screen (the number of factors in terms). A complete list of
flags and parameters is given at the beginning of the file crinit.red (in the
REDUCE packages/crack directory).
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One more parameter shall be mentioned, which is the list of modules/procedures
called proc_list_. In interactive mode this list can be looked at with p
or changed with cp. This list defines the order in which the different mod-
ules/procedures are tried whenever CRACK has to decide what to do next. Excep-
tions to this rule may be specified. For example, some procedure, say P1, requires
after its execution another specific procedure, say P2, to be executed, no matter
whether P2 is next according to proc_list_ or not. This is managed by P1

writing a task for procedure P2 into a hot-list. Tasks listed in the global variable
to_do_list are dealt with in the to_do step which should always come first in
proc_list_. A way to have the convenience of running CRACK automatically
and still being able to break the fixed rhythm prescribed by proc_list_ is to
have the entry stop_batch in proc_list_ and have CRACK started in auto-
matic batch mode. Then execution continues until none of the procedures which
come before stop_batch are applicable any more so that stop_batch is exe-
cuted next, which will stop automatic execution and go into interactive mode. This
allows either to continue the computation interactively, or to change proc_list_
with cp and continue in automatic mode.

The default value of proc_list_ does not include all possible modules because
not all are suitable for every kind of overdetermined system to be solved. The com-
plete list is shown in interactive mode by cp. A few basic modules are described
in the following subsection. The efficiency of CRACK in automatic mode is very
much dependent on the content of proc_list_ and the sequence of its elements.
Optimizing proc_list_ for a given task needs experience which cannot be for-
malized in a few simple rules and will therefore not be explained in more detail
here. The following remarks are only guidelines.

20.15.3 Modules

The following modules are represented by numbers in the priority list. Each mod-
ule can appear with modifications under different numbers. For example, inte-
gration is available under 7, 24 and 25. Here 7 encodes an integration of short
equations 0 = ∂nf/∂xn. 7 has highest priority of the three integrations. 24 en-
codes the integration of an equation that leads to the substitution of a function and
25 refers to any integration and has lowest priority.

Integration and Separation

An early feature in the development of the package CRACK was the ability to inte-
grate exact differential equations and some generalizations of them (see [Wol00]).
As a consequence of integrations 7, 24, 25 an increasing number of functions of
fewer variables is introduced which sooner or later produces equations with some
independent variables occuring only explicitly and not as variables in functions.
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Such equations are split by the separation module 2. Another possibility is equat-
ions in which each independent variable occurs in at least one function in the equat-
ion but no function depends on all variables. In this case so-called indirect sepa-
rations are appropriate: for linear problems 10, 26 and for non-linear problems
48.

Substitutions

Substitutions can have a dramatic effect on the size and complexity of systems.
Therefore it is possible to have them not only done automatically but also con-
trolled tightly, either by specifying exactly what equation should be used to substi-
tute which unknown and where, or by picking a substitution out of a list of substi-
tutions offered by the program {cs}. Substitutions to be performed automatically
can be controlled with a number of filters, for example, by

• limiting the size of the equation to be used for substitution; {length_limit}

• limiting the size of equations in which the substitution is to be done; {tar-
get_limit_}

• allowing only linear equations to be used for substitutions; {lin_subst}

• allowing equations to increase in size only up to some factor in order for a
substitution to be performed in that equation; {cost_limit}

• allowing a substitution for a function through an expression only if that ex-
pression involves exclusively functions of fewer variables; {less_vars}

• allowing substitutions only that do not lead to a case distinction coefficient
= 0 or not;

• specifying whether extra effort should be spent to identify the substitution
with the lowest bound on growth of the full system. {min_growth}

Substitution types are represented by different numbers (3–6,15–21) depending
on the subset of the above filters to be used. If a substitution type is to be done
automatically then from all possible substitutions passing all filters of this type that
substitution is selected that leads to no sub-cases (if available) and that uses the
shortest equation.

Factorization

It is very common that big algebraic systems contain equations that can be factor-
ized. Factorizing an equation and setting the factors individually to zero simplifies
the whole task because factors are simpler expressions than the whole equation and
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setting them to zero may lead to substitutions and thereby further simplifications.
The downside is that if problems with, say 100 unknowns, would need 40 case dis-
tinctions in order to be able to solve automatically for the remaining 60 unknowns
then this would require 240 cases to be investigated which is impractical. The prob-
lem is to find the right balance between delaying case distinctions in order not to
generate too many cases and introducing case distinctions as early as necessary in
order to simplify the system. This simplification may be necessary to solve the
system but in any case it will speed up its solution (although at the price of having
to solve a simplified system at least twice, depending on the number of factors).

For large systems with many factorizable equations the careful selection of the next
equation to be factorized is important to gain the most from each factorization and
to succeed with as few factorizations as possible. Some of the criteria which give
factors and therefore equations a higher priority are

• the number of equations in which this factor occurs,

• if the factor is a single unknown function or constant, then the number of
times this unknown turns up in the whole system,

• the total degree of the factor,

• the number of factors of an equation.

It also matters in which order the factors are set to zero. For example, the equation
0 = ab can be used to split into the 2 cases: 1. a = 0, 2. a ̸= 0, b = 0 or to split
into the 2 cases 1. b = 0, 2. b ̸= 0, a = 0. If one of the 2 factors, say b, involves
functions which occur only linearly then this property is to be preserved and these
functions should be substituted as such substitutions preserve their linearity. But to
have many such substitutions available, it is useful to know of many non-linearly
occuring functions to be non-zero as they occur as coefficients of the linearly oc-
curing functions. In the above situation it is therefore better to do the first splitting
1. a = 0, 2. a ̸= 0, b = 0 because a ̸= 0 will be more useful for substitutions of
linear functions than b ̸= 0 would be.

An exception of this plausible rule occurs towards the end of all the substitutions of
all the linearly occurring bi when some bi is an overall factor to many equations. If
one would then set, say, b22 = 0 as the second case in a factorization, the first case
would generate as subcases factorizations of other equations where b22 = 0 would
be the second case again and so on. To avoid this one should investigate b22 = 0
as the first case in the first factorization.

The only purpose of that little thought experiment was to show that simple ques-
tions, like ‘Which factored equation should be used first for case-distinctions and
in which order to set factors to zero?’ can already be difficult to answer in general.

CRACK currently offers two factorization steps: (8) and (47).
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Elimination (Gröbner Basis) Steps

To increase safety and avoid excessive expression swell one can apart from the
normal call (30) request to do Gröbner basis computation steps only if they are
simplification steps replacing an equation by a shorter equation. (27)

In a different version only steps are performed in which equations are included
which do not contain more than 3 unknowns. This helps to focus on steps which
are more likely to solve small sub-systems with readily available simple results.
(57)

Often the computationally cheapest way to obtain a consistent (involutive) system
of equations is to change the ordering during the computation. This is the case
when substitutions of functions are performed which are not ranked highest in a
lexicographical ordering of functions. But CRACK also offers an interactive way
to

• change the lexicographical ordering of variables, {ov}

• change the lexicographical ordering of functions, {of}

• give the differential order of derivatives a higher or lower priority in the total
ordering than the lexicographical ordering of functions, {og}

• give either the total differential order of a partial derivative a higher priority
than the lexicographical ordering of the derivative of that function or to take
the lexicographical ordering of derivatives as the only criterion. {of}

Solution of an Under-Determined Differential Equation

When solving an over-determined system of linear differential equations where
the general solution involves free functions, in the last computational step often a
single equation for more than one function remains to be solved. Examples are
the computation of symmetries and conservation laws of non-linear differential
equations which are linearizable. In CRACK two procedures are available, one
for under-determined linear ODEs (22) and one for linear PDEs, (23) both with
non-constant coefficients.

Indirect Separation

Integrations introduce new functions of fewer variables. As equations are used to
substitute functions of all variables it is only a question of time that equations are
generated in which no function depends on all variables. If at least one variable
occurs only explicitly then the equation can be split, which we call direct separa-
tion. But sometimes all variables appear as variables of unknown functions, e.g.
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0 = f(x) + g(y) although usually much more complicated with 10 or 20 indepen-
dent variables and many functions that depend on different combinations of these
variables. Because no variable occurs only explicitly, direct separations mentioned
above are not possible. Two different algorithms, one for linear indirectly sepa-
rable equations (10), (26) and one for non-linear directly separable equations (48)
provide systematic ways of dealing with such equations.

Indirectly separable equations always result when an equation is integrated with
respect to different variables, like 0 = fxy to f = g(x)+h(y) and a function, here
f(x, y), is substituted.

Function and Variable Transformations

In the interactive mode one can specify a transformation of the whole problem with
pt in which old functions and variables are expressed as a mix of new functions
and variables.

Solution of First Order Linear PDE

If a system contains a single linear first-order PDE for just one function then in an
automatic step characteristic ODE-systems are generated, integrated if possible, a
variable transformation for the whole system of equations is performed to have in
the first-order PDE only one single derivative and to make this PDE integrable for
the integration modules. (39)

Length Reduction of Equations

An algorithm designed originally to length-reduce differential equations proved
to be essential in length-reducing systems of bi-linear algebraic equations or ho-
mogeneous equations which resulted from bi-linear equations during the solution
process.

The aim of the method (11) is to find out whether one equation 0 = E1 can length-
reduce another one 0 = E2 by replacingE2 through an appropriate linear combina-
tion αE1−βE2, β ̸= 0. To find α, β one can divide each term ofE2 through each
term of E1 and count how often each quotient occurs. If a quotient α/β occurs m
times then αE1 − βE2 will have ≤ n1 + n2 − 2m terms because 2m terms will
cancel each other. A length reduction is found if n1 + n2 − 2m ≤ max(n1, n2).
The method becomes efficient after a few algorithmic refinements discussed in
[Wol02b]. Length-reduced equations

• are more likely to length-reduce other equations,

• are much more likely to be factorizable,
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• are more suited for substitutions as the substitution induces less growth of
the whole systems and introduces fewer new occurrences of functions in
equations,

• are more likely to be integrable by being exact or being an ODE if the system
consists of differential equations,

• involve on average fewer unknowns and make the whole system more sparse.
This sparseness can be used to plan better a sequence of eliminations.

This concludes the listing of modules. Other aspects of CRACK follow.

20.15.4 Features

Flexible Process Control

Different types of over-determined systems are more or less suited for an auto-
matic solution. With the currrent version it is relatively safe to try solving large bi-
linear algebraic problems automatically. Another well-suited area concerns over-
determined systems of linear PDEs. In contrast, non-linear systems of PDEs most
likely require a tighter interactive control. Different modes of operation are possi-
ble. One can

• perform one {a} or more computational steps {g} automatically, where each
step tries modules in the order defined by the current priority list {p1} until
one module succeeds in its purpose;

• perform one module a specific number of times or as long as it is successful;
{l}

• set a time limit for how long the program should run automatically;
{time_limit, limit_time}

• interrupt an on-going automatic computation and continue the computation
interactively by copying the file _stop_crack into the directory where the
ongoing computation was started and re-naming it _stop_ (and by deleting
_stop_ to resume automatic computation);

• arrange the priority list of module changes at a certain point in the computa-
tion when the system of equations has changed its character;

• induce a case distinction whether a user-given expression is zero or not; {44}

• have a module that changes the priority list proc_list_ dynamically, depend-
ing essentially on the size and difficulty of the system but also on the success
rate of previous steps. {61, 62, 63}
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Apart from flexible control over what kind of steps to do, the steps themselves can
be controlled more or less too, e.g. whether equations are selected by the module
or the user.

So-called to-do steps have highest priority in the priority list. The list of to-do
steps is usually empty but can be filled by any successful step if it requires another
specific step to follow instantly. For example, if a very simple equation 0 = fx is
integrated then the substitution of f should follow straight away, even if substitu-
tions would have a low priority according to the current priority list.

Total Data Control

To make wise decisions of how to continue the computation in an interactive ses-
sion one needs tools to inspect large systems of equations. Helpful commands in
CRACK print

• equations, inequalities, functions and variables {e, pi, f};

• the occurence of all derivatives of selected functions in any equation; {v}

• a statistics summary of the equations of the system; {s}

• a matrix display of occurences of unknowns in all equations; {pd}

• the value of any LISP variable; {pv}

• the value of algebraic expressions that can be specified using equation names
(e.g. coeffn(e_5,df(f,x,y),2)); {pe}

• not under-determined subsystems. {ss}

Inspecting a computation which already goes on for hours or a day and has per-
formed many thousand steps is time consuming. The task is made easier with the
possibility to plot graphically as a function of time: the type of steps performed,
the number of unknowns, the number of remaining equations, the number of terms
in these equations and the memory usage. {ps}

When non-linear systems are considered and many case distinctions and sub-(sub-
. . . )case distinctions are made in a long computation, one easily loses track. With
one command one can list all cases that have been considered so far with their
assumption, the number of steps made until they are solved or until the next sub-
case distinction was made and the number of solutions contained in each completed
case. {ls}
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Safety

When working on large problems, a stage may come where computational steps
are necessary, like substitution, which are risky in the sense that they may simplify
the problem or complicate it by increasing its size. To avoid this risk a few safety
features have been implemented.

• At any time during the computation one can save a backup of the com-
plete current situation in a file and also load a backup. The command sb
"file_name" saves all global variables and data into an ASCII file and
the command rb "file_name" reads these data from a file. The format
is independent of the computer used and independent of the underlying Lisp
version. Apart from reading in a backup file during an interactive computa-
tion with rb one can also start a computation with a backup file. After load-
ing CRACK one makes in REDUCE the call crackshell()$ followed by
the file name of the backup.

• All key strokes are automatically recorded in a list which is available after
each interactive step with ph, or when the computation has finished through
lisp reverse history_;. This list can be fed into CRACK at the
beginning of a new computation so that the same operations are performed
automatically that were performed interactively before. The purpose is to
be able to do an interactive exploration first and to repeat it afterwards auto-
matically without having to note with pen or pencil all steps that had been
done.

By assigning this list to the Lisp variable old_history before calling
CRACK with off batch_mode the same steps as in the previous run are
performed first as CRACK first reads input from old_history and then
reads from the keyboard.

• During an automatic computation the program might start a computational
step which turns out to take far too long. It would be better to stop this
computation and try something else instead. But in computer algebra with
lots of global variables involved it is not straightforward to stop a computa-
tion in the middle. If one used time as a criterion then it could happen that
time is up during a garbage collection and to stop would be deadly for the
session. CRACK allows to set a limit of garbage collections for any com-
putations that have the potential to last forever, like algebraic factorizations
of large expressions. With such an arrangement an automatic computation
cannot get stuck due to lengthy factorizations, searches for length reduc-
tions or elimination steps. {max_gc_elimin, max_gc_fac, max_gc_red_len,
max_gc_short, max_gc_ss}

• Due to an initiative by Winfried Neun the parallel version of REDUCE has
been re-activated (and was running on the Beowulf cluster at Brock Univer-
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sity [MN02]). This allows conveniently (with {pp}) to duplicate the current
status of a CRACK computation to another computer, to try out there different
operations (e.g. risky ones) until a viable way to continue the computation is
found without endangering the original session.

Managing Solutions

Non-linear problems can have many solutions. The number of solutions found by
CRACK can even be higher because to make progress CRACK may have factor-
ized an equation and considered the two cases a = 0 and a ̸= 0 whereas solu-
tions in both cases could be merged to only one solution without any restriction
for a. This merging of solutions can be accomplished with a separate program
merge_sol() after the computation.

Another form of post-processing is the production of a web page for each solution,
like lie.math.brocku.ca/twolf/bl/v/v1l05o35-s1.html.

If in the solution of over-determined differential equations the program performs
integrations of equations before the differential Gröbner basis was computed then
in the final solution there may be redundant constants or functions of integration.
Redundant constants or functions in a solution are not an error but they make so-
lutions appear unnecessarily complicated. In a postprocessing step these functions
and constants can be eliminated. {adjust_fnc, drop_const(), dropredundant()}

Parallelization

The availability of a parallel version of CRACK was mentioned above allowing to
try out different ways to continue an ongoing computation. A different possibility
to make use of a cluster of computers with CRACK is to export automatically the
investigation of sub-cases and sub-sub-cases to different computers to be solved in
parallel.

It was explained above how factorizations may be necessary to make any progress
but also their potential of exploding the time requirements. By running the com-
putation on a cluster and being able to solve many more cases one can give fac-
torizations a higher priority and capitalize on the benefit of factorizations, i.e. the
simplification of the problem.

Relationship to Gröbner Basis Algorithms

For systems of equations in which the unknown constants or functions turn up
only polynomially a well-known method is able to check the consistency of the
system. For algebraic systems this is the Gröbner Basis method and for systems of
differential equations this is the differential Gröbner Basis method. To guarantee

https://lie.math.brocku.ca/twolf/bl/v/v1l05o35-s1.html
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the method will terminate a total ordering of unknowns and their derivatives has
to be introduced. This ordering determines which highest powers of unknowns are
to be eliminated next or which highest-order derivatives have to be eliminated next
using integrability conditions. Often such eliminations lead to exponential growth
of the generated equations. In the package CRACK such computations are executed
with only a low priority. Operations have a higher priority which reduce the length
of equations, irrespective of any orderings. Violating any ordering a finite number
of times still guarantees a finite algorithm. The potential gain is large as described
next.

Exploiting Bi-Linearity

In bi-linear algebraic problems we have 2 sets of variables, a1, . . . , am and
b1, . . . , bn, such that all equations have the form 0 =

∑l
k=1 γkaikbjk , γk ∈ G.

Although the problem is linear in the ai and linear in the bj it still is a non-linear
problem. A guideline which helps keep the structure of the system during com-
putation relatively simple is to preserve the linearity of either the ai or the bj as
long as possible. In classification problems of integrable systems the ansatz for the
symmetry/first integral usually involves more terms and therefore more constants
(called bj in applications of CRACK) than the ansatz for the integrable system (with
constants ai). A good strategy therefore is to keep the system linear in the bj during
the computation, i.e. to

• substitute only a bj in terms of ai, bk, or an ai in terms of an ak but not an ai
in terms of any bk;

• do elimination steps for any bj or for an ai if the involved equations do not
contain any bk.

The proposed measures are effective not only for algebraic problems but for
ODEs/PDEs too (i.e. to preserve linearity of a subset of functions as long as possi-
ble). {flin_}

Occurrence of sin, cos or Other Special Functions

If the equations to be solved involve special functions, like sin and cos, then
one is inclined to add let-rules for simplifying expressions. Before doing this
the simplification rules at the end of the file crinit.red (in the REDUCE
packages/crack directory) should be inspected such that new rules do not
lead to cycles with existing rules. One possibility is to replace existing rules, for
example to substitute the existing rule

trig1_ := {sin(~x)**2 => 1-cos(x)**2}$
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by the new rule

trig1_ := {cos(~x)**2 => 1-sin(x)**2}$

These rules are switched off when integrations are performed in order not to inter-
fere with the REDUCE integrator.

Apart from an initial customization of let-rules to be used during the whole run
one can also specify and clear let-rules during a computation using the interactive
commands lr,cr.

Exchanging Time for Memory

The optimal order of applying different methods to the equations of a system is not
fixed. It does depend, for example, on the distributions of unknown functions in
the equations and on what the individual method would produce in the next step.
For example, it is possible that the decoupling module which applies integrability
conditions through cross differentiations of equations is going well up to a stage
when it suddenly produces huge equations. They not only occupy much memory,
they also are slow to handle. Right before this explosion started other methods
should have been tried (shortening of equations, any integrations, solution of under-
determined ODEs if there are any, . . . ). These alternative methods are normally
comparatively slow or unfavourable as they introduce new functions but under the
current circumstances they may be perfect to avoid any growth and to complete the
calculation. How could one have known beforehand that some method will lead to
an explosion? One does not know. But one can regularly make a backup with the
interactive sb command and restart at this situation if necessary.

Customization

The addition of new modules to perform new specialized computations is easy.
Only the input and output of any new module are fixed. The input consists of
the system of equations, the list of inequalities and the list of unknowns to be
computed. The output includes the new system of equations and new intermediate
results. The module name has to be added to a list of all modules and a one line
description has to be added to a list of descriptions. This makes it easy for users to
add special techniques for the solution of systems with extra structure. A dummy
template module {58} is already added and has only to be filled with content.

Debugging

A feature, useful mainly for debugging is that in the middle of an ongoing in-
teractive computation the program can be changed by loading a different version
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of CRACK procedures. Thus one could advance quickly close to the point in the
execution where an error occurs, load a version of the faulty procedure that gives
extensive output and watch how the fault happens before fixing it.

The possibility to interrupt REDUCE itself temporarily and to inspect the underly-
ing LISP environment {br} or to execute LISP commands and to continue with the
CRACK session afterwards {pc} led to a few improvements and fixes in REDUCE
itself.

20.15.5 Technical issues

System Requirements

PSL REDUCE is faster whereas CSL REDUCE seems to be more stable under
Microsoft Windows. Also it provides portable compiled code.

Memory requirements depend crucially on the application. The crack.rlg file
can be produced by running crack.tst in a 4MB session running REDUCE
under LINUX (the files are in the REDUCE packages/crack directory). On
the other hand it is not difficult to formulate problems that consume any amount of
memory.

Availability

The package CRACK together with LIEPDE, CONLAW and APPLYSYM are in-
cluded with REDUCE. Publications related to CRACK itself and to applications
based on it can be found under lie.math.brocku.ca/twolf/home/publications.html.

The files

The following files are provided with CRACK (in the REDUCE packages/crack
directory):

crack.red contains read-in statements for a number of files cr*.red
crack.tst contains test examples
crack.rlg contains the output of crack.tst
crack.tex the original version of this manual.

https://lie.math.brocku.ca/twolf/home/publications.html
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20.15.6 Reference

Elements of proc_list_

The interactive command p1 shows proc_list_. This list defines the order in which
procedures are tried if a step is to be performed automatically. Command p2 shows
the complete list as it is shown below. To select any one procedure of the complete
list interactively, one simply inputs the number shown in (). The numbering of
procedures grew historically. Each number has only little or no connection with
the priority of the procedure it is labelling.

to_do (1): hot list of steps to be taken next. Should always come first.

subst_level_? (3-6,15-21): substitutions of functions by expressions.
Substitutions differ by their maximal allowed size and other properties. To
find out which function has which properties one currently has to inspect the
procedure definitions of subst_level_? in the file crmain.red.

separation (2): what is described as direct separation in the next subsec-
tion.

gen_separation (26): what is described as indirect separation in the next
subsection. Only to be used for linear problems.

quick_gen_separation (10): generalized separation of equations with
an upper size limit.

quick_integration (7): integration of very specific short equations.

full_integration (24): integration of equations which lead to a substi-
tution.

integration (25): any integration.

factorize_to_substitute (8): splitting the computation into the in-
vestigation of different sub-cases resulting from the algebraic factorization
of an equation. Only useful for non-linear problems, and applied only if each
one of the factors, when individually set to zero, would enable the substitu-
tion of a function.

factorize_any (47): splitting into sub-cases based on a factorization even
if not all factors set to zero lead to substitutions.

change_proc_list (37): reserved name of a procedure to be written by
the user that does nothing else but changing proc_list_ in a fixed man-
ner. This is to be used if the computation splits naturally into different
parts and if it is clear from the beginning what the computational methods
(proc_list_) have to be.



607

stop_batch (38): If the first steps to simplify or partially solve a system
of equations are known and should be done automatically and afterwards
CRACK should switch into interactive mode then stop_batch is added to
proc_list with a priority just below the steps to be done automatically.

drop_lin_dep (12): module to support solving big linear systems (still ex-
perimental).

find_1_term_eqn (13): module to support solving big linear systems (still
experimental).

trian_lin_alg (14): module to support solving big linear systems (still
experimental).

undetlinode (22): parametric solution of single under-determined linear
ODE (with non-constant coefficients). Only applicable for linear problems.
(Too many redundant functions resulting from integrations may prevent fur-
ther integrations. If they are involved in single ODEs then the parametric
solution of such ODEs treated as single under-determined equations is use-
ful. Danger: new generated equations become very big if the minimal order
of any function in the ODE is high.)

undetlinpde (23): parametric solution of single under-determined linear
PDE (with non-constant coefficients). Only applicable for linear problems
(still experimental).

alg_length_reduction (11): length reduction by algebraic combina-
tion. Only for linear problems. One has to be careful when combining it
with decoupling as infinite loops may occur when shortening and lowering
order reverse each other.

diff_length_reduction (27): length reduction by differential reduc-
tion.

decoupling (30): steps towards the computation of a differential Gröbner
Basis.

add_differentiated_pdes (31): only useful for non-linear differential
equations with leading derivative occurring non-linearly.

add_diff_ise (32): for the treatment of non-linear indirectly separable
equations.

multintfac (33): to find integrating factors for a system of equations.
Should have very low priority if used at all.

alg_solve_single (34): to be used for equations quadratic in the leading
derivative.
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alg_solve_system (35): to be used if a (sub-)system of equations shall be
solved for a set of functions or their derivatives algebraically.

subst_derivative (9): substitution of a derivative of a function every-
where by a new function if such a derivative exists.

undo_subst_derivative (36): undo the above substitution.

del_redundant_fc (40): drop redundant functions and constants. For that
an over-determined PDE system is formulated and solved to set redundant
constants and functions of integration to zero. This may take longer if many
functions occur.

find_trafo (39): finding a first-order linear PDE. By solving it the program
finds a variable transformation that transforms the PDE to a single derivative
and makes the PDE integrable for the integration modules. Because a vari-
able transformation was performed the solution contains only new functions
of integration which depend on single (new) variables and not on expres-
sions of them, like sums of them. Therefore the result of the integration can
be used for substitutions in other equations. If the transformation had not
been made then the solution of the PDE would involve arbitrary functions of
expressions and could not be used for the other equations using the current
modules of CRACK. A general transformation can be done interactively with
the command cp.

sub_problem (41): solve a subset of equations first (still experimental).

del_redundant_de (28): delete redundant equations.

idty_integration (29): integrate an identity.

gen_separation2 (48): indirect separation of a PDE. This is a second ver-
sion for non-linear PDEs.

find_and_use_sub_systems12 (49): find sub-systems of equations with
at least as many equations as functions. In this case find systems with at most
2 functions, none of them a function of the set flin_. (These are functions
which occur initially only linearly in a non-linear problem; flin_ is as-
signed initially by the user.)

find_and_use_sub_systems13 (50): like above only with at most 3
functions, none from flin_.

find_and_use_sub_systems14 (51): like above only with at most 4
functions, none from flin_.

find_and_use_sub_systems15 (52): like above only with at most 5
functions, none from flin_.
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find_and_use_sub_systems22 (53): like above only with at most 2
functions. Only flin_ are considered, all others ignored.

find_and_use_sub_systems23 (54): like above only with at most 3
functions. Only flin_ are considered, all others ignored.

find_and_use_sub_systems24 (55): like above only with at most 4
functions. Only flin_ are considered, all others ignored.

find_and_use_sub_systems25 (56): like above only with at most 5
functions. Only flin_ are considered, all others ignored.

high_prio_decoupling (57): do a decoupling step with two equations
that in total involve at most 3 different functions of all independent variables
in these equations.

user_defined (58): This is an empty procedure which can be filled by the
user with a very specific computational step that is needed in a special user
application. Template:

symbolic procedure user_defined(arglist)$
% arglist is a Lisp list {pdes,forg,vl_} where
% pdes is the list of names of all equations
% forg is the list of original functions +
% their values as far as known
% vl_ is the list of independent variables

begin
...
return if successful then list(pdes,forg)

% new pdes + functions and their value
else nil

end$

alg_groebner (59): call of the REDUCE procedure groebnerf trying
to solve the whole system under the assumption that it is a completely alge-
braic polynomial system. All resulting solutions are considered individually
further.

solution_check (60): this procedure tests whether a solution that is de-
fined in an external procedure sol_define() is still contained in the gen-
eral solution of the system currently under investigation. This procedure is
useful to find the place in a long computation where a special solution is
either lost or added to the general solution of the system to be solved. Tem-
plate:

algebraic procedure sol_define$
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<< % This procedure contains the statements
% that specify a solution
% Example: Test whether s=h_-y**2/t**2, u=y/t
% is a solution, where h_=h_(t)
depend h_,t$
% Return a list of expressions that vanish for
% the solution to be tested, in this example:
{s-(h_-y**2/t**2), u-y/t}

>>$

Online Help

The following commands and their one line descriptions appear in the same order
as in the online help.

Help for Help

hd Help to inspect data
hp Help to proceed
hf Help to change flags and parameters
hc Help to change data of equations
hi Help to work with identities
hb Help to trace and debug

Help to Inspect Data

e Print equations
eo Print overview of functions in equations
pi Print inequalities
f Print functions and variables
v Print all derivatives of all functions
s Print statistics
fc Print no of free cells
pe Print an algebraic expression
ph Print history of interactive input
pv Print value of any Lisp variable
pf Print no of occurences of each function
pr Print active substitution rules
pd Plot the occurence of functions in equations
ps Plot a statistical history
lc List all case distinctions
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ws Write statistical history in file
sn Show name of session
ss Find and print sub-systems
w Write equations into a file

Help to Proceed

a Do one step automatically
g Go on for a number of steps automatically
t Toggle between automatic and user selection of equations

(expert_mode=nil/t)
p1 Print a list of all modules in batch mode
p2 Print a complete list of all modules
# Execute the module with the number ‘#’ once
l Execute a specific module repeatedly
sb Save complete backup to file
rb Read backup from file
ep Enable parallelism
dp Disable parallelism
pp Start an identical parallel process
kp Kill a parallel process
x Exit interactive mode for good
q Quit current level or crack if in level 0

Help to Change Flags and Parameters

pl Maximal length of an expression to be printed
pm Toggle to print more or less information about PDEs (print_more)
pa Toggle to print all or not all information about the PDEs (print_all)
cp Change the priorities of procedures
og Toggle ordering between ‘lexicographical ordering of functions having

a higher priority than any ordering of derivatives’ and the opposite
(lex_fc=t) resp. (lex_fc=nil)

od Toggle ordering between ‘the total order of derivatives having a higher
priority than lexicographical ordering’ (lex_df=nil) or not
(lex_df=t)

oi Interactive change of ordering on variables
or Reverse ordering on variables
om Mix randomly ordering on variables
of Interactive change of ordering on functions
op Print current ordering
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ne Root of the name of new generated equations (default: e_)
nf Root of the name of new functions and constants (default: c_)
ni Root of the name of new identities (default: id_)
na Toggle for the nat output switch (!*nat)
as Input of an assignment
kp Toggle for keeping a partitioned copy of each equation (keep_parti)
fi Toggle for allowing or not allowing integrations of equations which

involve unresolved integrals (freeint_)
fa Toggle for allowing or not allowing solutions of ODEs involving the

abs function (freeabs_)
cs Switch on/off the confirmation of intended substitutions and of the

order of the investigation of subcases resulting in a factorization
fs Enforce direct separation
ll change of the line length
re Toggle for allowing to re-cycle equation names (do_recycle_eqn)
rf Toggle for allowing to re-cycle function names (do_recycle_fnc)
st Setting a CPU time limit for un-interrupted run
cm Adding a comment to the history_ list
lr Adding a LET-rule
cr Clearing a LET-rule

Help to Change Data of Equations

r Replace or add one equation
rd Reduce an equation modulo LET rules
n Replace one inequality
de Delete one equation
di Delete one inequality
c Change a flag or property of one PDE
pt Perform a transformation of functions and variables

Help to Work with Identities

i Print identities between equations
id Delete redundand equations
iw Write identities to a file
ir Remove list of identities
ia Add or replace an identity
ih Start recording histories and identities
ip Stop recording histories and identities
ii Integrate an identity
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ic Check the consistency of identity data
iy Print the history of equations

Help to Trace and Debug

tm Toggle for tracing the main procedure (tr_main)
tg Toggle for tracing the generalized separation (tr_gensep)
ti Toggle for tracing the generalized integration (tr_genint)
td Toggle for tracing the decoupling process (tr_decouple)
tl Toggle for tracing the decoupling length reduction process

(tr_redlength)
ts Toggle for tracing the algebraic length reduction process (tr_short)
to Toggle for tracing the ordering procedures process (tr_orderings)
tr Trace an arbitrary procedure
ut Untrace a procedure
br Lisp break
pc Do a function call
in Reading in a REDUCE file

Global variables

The following is a complete list of identifiers used as global Lisp variables (to be
precise, symbolic fluid variables) within CRACK. Some are flags and parameters,
others are global variables; some of them can be accessed after the CRACK run.

!*allowdfint_bak !*dfprint_bak !*exp_bak !*ezgcd_bak
!*fullroots_bak !*gcd_bak !*mcd_bak !*nopowers_bak
!*ratarg_bak !*rational_bak !*batch_mode abs_
adjust_fnc allflags_ batchcount_ !*backup_
collect_sol confirm_subst cont_ contradiction_
cost_limit5 current_dir default_proc_list_
do_recycle_eqn do_recycle_fnc done_trafo eqname_
expert_mode explog_ facint_ flin_ force_sep fname_
fnew_ freeabs_ freeint_ ftem_ full_proc_list_
gcfree!* genint_ glob_var global_list_integer
global_list_ninteger global_list_number high_gensep
homogen_ history_ idname_ idnties_ independence_
ineq_ inter_divint keep_parti last_steps length_inc
level_ lex_df lex_fc limit_time lin_problem
lin_test_const logoprint_ low_gensep max_gc_counter
max_gc_elimin max_gc_fac max_gc_red_len max_gc_short
max_gc_ss max_red_len maxalgsys_ mem_eff
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my_gc_counter nequ_ new_gensep nfct_ nid_ odesolve_
old_history orderings_ target_limit_0 target_limit_1
target_limit_2 target_limit_3 target_limit_4
poly_only potint_ print_ print_all print_more
proc_list_ prop_list pvm_able quick_decoup
record_hist recycle_eqns recycle_fcts recycle_ids
reducefunctions_ repeat_mode safeint_ session_
simple_orderings size_hist size_watch sol_list
solvealg_ stepcounter_ stop_ struc_dim struc_eqn
subst_0 subst_1 subst_2 subst_3 subst_4 time_
time_limit to_do_list tr_decouple tr_genint
tr_gensep tr_main tr_orderings tr_redlength tr_short
trig1_ trig2_ trig3_ trig4_ trig5_ trig6_ trig7_
trig8_ userrules_ vl_

Global Flags and Parameters

The list below gives a selection of flags and global parameters that are available,
for example, to fine tune the performance according to specific needs of the system
of equations that is studied. Usually they are not needed and very few are used
regularly by the author. The interactive command that changes the flag/parameter
is given in [ ], default values of the flags/parameters are given in (). All values
can be changed interactively with the as command. The values of the flags and
parameters can either be set after loading CRACK and before starting it with a Lisp
assignment, for example,

lisp(print_ := 8)$

or after starting CRACK in interactive mode with specific commands, like pl to
change specifically the print length determining parameter print_, or the com-
mand as to do an assignment. The values of parameters/flags can be inspected
interactively using pv and changed with as.

!*batch_mode [x] (t) : running CRACK in interactive mode
(!*batch_mode=nil) or automatically (!*batch_mode=t). It
can also be set in algebraic mode before starting CRACK by on/off
batch_mode. Interactive mode can be left and automatic computation be
started by the interactive command x.

!*iconic (nil) : whether new processes in parallelization should appear as
icons (t) or windows (nil).

adjust_fnc (nil) : if t then free constants/functions are scaled and redun-
dant ones are dropped to simplify the result after the computation has been
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completed.

collect_sol (t) : whether solutions found shall be collected and returned
together at the end or not (to save memory); it matters only for non-linear
problems with very many special solutions. If a computation has to be per-
formed with any solution that is found, then these commands can be put
into an algebraic procedure crack_out(eqns, assigns,
freef, ineq) which is currently empty in file crmain.red but which
is called for each solution.

confirm_subst [cs] (nil) : whether substitutions have to be con-
firmed interactively.

cont_ (nil) : interactive user control for integration or substitution of large
expressions (enabled = t).

cost_limit5 (100) : maximal number of extra terms generated by a sub-
stitution.

do_recycle (nil) : whether function names shall be recycled or not (saves
memory but computation is less clear to follow).

done_trafo (nil) : an (algebraic mode) list of back-transformations that
would invert done transformations; this list is useful after CRACK completed
to invert transformations if needed.

eqname_ [ne] (’e_) : name of new equations.

expert_mode [t] (nil) : For expert_mode=t the equations that are
involved in the next computational step are selected by CRACK, for
expert_mode=nil the user is asked to select one or two equations which
are to be worked with in the next computational step.

facint_ (1000) : if nil then no search for integrating factors, otherwise
sets the maximum of product terms * kernels when searching for an inte-
grating factor.

flin_ (nil) : a list of functions occuring only linearly in an otherwise non-
linear problem; must be assigned before calling CRACK. During execution
CRACK tries to preserve the linearity of these functions as long as possible.

fname_ [nf] (’c_) : name of new functions and constants (integration).

force_sep (nil) : whether direct separation should be forced even if func-
tions occur in the supposedly linear independent explicit expressions (for
non-linear problem).

freeabs_ [fi] (t) : Do not use solutions of ODEs that involve the abs
function.
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freeint_ [fi] (t) : Do integrations only if explicit part is integrable.

genint_ (15) : if nil then generalized integration disabled else sets the
maximal number of new functions and extra equations due to the general-
ized integration of one equation.

high_gensep (300) : minimum size of expressions to separate in a gener-
alized way by quick_gen_separation.

homogen_ (nil) : test for homogeneity of each equation (for debugging).

idname_ [ni] (’id_) : name of new equations.

idnties_ (nil) : list of identities resulting from reductions and integrabil-
ity conditions.

independence_ (nil) : interactive control of linear independence (en-
abled = t).

inter_divint (nil) : whether the integration of divergence identities
with more than 2 differentiation variables shall be confirmed interactively.

keep_parti [kp] (nil) : whether for each equation a copy in partitioned
form is to be stored to speed up several simplifications but which needs more
memory.

last_steps (nil) : a list of the last steps generated and updated automat-
ically in order to avoid cycles.

length_inc (1.0) : factor by which the length of an expression may grow
when performing diff_length_reduction.

lex_df [od] (nil) : if t then use lexicographical instead of total degree
ordering of derivatives.

lex_fc [og] (t) : if t then lexicographical ordering of functions has
higher priority than any ordering of derivatives.

limit_time (nil) : = time() + how many more seconds allowed in batch
mode.

logoprint_ (t) : print logo after CRACK call.

low_gensep (6) : maximum size of expressions to be separated in a gener-
alized way by quick_gen_separation.

max_gc_counter (100000000) : maximal total number of garbage col-
lections.
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max_gc_elimin (15) : maximal number of garbage collections during
elimination in decoupling.

max_gc_fac (15) : maximal number of garbage collections during factor-
ization.

max_gc_red_len (30) : maximal number of garbage collections during
length reduction.

max_gc_short (40) : maximal number of garbage collections during short-
ening.

max_gc_ss (10) : maximal number of garbage collections during search of
sub-systems.

max_red_len (1000000) : maximal product of lengths of two equations
to be combined with length-reducing decoupling.

maxalgsys_ (20) : maximum number of equations to be solved in special-
sol.

mem_eff (t) : whether to be memory efficient even if slower.

my_gc_counter (0) : initial value of my_gc_counter.

nequ_ (1) : index of the next new equation.

new_gensep (nil) : whether or not a newer (experimental) form of
gensep should be used.

nfct_ (1) : index of the next new function or constant.

nid_ (1) : index of the next new identity.

odesolve_ (100) : maximal length of a DE (number of terms) to be inte-
grated as ODE.

old_history (nil) : old_history is interactive input to be read from
this list.

poly_only (nil) : all equations are polynomials only.

potint_ (t) : allowing ‘potential integration’.

print_ [pl] (12) : maximal length of an expression to be printed.

print_all [pa] (nil) : print all information about the PDEs.

print_more [pm] (t) : print more informations about the PDEs.
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quick_decoup (nil) : whether decoupling should be done faster with less
care for saving memory.

record_hist (nil) : whether the history of equations is to be recorded.

safeint_ (t) : use only solutions of ODEs with non-vanishing denomina-
tor.

session_ (“bu”+random number+date) : when loading CRACK or
executing.

size_watch (nil) : whether before each computational step the size of the
system shall be recorded in the global variable size_hist.

solvealg_ (nil) : Use SOLVE for algebraic equations.

struc_eqn (nil) : whether the equations have the form of structural equat-
ions (an application is Killing vector and Killing tensor computations).

subst_* : maximal length of an expression to be substituted, used with differ-
ent values for different procedures subst_level_*.

target_limit_* (nil) : maximum of product length(PDE) *
length(substituted expression) for a PDE which is to be used for a
substitution. If target_limit_* = nil then no length limit, used
with different values for different procedures subst_level_*.

time_ (nil) : print the time needed for running CRACK.

time_limit (nil) : whether a time limit is active after which batch-mode
is interrupted to interactive mode.

tr_decouple [td] (nil) : trace decoupling process.

tr_genint [ti] (nil) : trace generalized integration.

tr_gensep [ts] (nil) : trace generalized separation.

tr_main [tm] (nil) : trace main procedure.

tr_orderings [to] (nil) : trace orderings stuff.

tr_redlength [tr] (nil) : trace length reduction.



619

20.15.7 A More Detailed Description of Some of the Modules

The package CRACK contains a number of modules. The basic ones are for com-
puting a pseudo-differential Gröbner Basis (using integrability conditions in a sys-
tematic way), integrating exact PDEs, separating PDEs, solving DEs containing
functions of only a subset of all variables and solving standard ODEs (of Bernoulli
or Euler type, linear, homogeneous and separable ODEs). These facilities will be
described briefly together with examples. The test file crack.tst (in the RE-
DUCE packages/crack directory) demonstrates these and others.

Pseudo Differential Gröbner Basis

This module (called ‘decoupling’ in proc_list_) reduces derivatives in equat-
ions by using other equations and it applies integrability conditions to formulate
additional equations which are subsequently reduced, and so on.

A general algorithm to bring a system of PDEs into a standard form where all
integrability conditions are satisfied by applying a finite number of additions, mul-
tiplications and differentiations is based on the general theory of involutive systems
[Riq10, Tho37, Jan29].

Essential to this theory is a total ordering of partial derivatives which allows assign-
ment to each PDE of a Leading Derivative (LD) according to a chosen ordering of
functions and derivatives. Examples for possible orderings are

• lex. order of functions > lex. order of variables,

• lex. order of functions > total differential order > lex. order of variables,

• total order > lex. order of functions > lex. order of variables,

or mixtures of them by giving weights to individual functions and variables.
Above, the “>” indicate “before” in priority of criteria. The principle is then to

1. take two equations at a time and differentiate them as often as necessary to
get equal LDs,

2. regard these two equations as algebraic equations in the common LD and
calculate the remainder w.r.t. the LD, i.e. to generate an equation without the
LD by the Euclidean algorithm, and

3. add this equation to the system.

Usually pairs of equations are taken first, such that only one of the equations must
be differentiated. If in such a generation step one of the equations is not differenti-
ated then it is called a simplification step and this equation will be replaced by the
new equation.
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The algorithm ends when each combination of two equations yields only equat-
ions which simplify to an identity modulo the other equations. A more detailed
description is given e.g. in [BB89, Rei90].

Other programs implementing this algorithm are described e.g. in [Sch85b, BB89,
FK89, Rei90, RWB96, RLW01] and [Man96].

In the interactive mode of CRACK it is possible to change the lexicographical order-
ing of variables, of functions, to choose between ‘total differential order’ ordering
of variables or lexicographical ordering of variables and to choose whether lexico-
graphical ordering of functions should have a higher priority than the ordering of
the variables in a derivative, or not.

An example of the computation of a differential Gröbner Basis is given in the test
file crack.tst.

Integrating Exact PDEs

The technical term ‘exact’ is adapted for PDEs from exterior calculus and is a
small abuse of language but it is useful to characterize the kind of PDEs under
consideration.

The purpose of the integration module in CRACK is to decide whether a given
differential expression D which involves unknown functions f i(xj), 1 ≤ i ≤ m
of independent variables xj , 1 ≤ j ≤ n is a total derivative of another expression
I w.r.t. some variable xk, 1 ≤ k ≤ n

D(xi, f j , f j ,p , f
j ,pq , . . .) =

dI(xi, f j , f j ,p , f
j ,pq , . . .)

dxk
.

The index k is reserved in the following for the integration variable xk. With an
appropriate function of integration cr, which depends on all variables except xk, it
is no loss of generality to replace 0 = D by 0 = I + cr in a system of equations.

Of course there always exists a function I with a total derivative equal to D but the
question is whether for arbitrary f i the integral I is functionally dependent only
on the f i and their derivatives, and not on integrals of f i.

Preconditions: D is a polynomial in the f i and their derivatives. The number of
functions and variables is free. For deciding the existence of I only, the explicit
occurrence of the variables xi is arbitrary. In order to actually calculate I explicitly,
D must have the property that all terms in D must either contain an unknown
function of xk or must be formally integrable w.r.t. xk. That means if I exists
then only a special explicit occurrence of xk can prevent the calculation of I and
furthermore only in those terms which do not contain any unknown function of xk.
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If such terms occur in D and I exists then I can still be expressed as a polynomial
in the f i, f i,j , . . . and terms containing indefinite integrals with integrands explicit
in xk.

Algorithm: Successive partial integration of the term with the highest xk-
derivative of any f i. By that the differential order w.r.t. xk is reduced successively.
This procedure is always applicable because steps involve only differentiations and
the polynomial integration (

∫
hn ∂h

∂xdx = hn+1/(n+1)) where h is a partial deriva-
tive of some function f i. For a more detailed description see [Wol00].

Stop: Iteration stops if no term with any xk-derivative of any f i is left. If any
f i(xk) occurs in the remaining un-integrated terms then I is not expressible with
f i and its derivatives only. In case no f i(xk) occurs, any remaining terms can
contain xk only explicitly. Whether they can be integrated or not depends on their
formal integrability. For their integration the REDUCE integrator is applied.

Speed up: The partial integration as described above preserves derivatives with
respect to other variables. For example, the three terms f,x , ff,xxx , f,xxy can-
not combine somehow to the same terms in the integral because if one ignores
x-derivatives then it is clear that f, f2 and f,y are three functionally independent
expressions with respect to x-integrations. This allows the following drastic speed
up for large expressions. It is possible to partition the complete sum of terms into
partial sums such that each of them has to be integrable on its own. That is man-
aged by generating a label for each term and collecting terms with the same label
into partial sums. The label is produced by dropping all x-derivatives from all func-
tions to be computed and dropping all factors which are not powers of derivatives
of functions to be computed.

The partitioning into partial sums has two effects. Firstly, if the integration of one
partial sum fails then the remaining sums do not have to be tried for integration.
Secondly, doing partial integration for each term means doing many subtractions.
It is much faster to subtract terms from small sums than from large sums.

Example: We apply the above algorithm to

D := 2f,y g
′ + 2f,xy g + gg′3 + xg′4 + 3xgg′2g′′ = 0

with f = f(x, y), g = g(x), ′ ≡ d/dx. Starting with terms containing g and at
first with the highest derivative g,xx , the steps are∫

3xgg,2x g,xx dx =
∫
d(xgg,3x ) −

∫ (
∂x(xg)g,

3
x

)
dx

= xgg,3x −
∫
g,3x (g + xg,x )dx,
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I := I + xgg,3x

D := D − g,3x (g + xg,x )− 3xgg,2x g,xx

The new terms−g,3x (g+xg,x ) are of lower order than g,xx and so in the expression
D the maximal order of x-derivatives of g is lowered. The conditions that D is
exact are the following.

• The leading derivative must occur linearly before each partial integration
step.

• After the partial integration of the terms with first-order x-derivatives of f
the remaining D must not contain f or other derivatives of f , because such
terms cannot be integrated w.r.t. x without specifying f .

The result of x- and y-integration in the above example is (remember g = g(x))

0 = 2fg + xygg,3x+c1(x) + c2(y) (= I).

CRACK can now eliminate f and substitute for it in all other equations.

Generalization: If after applying the above basic algorithm, terms are left which
contain functions of xk but each of these functions depends only on a subset of all
xi, 1 ≤ i ≤ n, then a generalized version of the above algorithm can still provide a
formal expression for the integral I (see [Wol00]). The price consists of additional
differential conditions, but they are equations in fewer variables than occur in the
integrated equation. Integrating for example

D̃ = D + g2(y2 + x sin y + x2ey) (20.75)

by introducing as few new functions and additional conditions as possible gives for
the integral Ĩ

Ĩ = 2fg + xygg,3x+c1(x) + c2(y)

+
1

3
y3c′′3 − cos y(xc′′3 − c3) + ey(x2c′′3 − 2xc′3 + 2c3)

with c3 = c3(x),
′ ≡ d/dx and the single additional condition g2 = c′′′3 . The

integration of the new terms of (20.75) is achieved by partial integration again, for
example ∫

g2x2dx = x2
∫
g2dx−

∫
(2x

∫
g2dx)dx

= x2
∫
g2dx− 2x

∫ ∫
g2dx+ 2

∫ ∫ ∫
g2dx

= x2c′′3 − 2xc′3 + 2c3.
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Characterization: This algorithm is a decision algorithm which does not involve
any heuristic. After integration, the new equation is still a polynomial in f i and in
the new constant or function of integration. Therefore the algorithms for bringing
the system into standard form can still be applied to the PDE-system after the
equation D = 0 is replaced by I = 0.

The complexity of algorithms for bringing a PDE-system into a standard form
depends nonlinearly on the order of these equations because of the nonlinearly
increasing number of different leading derivatives and by that the number of equat-
ions generated intermediately by such an algorithm. It therefore in general pays off
to integrate equations during such a standard form algorithm.

If an f i, which depends on all variables, can be eliminated after an integration, then
depending on its length it is in general helpful to substitute f i in other equations
and to reduce the number of equations and functions by one. This is especially
profitable if the replaced expression is short and contains only functions of fewer
variables than f i.

Test: The corresponding test input is

depend f,x,y;
depend g,x;
crack({2*df(f,y)*df(g,x)+2*df(f,x,y)*g+g*df(g,x)**3

+x*df(g,x)**4+3*x*g*df(g,x)**2*df(g,x,2)
+g**2*(y**2+x*sin y+x**2*e**y)},

{}, {f,g}, {});

The meaning of the REDUCE command depend is to declare that f depends in
an unknown way on x and y. For more details on the algorithm see [Wol00].

Direct Separation of PDEs

As a result of repeated integrations the functions in the remaining equations have
fewer and fewer variables. It therefore may happen that after a substitution an
equation results where at least one variable occurs only explicitly and not as an
argument of an unknown function. Consequently all coefficients of linearly inde-
pendent expressions in this variable can be set to zero individually.

Example: f = f(x, y), g = g(x), x, y, z are independent variables. The
equation is

0 = f,y +z(f
2 + g,x ) + z2(g,x+yg

2) (20.76)

x-separation? → no
y-separation? → no
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z-separation? → yes: 0 = f,y = f2 + g,x = g,x+yg
2

y-separation?→ yes: 0 = g,x= g2 (from the third equation from the z-separation)

If z2 had been replaced in (20.76) by a third function h(z) then direct separation
would not have been possible. The situation changes if h is a parametric function
which is assumed to be independently given and which should not be calculated,
i.e. f and g should be calculated for any arbitrary given h(z). Then the same sep-
aration could have been done with an extra treatment of the special case h,zz = 0,
i.e. h linear in z. This different treatment of unknown functions makes it necessary
to input explicitly the functions to be calculated as the third argument to CRACK.
The input in this case would be

depend f,x,y;
depend g,x;
depend h,z;
crack({df(f,y)+z*f**2+(z+h)*df(g,x)+h*y*g**2}, {},

{f,g}, {z});

The fourth parameter for CRACK is necessary to make clear that in addition to the
variables of f and g, z is also an independent variable.

If the flag independence_ is not nil then CRACK will stop if linear indepen-
dence of the explicit expressions of the separation variable (in the example 1, z, z2)
is not clear and ask interactively whether separation should be done or not.

Indirect Separation of PDEs

For the above direct separation a precondition is that at least one variable occurs
only explicitly or as an argument of parametric functions. The situation where
each variable is an argument of at least one function but no function contains all
independent variables of an equation needs a more elaborate treatment.

The steps are these

• A variable xa is chosen which occurs in as few functions as possible. This
variable will be separated directly later which requires that all unknown func-
tions fi containing xa are to be eliminated. Therefore, as long as F := {fi}
is not empty do the following:

– Choose the function fi(yp) in F with the smallest number of variables
yp and with zij as those variables on which fi does not depend.

– Identify all different products Pik of powers of fi-derivatives and of fi
in the equation. Determine the zij-dependent factors Cik of the coeffi-
cients of Pik and store them in a list.

– For each Cil (i fixed, l = 1, . . .) choose a zij and:
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* divide by Cil the equation and all following elements Cim with
m > l of this list, such that these elements are still the actual
coefficients in the equation after the division,

* differentiate the equation and the Cim,m > l w.r.t. zij .

• The resulting equation no longer contains any unknown function of xa and
can be separated w.r.t. xa directly in case xa still occurs explicitly. In both
cases the equation(s) is (are) free of xa afterwards and inverting the sequence
of integration and multiplication of all those equations (in case of direct sep-
arability) will also result in an equation(s) free of xa. More exactly, the steps
are

– multiplication of the equation(s) and the Cim with m < l by the ele-
ments of the Cik-lists in exactly the inverse order,

– integration of these exact PDEs and the Cim w.r.t. zij .

• The equations originating that way are used to evaluate those functions
which do not depend on xa and which survived in the above differentia-
tions. Substituting these functions in the original equation may enable direct
separability w.r.t. variables on which the fi do not depend on.

• The whole procedure is repeated for another variable xb if the original DE
could not be separated directly and still has the property that it contains only
functions of a subset of all variables in the equation.

The additional bookkeeping of coefficients Cik and their updating by division, dif-
ferentiation, integration and multiplication is done to use them as integrating fac-
tors for the backward integration. The following example makes this clearer. The
equation is

0 = f(x)g(y)− 1

2
xf ′(x)− g′(y)− (1 + x2)y. (20.77)

The steps are (equal levels of indentation in the example correspond to those in the
algorithm given above)

• x1 := x, F = {f}

– Identify f1 := f, y1 := x, z11 := y

– and P1 = {f ′, f}, C1 = {1, g}

* Divide C12 and (20.77) by C11 = 1 and differentiate w.r.t. z11 =
y :

0 = fg′ − g′′ − (1 + x2) (20.78)

C12 = g′
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* Divide (20.78) by C12 = g′ and differentiate w.r.t. z11 = y:

0 = −(g′′/g′)′ − (1 + x2)(1/g′)′

• Direct separation w.r.t. x and integration:

x2 : 0 = (1/g′)′ ⇒ c1g
′ = 1 ⇒ g = y/c1 + c2

x0 : 0 = (g′′/g′)′ ⇒ c3g
′ = g′′ ⇒ c3 = 0

• Substitution of g in the original DE

0 = (y/c1 + c2)f −
1

2
xf ′ − 1/c1 − (1 + x2)y

provides a form which allows CRACK standard methods to succeed by direct
separation w.r.t. y

y1 : 0 = f/c1 − 1− x2 ⇒ f ′ = 2c1x
y0 : 0 = c2f − 1

2xf
′ − 1/c1 ⇒ 0 = c2c1(1 + x2)− c1x2 − 1/c1

and direct separation w.r.t. x:

x0 : 0 = c2c1 − c1
x2 : 0 = c2c1 − 1/c1

⇒ 0 = c1 − 1/c1

⇒ c1 = ±1⇒ c2 = 1.

We get the two solutions f = 1+ x2, g = 1+ y and f = −1− x2, g = 1− y. The
corresponding input to CRACK would be

depend f,x;
depend g,y;
crack({f*g-x*df(f,x)/2-df(g,y)-(1+x**2)*y},{},{f,g},{});

Solving Standard ODEs

For solving standard ODEs the package ODESOLVE by Malcolm MacCallum and
Francis Wright [Mac89] is applied. This package is distributed with REDUCE and
can be used independently of CRACK. The syntax of ODESOLVE is quite similar
to that of CRACK:

depend function, variable;
odesolve(ODE, function, variable);
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The applicability of ODESOLVE is increased by a CRACK-subroutine which recog-
nizes such PDEs in which there is only one unknown function of all variables and
all occurring derivatives of this function are only derivatives w.r.t. one variable of
only one partial derivative. For example the PDE for f(x, y)

0 = f,xxy +f,xxyy

can be viewed as a first order ODE in y for f,xxy.
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20.16 DESIR: Differential Linear Homogeneous Equat-
ion Solutions in the Neighborhood of Irregular and
Regular Singular Points

This package enables the basis of formal solutions to be computed for an ordinary
homogeneous differential equation with polynomial coefficients over Q of any or-
der, in the neighborhood of zero (regular or irregular singular point, or ordinary
point).

Authors: C. Dicrescenzo, F. Richard-Jung, E. Tournier

Differential linear homogenous Equation Solutions in the
neighbourhood of Irregular and Regular singular points

Version 3.1 - Septembre 89

Groupe de Calcul Formel de Grenoble
laboratoire TIM3

(C. Dicrescenzo, F. Richard-Jung, E. Tournier)

E-mail: dicresc@afp.imag.fr

20.16.1 INTRODUCTION

This software enables the basis of formal solutions to be computed for an ordinary
homogeneous differential equation with polynomial coefficients over Q of any or-
der, in the neighbourhood of zero ( regular or irregular singular point, or ordinary
point ).
Tools have been added to deal with equations with a polynomial right-hand side,
parameters and a singular point not to be found at zero.

This software can be used in two ways :

• direct ( DELIRE procedure )

• interactive ( DESIR procedure)

The basic procedure is the DELIRE procedure which enables the solutions of a
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linear homogeneous differential equation to be computed in the neigh- bourhood
of zero.

The DESIR procedure is a procedure without argument whereby DELIRE can be
called without preliminary treatment to the data, that is to say, in an interactive au-
tonomous way. This procedure also proposes some transfor- mations on the initial
equation. This allows one to start comfortably with an equation which has a non
zero singular point, a polynomial right-hand side and parameters.
This document is a succint user manual. For more details on the underlying math-
ematics and the algorithms used, the reader can refer to :

E. Tournier : Solutions formelles d’equations differentielles - Le logiciel de cal-
cul formel DESIR.
These d’Etat de l’Universite Joseph Fourier (Grenoble - avril 87).

He will find more precision on use of parameters in :

F. Richard-Jung : Representation graphique de solutions d’equations differen-
tielles dans le champ complexe.
These de l’Universite Louis Pasteur (Strasbourg - septembre 88).

20.16.2 FORMS OF SOLUTIONS

We have tried to represent solutions in the simplest form possible. For that, we
have had to choose different forms according to the complexity of the equation
(parameters) and the later use we shall have of these solutions.

"general solution" = {......, { split_sol , cond },....}

cond = list of conditions or empty list (if there is no condition)
that parameters have to verify such that split_sol is in the
basis of solutions. In fact, if there are parameters, basis of
solutions can have different expressions according to the
values of parameters. ( Note : if cond={}, the list "general
solution" has one element only.)

split_sol = { q, ram, polysol, r }
( " split solution " enables precise information on the solu-
tion to be obtained immediately )

The variable in the differential operator being x, solutions are expressed in respect
to a new variable xt, which is a fractional power of x, in the following way :
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q : polynomial in 1/xt with complex coefficients
ram : xt = xram (1/ram is an integer)
polysol : polynomial in log(xt) with formal series in xt coefficients
r : root of a complex coefficient polynomial ("indicial equation").

"standard solution" = eqxxr∗rampolysolx

qx and polysolx are q and polysol expressions in which xt has been replaced by
xram

N.B. : the form of these solutions is simplified according to the nature of the point
zero.

- if 0 is a regular singular point : the series appearing in polysol are conver-
gent, ram = 1 and q = 0.

- if 0 is a regular point, we also have : polysol is constant in log(xt) (no
logarithmic terms).

20.16.3 INTERACTIVE USE

To call the procedure : desir();
solution:=desir();

The DESIR procedure computes formal solutions of a linear homogeneous differ-
ential equation in an interactive way.
In this equation the variable must be x.

The procedure requires the order and the coefficients of the equation, the names of
parameters if there are any, then if the user wants to transform this equation and
how ( for example to bring back a singular point to zero see procedures changehom,
changevar, changefonc - ).

This procedure DISPLAYS the solutions and RETURNS a list of general term {
lcoeff, {....,{ general_solution },....}}. The number of elements in this list is linked
to the number of transformations requested :

* lcoeff : list of coefficients of the differential equation
* general_solution : solution written in the general form

20.16.4 DIRECT USE

procedure delire(x, k, grille, lcoeff, param);
This procedure computes formal solutions of a linear homogeneous differential
equation with polynomial coefficients over Q and of any order, in the neighbor-
hood of zero, regular or irregular singular point. In fact it initializes the call of
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the NEWTON procedure that is a recursive procedure (algorithm of NEWTON-
RAMIS-MALGRANGE)

x : variable
k : "number of desired terms".

For each formal series in xt appearing in polysol,
a0+a1xt+a2xt

2+ ...+anxt
n+ . . ., we compute the k+1 first

coefficients a0, a1, . . . , ak.
grille : the coefficients of the differential operator are polynomial in

xgrille (in general grille = 1)
lcoeff : list of coefficients of the differential operator (in increasing order

of differentiation)
param : list of parameters

This procedure RETURNS the list of general solutions.

20.16.5 USEFUL FUNCTIONS

Reading of equation coefficients

procedure lectabcoef( );
This procedure is called by DESIR to read the coefficients of an equation, in in-
creasing order of differentiation, but can be used independently.

reading of n : order of the equation.
reading of parameters (only if a variable other than x appears in the coefficients)
this procedure returns the list { lcoeff, param } made up of the list of coefficients
and the list of parameters (which can be empty).

Verification of results

procedure solvalide(solutions, solk, k);
This procedure enables the validity of the solution number solk in the list "solu-
tions" to be verified.
solutions = {lcoeff ,{....,{general_solution},....}} is any element of the list re-
turned by DESIR or is {lcoeff, sol} where sol is the list returned by DELIRE.

If we carry over the solution eqxxr∗rampolysolx in the equation, the result has the
form eqxxr∗ramreste, where reste is a polynomial in log(xt), with polynomial
coefficients in xt. This procedure computes the minimal valuation V of reste as
polynomial in xt, using k "number of desired terms" asked for at the call of DESIR
or DELIRE, and DISPLAYS the "theoretical" size order of the regular part of the
result : xram∗(r+v).
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On the other hand, this procedure carries over the solution in the equation and
DISPLAYS the significative term of the result. This is of the form :

eqxxapolynomial(log(xt)), with a >= ram ∗ (r + v).

Finally this procedure RETURNS the complete result of the carry over of the solu-
tion in the equation.

This procedure cannot be used if the solution number solk is linked to a condition.

Writing of different forms of results

procedure standsol(solutions);

This procedure enables the simplified form of each solution to be obtained from
the list "solutions", {lcoeff ,{...,{general_solution},....}} which is one of the el-
ements of the list returned by DESIR, or {lcoeff, sol} where sol is the list returned
by DELIRE.

This procedure RETURNS a list of 3 elements : { lcoeff, solstand, solcond }
lcoef = list of differential equation coefficients
solstand = list of solutions written in standard form
solcond = list of conditional solutions that have not been written in

standard form. This solutions remain in general form.

This procedure has no meaning for "conditional" solutions. In case, a value has
to be given to the parameters, that can be done either by calling the procedure
SORPARAM that displays and returns these solutions in the standard form, either
by calling the procedure SOLPARAM which returns these solutions in general
form.

procedure sorsol(sol);

This procedure is called by DESIR to write the solution sol, given in general form,
in standard form with enumeration of different conditions (if there are any).
It can be used independently.

Writing of solutions after the choice of parameters

procedure sorparam(solutions, param);

This is an interactive procedure which displays the solutions evaluated : the value
of parameters is requested.
solutions : {lcoeff ,{....,{general_solution},....}}
param : list of parameters.

It returns the list formed of 2 elements :
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• list of evaluated coefficients of the equation

• list of standard solutions evaluated for the value of parameters.

procedure solparam(solutions, param, valparam);
This procedure evaluates the general solutions for the value of parameters given by
valparam and returns these solutions in general form.
solutions : {lcoeff ,{....,{general_solution},....}}
param : list of parameters
valparam : list of parameters values

It returns the list formed of 2 elements :

• list of evaluated coefficients of the equation

• list of solutions in general form, evaluated for the value of parameters.

Transformations

procedure changehom(lcoeff, x, secmember, id);
Differentiation of an equation with right-hand side.
lcoeff : list of coefficients of the equation
x : variable
secmember : right-hand side
id : order of the differentiation.

It returns the list of coefficients of the differentiated equation. It enables an equat-
ion with polynomial right-hand side to be transformed into a homogeneous equat-
ion by differentiating id times, id = degre(secmember) + 1.
procedure changevar(lcoeff, x, v, fct);
Changing of variable in the homogeneous equation defined by the list,lcoeff of its
coefficients : the old variable x and the new variable v are linked by the relation
x = fct(v).

It returns the list of coefficients in respect to the variable v of the new equation.

examples of use :

- translation enabling a rational singularity to be brought back to zero.

- x = 1/v brings the infinity to 0.

procedure changefonc(lcoeff, x, q, fct);
Changing of unknown function in the homogeneous equation defined by the list
lcoeff of its coefficients :
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lcoeff : list of coefficients of the initial equation
x : variable
q : new unknown function
fct : y being the unknown function y = fct(q)

It returns the list of coefficients of the new equation.

Example of use :

this procedure enables the computation,in the neighbourhood of an irregular sin-
gularity, of the "reduced" equation associated to one of the slopes (the Newton
polygon having a null slope of no null length). This equation gives much informa-
tions on the associated divergent series.

Optional writing of intermediary results

switch trdesir : when it is ON, at each step of the Newton algorithm, a description
of the Newton polygon is displayed (it is possible to follow the break of slopes), and
at each call of the FROBENIUS procedure ( case of a null slope ) the corresponding
indicial equation is displayed.

By default, this switch is OFF.

20.16.6 LIMITATIONS

1. This DESIR version is limited to differential equations leading to indicial
equations of degree <= 3. To pass beyond this limit, a further version writ-
ten in the D5 environment of the computation with algebraic numbers has to
be used.

2. The computation of a basis of solutions for an equation depending on pa-
rameters is assured only when the indicial equations are of degree <= 2.
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20.17 DFPART: Derivatives of Generic Functions

This package supports computations with total and partial derivatives of formal
function objects. Such computations can be useful in the context of differential
equations or power series expansions.

Author: Herbert Melenk

The package DFPART supports computations with total and partial derivatives of
formal function objects. Such computations can be useful in the context of differ-
ential equations or power series expansions.

20.17.1 Generic Functions

A generic function is a symbol which represents a mathematical function. The
minimal information about a generic function function is the number of its argu-
ments. In order to facilitate the programming and for a better readable output this
package assumes that the arguments of a generic function have default names such
as f(x, y),q(rho, phi). A generic function is declared by prototype form in a state-
ment

generic_function 〈fname〉(〈arg1〉, 〈arg2〉, . . . , 〈argn〉);

where fname is the (new) name of a function and argi are symbols for its for-
mal arguments. In the following fname is referred to as “generic function",
arg1, arg2, . . . , argn as “generic arguments" and fname(arg1, arg2, . . . , argn)
as “generic form". Examples:

generic_function f(x,y);
generic_function g(z);

After this declaration REDUCE knows that

• there are formal partial derivatives ∂f
∂x , ∂f

∂y
∂g
∂z and higher ones, while partial

derivatives of f and g with respect to other variables are assumed as zero,

• expressions of the type f(), g() are abbreviations for f(x, y), g(z),

• expressions of the type f(u, v) are abbreviations for
sub(x = u, y = v, f(x, y))

• a total derivative
df(u, v)

dw
has to be computed as

∂f

∂x

du

dw
+
∂f

∂y

dv

dw
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20.17.2 Partial Derivatives

The operator dfp represents a partial derivative:

dfp(〈expr〉, 〈dfarg1〉, 〈dfarg2〉, . . . , 〈dfargn〉);

where 〈expr〉 is a function expression and 〈dfargi〉 are the differentiation variables.
Examples:

dfp(f(),{x,y});

means
∂2f

∂x∂y
and

dfp(f(u,v),{x,y});

stands for
∂2f

∂x∂y
(u, v). For compatibility with the DF operator the differentiation

variables need not be entered in list form; instead the syntax of DF can be used,
where the function expression is followed by the differentiation variables, eventu-
ally with repetition numbers. Such forms are interenally converted to the above
form with a list as second parameter.

The expression expr can be a generic function with or without arguments, or an
arithmetic expression built from generic functions and other algebraic parts. In the
second case the standard differentiation rules are applied in order to reduce each
derivative expressions to a minimal form.

When the switch nat is on partial derivatives of generic functions are printed

in standard index notation, that is fxy for
∂2f

∂x∂y
and fxy(u, v) for

∂2f

∂x∂y
(u, v).

Therefore single characters should be used for the arguments whenever possible.
Examples:

generic_function f(x,y);
generic_function g(y);
dfp(f(),x,2);

f
xx

dfp(f()*g(),x,2);

f *g()
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xx

dfp(f()*g(),x,y);

f *g() + f *g
xy x y

The difference between partial and total derivatives is illustrated by the following
example:

generic_function h(x);
dfp(f(x,h(x))*g(h(x)),x);

f (x,h(x))*g(h(x))
x

df(f(x,h(x))*g(h(x)),x);

f (x,h(x))*g(h(x)) + f (x,h(x))*h (x)*g(h(x))
x y x

+ g (h(x))*h (x)*f(x,h(x))
y x

Cooperation of partial derivatives and Taylor series under a differential side relation
dq
dx = f(x, q):

load_package taylor;
operator q;
let df(q(~x),x) => f(x,q(x));
taylor(q(x0+h),h,0,3);

q(x0) + f(x0,q(x0))*h

f (x0,q(x0)) + f (x0,q(x0))*f(x0,q(x0))
x y 2

+ -----------------------------------------*h +
2

(f (x0,q(x0)) + f (x0,q(x0))*f(x0,q(x0))
xx xy
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+ f (x0,q(x0))*f (x0,q(x0))
x y

+ f (x0,q(x0))*f(x0,q(x0))
yx

2
+ f (x0,q(x0))*f(x0,q(x0))

yy

2 3 4
+ f (x0,q(x0)) *f(x0,q(x0)))/6*h + O(h )

y

Normally partial differentials are assumed as non-commutative

dfp(f(),x,y)-dfp(f(),y,x);

f - f
xy yx

However, a generic function can be declared to have globally interchangeable par-
tial derivatives using the declaration dfp_commute which takes the name of a
generic function or a generic function form as argument. For such a function dif-
ferentiation variables are rearranged corresponding to the sequence of the generic
variables.

generic_function q(x,y);
dfp_commute q(x,y);
dfp(q(),{x,y,y}) + dfp(q(),{y,x,y}) + dfp(q(),{y,y,x});

3*q
xyy

If only a part of the derivatives commute, this has to be declared using the standard
REDUCE rule mechanism. Please note that then the derivative variables must be
written as list.
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20.17.3 Substitutions

When a generic form or a dfp expression takes part in a substitution the following
steps are performed:

1. The substitutions are performed for the arguments. If the argument list is
empty the substitution is applied to the generic arguments of the function; if
these change, the resulting forms are used as new actual arguments. If the
generic function itself is not affected by the substitution, the process stops
here.

2. If the function name or the generic function form occurs as a left hand side
in the substitution list, it is replaced by the corresponding right hand side.

3. The new form is partially differentiated according to the list of partial deriva-
tive variables.

4. The (eventually modified) actual parameters are substituted into the form for
their corresponding generic variables. This substitution is done by name.

Examples:

generic_function f(x,y);
sub(y=10,f());

f(x,10)

sub(y=10,dfp(f(),x,2));

f (x,10)
xx

sub(y=10,dfp(f(y,y),x,2));

f (10,10)
xx

sub(f=x**3*y**3,dfp(f(),x,2));

3
6*x*y

generic_function ff(y,z);
sub(f=ff,f(a,b));
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ff(b,z)

The dataset dfpart.tst contains more examples, including a complete applica-
tion for computing the coefficient equations for Runge-Kutta ODE solvers.
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20.18 DUMMY: Canonical Form of Expressions
with Dummy Variables

This package allows a user to find the canonical form of expressions involving
dummy variables. In that way, the simplification of polynomial expressions can be
fully done. The indeterminates are general operator objects endowed with as few
properties as possible. In that way the package may be used in a large spectrum of
applications.

Author: Alain Dresse

20.18.1 Introduction

The possibility to handle dummy variables and to manipulate dummy summations
are important features in many applications. In particular, in theoretical physics,
the possibility to represent complicated expressions concisely and to realize sim-
plifications efficiently depend on both capabilities. However, when dummy vari-
ables are used, there are many more ways to express a given mathematical objects
since the names of dummy variables may be chosen almost arbitrarily. Therefore,
from the point of view of computer algebra the simplification problem is much
more difficult. Given a definite ordering, one is, at least, to find a representation
which is independent of the names chosen for the dummy variables otherwise,
simplifications are impossible. The package does handle any number of dummy
variables and summations present in expressions which are arbitrary multivariate
polynomials and which have operator objects eventually dependent on one (or sev-
eral) dummy variable(s) as some of their indeterminates. These operators have the
same generality as the one existing in REDUCE. They can be noncommutative,
anticommutative or commutative. They can have any kind of symmetry property.
Such polynomials will be called in the following dummy polynomials. Any mono-
mial of this kind will be called dummy monomial. For any such object, the package
allows to find a well defined normal form in one-to-one correspondance with it.

In section 2, the convention for writing dummy summations is explained and the
available declarations to introduce or suppress dummy variables are given.

In section 3, the commands allowing to give various algebraic properties to the
operators are described.

In section 4, the use of the function canonical is explained and illustrated.

For references, see [BL85, BC82, But82, Leo80, Leo84, Leo91, Lin91, McK78,
RT89, Sim71b, Sim71a, BC94, Cap97].

The use of DUMMY requires that the package ASSIST version 2.2 be available. It
is loaded automatically when DUMMY is loaded.
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20.18.2 Dummy variables and dummy summations

A dummy variable (let us name it dv) is an identifier which runs from the integer
i1 to another integer i2. To the extent that no definite space is defined, i1 and i2 are
assumed to be some integers which are the same for all dummy variables.

If f is any REDUCE operator, then the simplest dummy summation associated to
dv is the sum

i2∑
dv=i1

f(dv)

and is simply written as
f(dv).

No other rules govern the implicit summations. dv can appear as many times we
want since the operator f may depend on an arbitrary number of variables. So, the
package is potentially applicable to many contexts. For instance, it is possible to
add rules of the kind one encounters in tensor calculus.

Obviously, there are as many ways we want to express the same quantity. If the
name of another dummy variable is dum then the previous expression is written as

i2∑
dum=i1

f(dum)

and the computer algebra system should be able to find that the expression

f(dv)− f(dum);

is equal to 0. A very special case which is allowed is when f is the identity oper-
ator. So, a generic dummy polynomial will be a sum of dummy monomials of the
kind ∏

i

ci ∗ fi(dv1, . . . , dvki , fr1, . . . , frli)

where dv1, . . . , are dummy variables while fr1, . . . , are ordinary or free variables.

To declare dummy variables, two commands are available:

• i.

dummy_base 〈idp〉;

where 〈idp〉 is the name of any unassigned identifier.

• ii.

dummy_names 〈d〉,〈dp〉,〈dpp〉, . . . ;
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The first one declares idp_1,. . . ,idp_n as dummy variables i.e. all variables
of the form idp_xxx where xxx is a number will be dummy variables, such as
idp_1, idp_2,. . . , idp_23. The second one gives special names for dummy
variables. All other identifiers which may appear are assumed to be free. How-
ever, there is a restriction: named and base dummy variables cannot be declared
simultaneously. The above declarations are mutually exclusive. Here is an example
showing that:

dummy_base dv; ==> dv

% dummy indices are dv1, dv2, dv3, ...

dummy_names i,j,k; ==>

***** The created dummy base dv must be cleared

When this is done, an expression like

op(dv1)*sin(dv2)*abs(i)*op(dv2)$

means a sum over dv1, dv2. To clear the dummy base, and to create the dummy
names i, j, k one is to do

clear_dummy_base; ==> t

dummy_names i,j,k; ==> t

% dummy indices are i,j,k.

When this is done, an expression like

op(dv1)*sin(dv2)*abs(x)*op(i)^3*op(dv2)$

means a sum over i. Similarly, the command clear_dummy_names clears
earlier defined named dummy variables.

One should keep in mind that every application of the above commands erases
the previous ones. It is also possible to display the declared dummy names using
show_dummy_names:

show_dummy_names(); ==> {i,j,k}

To suppress all dummy variables one can enter
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clear_dummy_names; clear_dummy_base;

20.18.3 The Operators and their Properties

All dummy variables should appear at first level as arguments of operators. For
instance, if i and j are dummy variables, the expression

rr:= op(i,j)-op(j,j)

is allowed but the expression

op(i,op(j)) - op(j,op(j))

is not allowed. This is because dummy variables are not detected if they appear
at a level larger than 1. Apart from that there is no restrictions. Operators may
be commutative, noncommutative or even anticommutative. Therefore they may
be elements of an algebra, they may be tensors, spinors, grassman variables, etc.
. . . By default they are assumed to be commutative and without symmetry prop-
erties. The REDUCE command noncomdeclaration is taken into account and, in
addition, the command

anticom at1, at2;

makes the operators at1 and at2 anticommutative.

One can also give symmetry properties to them. The usual declarations symmetric
and antisymmetric are taken into account. Moreover and most important they
can be endowed with a partial symmetry through the command symtree. Here
are three illustrative examples for the r operator:

symtree (r,{!+, 1, 2, 3, 4});
symtree (r,{!*, 1, {!-, 2, 3, 4}});
symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});

The first one makes the operator (fully) symmetric. The second one declares it
antisymmetric with respect to the three last indices. The symbols !*, !+ and !- at
the beginning of each list mean that the operator has no symmetry, is symmetric or
is antisymmetric with respect to the indices inside the list. Notice that the indices
are not denoted by their names but merely by their natural order of appearance. 1
means the first written argument of r, 2 its second argument etc. The first command
is equivalent to the declaration symmetric except that the number of indices of
r is restricted to 4 i.e. to the number declared in symtree. In the second example
r is stated to have no symmetry with respect to the first index and is declared to
be antisymmetric with respect to the three last indices. In the third example, r is
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made symmetric with respect to the interchange of the pairs of indices 1,2 and 3,4
respectively and is made antisymmetric separately within the pairs (1, 2) and (3, 4).
It is the symmetry of the Riemann tensor. The anticommutation property and the
various symmetry properties may be suppressed by the commands remanticom
and remsym. To eliminate partial symmetry properties one can also use symtree
itself. For example, assuming that r has the Riemann symmetry, to eliminate it do

symtree (r,{!*, 1, 2, 3, 4});

However, notice that the number of indices remains fixed and equal to 4 while with
remsym it becomes again arbitrary.

20.18.4 The canonical Operator

canonical is the most important functionality of the package. It can be applied
on any polynomial whether it is a dummy polynommial or not. It returns a normal
form uniquely determined from the current ordering of the system. If the poly-
nomial does not contain any dummy index, it is rewriten taking into account the
various operator properties or symmetries described above. For instance,

symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});

aa:=r(x3,x4,x2,x1)$

canonical aa; ==> - r(x1,x2,x3,x4).

If it contains dummy indices, canonical takes also into account the various
dummy summations, makes the relevant simplifications, eventually rename the
dummy indices and returns the resulting normal form. Here is a simple example:

operator at1,at2;
anticom at1,at2;

dummy_names i,j,k; ==> t

show_dummy_names(); ==> {i,j,k}

rr:=at1(i)*at2(k) -at2(k)*at1(i)$

canonical rr; => 2*at1(i)*at2(j)

It is important to notice, in the above example, that in addition to the summa-
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tions over indices i and k, and of the anticommutativity property of the operators,
canonical has replaced the index k by the index j. This substitution is essen-
tial to get full simplification. Several other examples are given in the test file and,
there, the output of canonical is explained.

As stated in the previous section, the dependence of operators on dummy indices
is limited to first level. An erroneous result will be generated if it is not the case as
the subsequent example illustrates:

operator op;

dummy_names i,j;

rr:=op(i,op(j))-op(j,op(j))$

canonical rr; ==> 0

Zero is obtained because, in the second term, canonical has replaced j by i
but has left op(j) unchanged because it does not recognize the index j which is
inside. This fact has also the consequence that it is unable to simplify correctly
(or at all) expressions which contain some derivatives. For instance (i and j are
dummy indices):

aa:=df(op(x,i),x) -df(op(x,j),x)$

canonical aa; ==> df(op(x,i),x) - df(op(x,j),x)

instead of zero. A second limitation is that canonical does not add anything
to the problem of simplifications when side relations (like Bianchi identities) are
present.
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20.19 EDS: A Package for Exterior Differential Systems

EDS is a REDUCE package for symbolic analysis of partial differential equations
using the geometrical approach of exterior differential systems. The package im-
plements much of exterior differential systems theory, including prolongation and
involution analysis, and has been optimised for large, non-linear problems.

Author: David Hartley

EDS is a REDUCE package for symbolic analysis of partial differential equations
using the geometrical approach of exterior differential systems. The package im-
plements much of exterior differential systems theory, including prolongation and
involution analysis, and has been optimised for large, non-linear problems.

20.19.1 Introduction

Exterior differential systems give a geometrical framework for partial differential
equations and more general differential geometric problems. The geometrical for-
mulation has several advantages stemming from its coordinate-independence, in-
cluding superior treatment of nonlinear and global problems. There is not sufficient
space in this manual for an introduction to exterior differential systems beyond the
scant details given in section 20.19.2, but there are a number of up-to-date texts on
the subject (eg [BCG+91, Spi79]).

EDS provides a number of tools for setting up and manipulating exterior differential
systems and implements many features of the theory. Its main strengths are the
ability to use anholonomic or moving frames and the care taken with nonlinear
problems.

There has long been interest in implementing the theory of exterior differential
systems in a computer algebra system (eg [ASY74, GMM+81, HT91]). The EDS

package owes much to these earlier efforts, and also to related packages for PDE
analysis (eg [MF93, Rei91, Sei95]), as well as to earlier versions of EDS produced
at Lancaster university with R. W. Tucker and P. A. Tuckey. Finally, EDS uses
the exterior calculus package EXCALC of E. Schrüfer 20.21 and the exterior ideals
package XIDEAL 20.70. XIDEAL and EXCALC are loaded automatically with EDS.

This work has been supported by the Graduate College on Scientific Comput-
ing, University of Cologne and GMD St Augustin, funded by the DFG (Deutsche
Forschungsgemeinschaft). I would like to express my thanks to R. W. Tucker,
E. Schrüfer, P. A. Tuckey, F. W. Hehl and R. B. Gardner for helpful and encourag-
ing discussions.
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20.19.2 EDS data structures and concepts

This section presents the various structures used for expressing exterior systems
quantities in EDS. In addition, some the concepts used in EDS to aid computation
are described.

Coframings

Within the context of EDS, a coframing means a real finite-dimensional differen-
tiable manifold with a given global cobasis. The information about a coframing
required by EDS is kept in a 〈coframing〉 object. The cobasis is the identifying ele-
ment of an EDS 〈coframing〉: distinct cobases for the same differentiable manifold
are treated as distinct 〈coframing〉 objects in EDS. The cobasis may be either holo-
nomic or anholonomic, allowing some manifolds with non-trivial topology (eg.
group manifolds) to be treated.

In addition to the cobasis, an EDS 〈coframing〉 can be given coordinates, structure
equations and restrictions. The coordinates may be an incomplete or overcomplete
set. The structure equations express the exterior derivative of the coordinates and
cobasis elements as needed. All coordinate differentials must be expressed in terms
of the given cobasis, but not all cobasis differentials need be known. The restric-
tions are a set of inequalities (at present using just ̸=) describing point sets not in
the manifold.

The 〈coframing〉 object is, of course, by no means a full description of a differen-
tiable manifold. For example, there is no topology and there are no charts. How-
ever, the 〈coframing〉 object carries sufficient information about the underlying
manifold to allow a range of exterior systems calculations to be carried out. As
such, it is convenient to accept an abuse of language and think of the 〈coframing〉
object as a manifold.

A 〈coframing〉 is constructed or selected using the coframing operator.

Examples:

• R3 with cobasis {dx, dy, dz} and coordinates {x, y, z}.

• R2\{0}with cobasis {e1, e2}, a single coordinate {r}, “structure equations”
{dr = e1, de1 = 0,de2 = e1 ∧ e2/r} and restrictions {r ̸= 0}.

• R2\{0} with cobasis {dx,dy}, coordinates {x, y} and restrictions {x2 +
y2 ̸= 0}.

• S1 with cobasis {ω} and structure equations {dω = 0}.
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• S2 cannot be encapsulated by an EDS 〈coframing〉 since there is no global
cobasis.

20.19.3 Exterior differential systems

A simple 〈EDS〉, or exterior differential system, is a triple (S,Ω,M), whereM is a
〈coframing〉 (section 20.19.2), S is a 〈system〉 (section 20.19.3) on M , and Ω is an
independence condition: either a decomposable 〈p-form〉 or a 〈system〉 of 1-forms
onM (exterior differential systems without independence condition are not treated
by EDS).

More generally, an 〈EDS〉 is a list of simple 〈EDS〉 objects where the various
coframings are all disjoint. This last requirement in not enforced within EDS unless
the edsdisjoint switch is on (section 20.19.12). These more general 〈EDS〉
objects are represented as a list of simple 〈EDS〉 objects. All operators which take
an 〈EDS〉 argument accept both simple and compound types.

The trivial 〈EDS〉, describing an inconsistent problem with no solutions, is defined
to be ({1},{},{}).

An 〈EDS〉 is represented by the eds operator (section 20.19.4), and can addition-
ally be generated using the contact and pde2eds operators (sections 20.19.4,
20.19.4).

The solutions of (S,Ω,M) are integral manifolds, or immersions (cf section
20.19.3) on which S vanishes and the rank of Ω is preserved. Solutions at a single
point are described by integral elements (section 20.19.3).

Systems

In EDS, the label 〈system〉 refers to a list

{〈p-form expr〉,· · ·}

of differential forms. This is distinct from an 〈EDS〉 (section 20.19.3), which has
additional structure. However, many EDS operators will accept either an 〈EDS〉 or
a 〈system〉 as arguments. In the latter case, any extra information which is required
is taken from the background coframing (section 20.19.3).

The 〈system〉 of an 〈EDS〉 can be obtained with the system operator (section
20.19.5).
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Background coframing

The information encapsulated in a coframing operator is usually inactive. How-
ever, when operations are performed on a 〈coframing〉 or an 〈EDS〉 object (sections
20.19.2, 20.19.3), this information is activated for the duration of those opera-
tions. It is possible to activate the rules and orderings of a coframing operator
globally, by making it the background coframing. All subsequent EXCALC opera-
tions will be governed by those rules. Operations on 〈EDS〉 objects are unaffected,
since their coframings are still activated locally. The background coframing can
be set and changed with the set_coframing command, and inspected using
coframing.

Integral elements

An integral element of an exterior system (S,Ω,M) is a subspace P ⊂ TpM of the
tangent space at some point p ∈M such that all forms in S vanish when evaluated
on vectors from P . In addition, no non-zero vector in P may annul every form in
Ω.

Alternatively, an integral element P ⊂ TpM can be represented by its annihila-
tor P⊥ ⊂ T ∗

pM , comprising those 1-forms at p which annul every vector in P .
This can also be understood as a maximal set of 1-forms at p such that S ≃ 0
(mod P⊥) and the rank of Ω is preserved modulo P⊥. This is the representation
used by EDS. Further, the reference to the point p is omitted, so an 〈integral ele-
ment〉 in EDS is a distribution of 1-forms on M , specified as a 〈system〉 of 1-forms.

In specifying an integral element for a particular 〈EDS〉, it is possible to omit the
Pfaffian component of the 〈EDS〉, since these 1-forms must be part of any integral
element.

Examples:

• With M = R3 = {(x, y, z)}, S = {dx ∧ dz} and Ω = {dx,dy}, the
integral element P = {∂x + ∂z, ∂y} is equally determined by its annihilator
P⊥ = {dz − dx}.

• For S = {dz − ydx} and Ω = {dx}, the integral element P = {∂x + y∂z}
can be specified simply as {dy}.



651

Properties

For large problems, it can require a great deal of computation to establish whether,
for example, a system is closed or not. In order to save recomputing such proper-
ties, an 〈EDS〉 object carries a list of 〈properties〉 of the form

{〈keyword〉 = 〈value〉,· · ·}

where 〈keyword〉 is one of the following: closed, quasilinear, pfaffian
or involutive, and 〈value〉 is either 0 (false) or 1 (true). These properties are
suppressed when an 〈EDS〉 is printed, unless the nat switch is off. They can be
examined using the properties operator (section 20.19.5).

Properties are usually generated automatically by EDS as required, but may be
explicitly checked using the operators in section 20.19.8. If a property is not yet
present on the list, it is not yet known, and must be checked explicitly if required.

In addition to the properties just described, an 〈EDS〉 object carries a number of
hidden properties which record the results of previous calculations, such as the clo-
sure or information about the prolongation of the system. These hidden properties
speed up many operations which contain common sub-calculations. The hidden
properties are stored using internal LISP data structures and so are not available
for inspection.

Properties can be asserted when an 〈EDS〉 is constructed with the eds operator
(section 20.19.4). Care is needed since such assertions are never checked. Proper-
ties can be erased using the cleanup operator (section 20.19.14).

Maps

Within EDS, a map f :M → N is given as a 〈map〉 object, a list

{〈coordinate〉 = 〈expr〉,· · · ,〈expr〉 neq 〈expr〉,· · ·}

of substitutions and restrictions. The substitutions express coordinates on the target
manifold N in terms of those on the source manifold M . The restrictions describe
point sets not contained in the source manifold M . The ordering of substitutions
and restrictions in the list is unimportant. It is not necessary that the restrictions
and right-hand sides of the substitutions be written entirely in M coordinates, but
it must be possible by repeated substitution to produce expressions on M (see the
examples below). Any denominators in the substitutions are automatically added to
the list of restrictions. It is not necessary to include trivial equations for coordinates
which are present on both M and N . Note that projections cannot be represented
in this fashion (but see the cross operator, section 20.19.6).
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Maps are applied using the pullback and restrict operators (sections
20.19.6, 20.19.6).

Examples:

• The map R2\{0} → R3, (x, y) 7→ (x, y, z = x2 + y2) is represented
{z = x2 + y2, z ̸= 0}.

• {x = u + v, y = u − v} might represent the coordinate change R3 → R3,
(u, v, z) 7→ (x = u+ v, y = u− v, z).

• {x = u+ v, y = 2u− x} is the same map again.

• {x = 2v+y, y = 2u−x} is unacceptable since x and y cannot be eliminated
from the right-hand sides by repeated substitution.

Cobasis transformations

A cobasis transformation is given in EDS by a 〈transform〉, a list

{〈cobasis element〉 = 〈1-form expr〉,· · ·}

of substitutions. When applying a transformation to a 〈p-form〉 or 〈system〉, it is
necessary to specify the forward transformation just as for a sub substitution. For
〈EDS〉 and 〈coframing〉 objects, it is also possible to specify the inverse of the de-
sired substition: EDS will automatically invert the transformation as required. For
a partial change of cobasis, it is not necessary to include trivial equalities. Cobasis
transformations are applied by the transform operator (section 20.19.6).

Examples:

• {ω1 = xdy−ydx, ω2 = xdx+ydy} gives a transformation between Carte-
sian and polar cobases on R2\{0}.

• On J1(R2,R) with cobasis {du,dp, dq, dr,ds, dt, dx,dy}, the list {θ1 =
du− pdx− qdy, θ2 = dp− rdx− sdy, θ3 = dq − sdx− tdy} specifies a
new cobasis in which the contact system is simply {θ1, θ2, θ3}.

Tableaux

For a quasilinear Pfaffian exterior differential system ({θa}, {ωi},M), the tableau
A = [πai ] is a matrix of 1-forms such that

dθa + πai ∧ ωi ≃ 0 (mod {θa, ωi ∧ ωj})
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The πai are not unique: if {θa, πρ, ωi} is a standard cobasis for the system (section
20.19.3), the EDS 〈tableau〉 is a matrix containing linear combinations of the πρ

only. Zero rows are omitted.

The tableau of an 〈EDS〉 is generated by the tableau operator (section 20.19.7),
or can be entered using the mat operator. The Cartan characters of a tableau are
found using characters (section 20.19.7).

Normal form

Parts of the theory of exterior differential systems apply only at points on the un-
derlying manifold where the system is in some sense non-singular. To ensure the
theory applies, EDS automatically works all exterior systems (S,Ω,M) into a nor-
mal form in which

1. The Pfaffian (degree 1) component of S is in solved form, where each expres-
sion has a distinguished term with coefficient 1, unique to that expression.

2. The independence condition Ω is also in solved form.

3. The distinguished terms from the 1-forms in S have been eliminated from
the rest of S and from Ω.

4. Any 1-forms in S which vanish modulo the independence condition are re-
moved from the system and their coefficients are appended as 0-forms.

Conditions 1 and 2 ensure the 1-forms have constant rank, while 3 is convenient for
many tests and calculations. In bringing the system into solved form, divisions will
be made only by coefficients which are constants, parameters or functions which
are nowhere zero on the manifold. The test for nowhere-zero functions uses the
restrictions component of the 〈coframing〉 structure (cf section 20.19.2) and is still
primitive: facts such as x2 +1 ̸= 0 on a real manifold are overlooked. See also the
switch edssloppy (section 20.19.11).

This “normal form” has, of course, nothing to do with the various normal forms
(eg Goursat) into which some exterior systems may be brought by cobasis trans-
formations and choices of generators.

Examples:

• On M = {(u, v, w) ∈ R3 | u ̸= v}, the Pfaffian system

{udu+ vdv + dw, (u2 + u− v2)du+ udv + dw}

has the solved form

{dv + (u+ v)du, dw + (−uv + u− v)du}.
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• Since the independence condition is defined only modulo the system, the
system

S = {du− dx− uydy}, Ω = dx ∧ dy

has an equivalent normal form

S = {dx− du+ uydy}, Ω = du ∧ dy.

Standard cobasis

Given an 〈EDS〉 (S,Ω,M) in normal form (section 20.19.3), the cobasis of the
〈coframing〉 M can be decomposed into three sets: {θa}, the distinguished terms
from the 1-forms in S, {ωi}, the distinguished terms from the 1-forms in Ω, and
the remainder {πρ}. Within EDS, {θa, πρ, ωi} is called the standard cobasis, and
all expressions are ordered so that θa > πρ > ωi. The ordering within the three
sets is determined by the REDUCE 〈kernel〉 ordering.

Examples:

• For the system S = {du − dx − uydy}, Ω = dx ∧ dy, the decomposed
standard cobasis is {du} ∪ {duy} ∪ {dx, dy}.

• For the contact system

S =


du− uxdx− uydy
dux − uxxdx− uxydy
duy − uxydx− uyydy

the standard cobasis is {du,dux, duy} ∪ {duxx, duxy, duyy} ∪ {dx, dy}.

20.19.4 Constructing EDS objects

Before analysing an exterior system, it is necessary to enter it into EDS somehow.
Several means are provided for this purpose, and are described in this section.

coframing

An EDS 〈coframing〉 is constructed using the coframing operator. There are
several ways in which it can be used.
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The simplest syntax

coframing({〈expr〉,· · ·})

examines the argument for 0-form and 1-form variables and deduces a full 〈cofram-
ing〉 object capable of supporting the given expressions. This includes recursively
examining the exterior derivatives of the variables appearing explicitly in the argu-
ment, taking into account prevailing let rules. In this form, the ordering of the
final cobasis elements follows the prevailing REDUCE ordering. Free indices in in-
dexed expressions are expanded to a list of explicit indices using index_expand
(section 20.19.14).

A more basic syntax is

coframing(〈cobasis〉 [,〈coordinates〉] [,〈restrictions〉]
[,〈structure equations〉] )

where 〈cobasis〉 is a list of 〈kernel〉 1-forms, 〈coordinates〉 is a list of 〈kernel〉 0-
forms, 〈restrictions〉 is a list of inequalities (using only ̸= at present), and 〈structure
equations〉 is a list of rules giving the exterior derivatives of the coordinates and
cobasis elements. All arguments except the cobasis are optional, and the order of
arguments is unimportant. As in the first syntax, missing parts are deduced. The
ordering of the final cobasis elements follows the ordering specified, rather than
the prevailing REDUCE ordering.

Finally,

coframing(〈EDS〉)

returns the coframing argument of an 〈EDS〉, and

coframing()

returns the current background coframing (section 20.19.3).

Examples:

coframing {x,y,z};

coframing({d x,d y,d z},{x,y,z},{},{})

coframing({e 1,e 2},{r},{r neq 0},
{d r=>e 1,d e 1=>0,d e 2=>e 1^e 2/r});
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1 2
coframing({e ,e },{r},

1 2
1 2 e ^e 1

{d e => 0,d e => -------,d r => e },
r

{r neq 0})

coframing({e 2})
where {d r=e 1,d e 1=0,d e 2=e 1^e 2/r};

1 2
coframing({e ,e },{r},

1 2
1 2 e ^e 1

{d e => 0,d e => -------,d r => e },
r

{r neq 0})

eds

A simple 〈EDS〉 is constructed using the eds operator.

eds(〈system〉,〈indep. condition〉 [,〈coframing〉] [,〈properties〉] )

(cf sections 20.19.3, 20.19.2, 20.19.3). The 〈indep. condition〉 can be either a de-
composable 〈p-form〉 or a 〈system〉 of 1-forms. Free indices in indexed expressions
are expanded to a list of explicit indices using index_expand (section 20.19.14).

The 〈coframing〉 argument can be omitted, in which case the expressions from
the 〈system〉 and 〈indep. condition〉 are fed to the coframing operator (section
20.19.4) to construct a suitable working space.

The 〈properties〉 argument is optional, allowing the given properties to be asserted.
This can save considerable time for large systems, but care is needed since the
assertions are never checked.

The 〈EDS〉 is put into normal form (section 20.19.3) before being returned.

On output, only the 〈system〉 and 〈indep. condition〉 are displayed, unless the nat
switch is off, in which case the 〈coframing〉 and 〈properties〉 are shown too. This
is so that an 〈EDS〉 can be written out to a file and read back in.
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The parts of an 〈EDS〉 are obtained with the operators system, cobasis,
independence and properties (sections 20.19.5, 20.19.5, 20.19.5 and
20.19.5).

Examples:

pform {x,y,z,p,q}=0,{e(i),w(i,j)}=1;

indexrange {i,j,k}={1,2},{a,b,c}={3};

eds({d z - p*d x - q*d y, d p^d q},{d x,d y});

EDS({d z - p*d x - q*d y,d p^d q},{d x,d y})

OMrules :=
index_expand {d e(i)=>-w(i,-j)^e(j),

w(i,-j)+w(j,-i)=>0}$

eds({e(a)},{e(i)}) where OMrules;

3 1 2
EDS({e },{e ,e })

coframing ws;
3 2 1 2 1 2 2

coframing({e ,w ,e ,e },{},{d e => - e ^w ,
1 1

2 1 2
d e => e ^w },{})

1

contact

Many PDE problems are formulated as exterior systems using a jet bundle con-
tact system. To facilitate construction of these systems, the contact operator is
provided. The syntax is

contact(〈order〉,〈source manifold〉,〈target manifold〉)

where 〈order〉 is a non-negative integer, and the two remaining arguments are ei-
ther 〈coframing〉 objects or lists of 〈p-form〉 expressions. In the latter case, the
expressions are fed to the coframing operator (section 20.19.4). The contact
system for the bundle Jr(M,N) of r-jets of maps M → N is thus returned by
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contact(r,M,N). Source and target spaces may have anholonomic cobases.
Indexed names for the jet bundle fibre coordinates are constructed using the iden-
tifiers in the source and target cobases.

Examples:

pform {x,y,z,u,v}=0,{e i,w a}=1;
indexrange {i}={1,2},{a}=1;
contact(1,{x,y,z},{u,v});

EDS({d u - u *d x - u *d y - u *d z,
x y z

d v - v *d x - v *d y - v *d z},{d x,d y,d z})
x y z

OMrules := index_expand{d e(1)=>e(1)^e(2),
d e(2)=>0,d w(a)=>0}$

contact(2,{e(i)},{w(a)}) where OMrules;

1 1 1 1 2
EDS({w - w *e - w *e ,

1 2
1 1 1 1 2

d w - w *e - w *e ,
1 1 1 1 2

1 1 1 1 1 2
d w + ( - w + w )*e - w *e },

2 1 2 1 2 2

1 2
{e ,e })

pde2eds

A PDE system can be encoded into an 〈EDS〉 using pde2eds. The syntax is

pde2eds(〈pde〉 [,〈dependent〉,〈independent〉] )

where 〈pde〉 is a list of equations or expressions (implicitly assumed to vanish)
specifying the PDE system using either the standard REDUCE df operator, or the
EXCALC @ operator. If the optional variable lists 〈dependent〉 and 〈independent〉
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are not given, pde2eds infers them from the expressions in 〈pde〉. The order of
each dependent variable is determined automatically.

The result returned by pde2eds is an 〈EDS〉 based on the contact system of the
relevant mixed-order jet bundle. Any of the 〈pde〉 members which is in solved form
is used to pull back this contact system. Any remaining expressions or unresolved
equations are simply appended as 0-forms: before many of the analysis tools (sec-
tion 20.19.7) can be applied, it is necessary to convert this to a system generated in
positive degree using the lift operator (section 20.19.6).

The automatic inference of dependent and independent variables is governed by
the following rules. The independent variables are all those with respect to which
derivatives appear. The dependent variables are those for which explicit deriva-
tives appear, as well as any which have dependencies (as declared by depend
or fdomain) or which are 0-forms. To exclude a variable from the dependent
variable list (for example, because it is regarded as given) or to include extra inde-
pendent variables, use the optional arguments to pde2eds.

One of the awkward points about pde2eds is that implicit dependence is changed
globally. In order for the df and @ operators to be used to express the PDE, the
〈dependent〉 variables must depend (via depend or fdomain) on the 〈indepen-
dent〉 variables. On the other hand, in the 〈EDS〉, these variables are all completely
independent coordinates. The pde2eds operator thus removes the implicit depen-
dence so that the 〈EDS〉 is correct upon return. This means that the 〈pde〉 will no
longer evaluate properly until such time as the dependence is manually restored,
whereupon the 〈EDS〉 will no longer be correct, and so on.

To assist with this difficulty, pde2eds saves a record of the dependencies it has
removed in the shared variable dependencies. The operator mkdepend can
be used to restore the initial state.

See also the operators pde2jet (section 20.19.14) and mkdepend (section
20.19.14).

Example:

depend u,x,y; depend v,x,y;
pde2eds({df(u,y,y)=df(v,x),df(v,y)=y*df(v,x)});

EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x y x

d u - u *d x - v *d y,
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y y x x

d v - v *d x - v *y*d y},d x^d y)
x x

dependencies;

{{u,y,x},{v,y,x}}

set_coframing

The background coframing (section 20.19.3) is set with set_coframing. The
syntax is

set_coframing 〈arg〉

where 〈arg〉 is a 〈coframing〉 or an 〈EDS〉 and the previous background coframing
is returned. All rules, orderings etc pertaining to the previous background cofram-
ing are removed and replaced by those for the new 〈coframing〉. The special form

set_coframing()

clears the background coframing entirely and returns the previous one.

20.19.5 Inspecting EDS objects

Given an 〈EDS〉 or some other EDS structure, it is often desirable to inspect or
extract some part of it. The operators described in this section do just that. Many
of them accept various types of arguments and return the relevant information in
each case.

cobasis

cobasis 〈arg〉

returns the cobasis for 〈arg〉, which may be either a 〈coframing〉 or an 〈EDS〉 (sec-
tions 20.19.2, 20.19.3). The order of the items in the list gives the 〈kernel〉 ordering
which applies when the 〈coframing〉 in 〈arg〉 is active.
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coordinates

coordinates 〈arg〉

returns the coordinates for 〈arg〉, which may be either a 〈coframing〉, an 〈EDS〉, or
a list of 〈expr〉 (sections 20.19.2, 20.19.3). The coordinates in a list of 〈expr〉 are
defined to be those 0-form 〈kernels〉 with no implicit dependencies.

Examples:

coordinates contact(3,{x},{u});

{x,u,u ,u ,u }
x x x x x x

fdomain u=u(x);
coordinates {d u+d y};

{x,y}

structure_equations

structure_equations 〈arg〉

returns the structure equations (cf section 20.19.2) for 〈arg〉, which may be either
a 〈coframing〉, an 〈EDS〉, or a 〈transform〉 (sections 20.19.2, 20.19.3, 20.19.3). In
the case of a 〈transform〉, it is assumed the exterior derivatives of the right-hand
sides are known, and a list giving the exterior derivatives of the left-hand sides is
returned. This requires inverting the transformation. In case this has already been
done, and was time consuming, an alternative syntax

structure_equations(〈transform〉,〈inverse transform〉)

avoids recomputing the inverse.

Example:

structure_equations{e 1=d x/x,e 2=x*d y};

1 2 1 2
{d e => 0,d e => e ^e }
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restrictions

restrictions 〈arg〉

returns the restrictions for 〈arg〉, which may be either a 〈coframing〉 or an 〈EDS〉
(sections 20.19.2, 20.19.3). The result is a list of inequalities.

system

system 〈EDS〉

returns the system component of an 〈EDS〉 (sections 20.19.3, 20.19.3) as a list of
〈p-form〉 expressions. (The REDUCE command system operates as before: the
syntax

system "〈command〉"

executes an operating system command.)

independence

independence 〈EDS〉

returns the independence condition of an 〈EDS〉 (section 20.19.3) as a list of 〈1-
form〉 expressions.

properties

properties 〈EDS〉

returns the currently known properties of an 〈EDS〉 (sections 20.19.3, 20.19.3) as
a list of equations of the form 〈keyword〉 = 〈value〉.

Example:

properties closure contact(1,{x},{u});

{closed=1,pfaffian=1,quasilinear=1}
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one_forms

one_forms 〈arg〉

returns the 1-forms in 〈arg〉, which may be either an 〈EDS〉 or a list of 〈expr〉
(sections 20.19.3, 20.19.3).

Example:

one_forms {5,x*y - u,d u - x*d y,d u^d x- x*d y^d x};

{d u - d y*x}

zero_forms, nought_forms

zero_forms 〈arg〉

returns the 0-forms in 〈arg〉, which may be either an 〈EDS〉 or a list of 〈expr〉
(sections 20.19.3, 20.19.3). The alternative syntax nought_forms does the same
thing.

Example:

zero_forms {5,x*y - u,d u - x*d y,d u^d x- x*d y^d x};

{5, - u + x*y}

20.19.6 Manipulating EDS objects

The abililty to change coordinates or cobasis, or to modify the system or coframing
can make the difference between an intractible problem and a solvable one. The
facilities described in this section form the low-level core of EDS functions.

Most of the operators in this section can be applied to both 〈EDS〉 and 〈coframing〉
objects. Where it makes sense (eg pullback, restrict and transform),
they can be applied to a 〈system〉, or list of differential forms as well.

augment

augment(〈EDS〉,〈system〉)
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appends the extra forms in the second argument to the system part of the first. If the
forms in the 〈system〉 do not live on the coframing of the 〈EDS〉, an error results.
The original 〈EDS〉 is unchanged.

Example:

% Non-Pfaffian system for a Monge-Ampere equation
S := contact(1,{x,y},{z})$
S := augment(S,{d z(-x)^d z(-y)});

s := EDS({d z - z *d x - z *d y,
x y

d z ^d z },{d x,d y})
x y

cross

The infix operator cross gives the direct product of 〈coframing〉 objects. The
syntax is

〈arg1〉 cross 〈arg2〉 [cross · · · ]

The first argument may be either a 〈coframing〉 (section 20.19.2) or an 〈EDS〉 (sec-
tion 20.19.3). The remaining arguments may be either 〈coframing〉 objects or any
valid argument to the coframing operator (section 20.19.4), in which case the
corresponding 〈coframing〉 is automatically inferred. The arguments may not con-
tain any common coordinates or cobasis elements.

If the first argument is an 〈EDS〉, the result is the 〈EDS〉 lifted to the direct product
space. In this way, it is possible to execute a pullback under a projection.

Example:

coordinates(contact(1,{x,y},{u}) cross {v});

{x,y,u,u ,u ,v}
x y
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pullback

Pullbacks with respect to an EDS 〈map〉 (section 20.19.3) have the syntax

pullback(〈arg〉,〈map〉)

where 〈arg〉 can be any one of 〈EDS〉, 〈coframing〉, 〈system〉 or 〈p-form〉 expres-
sion (sections 20.19.3, 20.19.2, 20.19.3). The result is of the same type as 〈arg〉.

For an 〈EDS〉 or 〈coframing〉 with anholonomic cobasis, pullback calculates the
pullbacks of the cobasis elements and chooses a cobasis for the source coframing
itself. For a 〈system〉, any zeroes in the result are dropped from the list.

Examples:

pullback(contact(1,{x,y},{u}),{u(-y) = u*u(-x)});

EDS({d u - u *d x - u *u*d y},{d x,d y})
x x

M := coframing({e 1,e 2},{r},{r neq 0},
{d r=>e 1,d e 1=>0,d e 2=>e 1^e 2/r})$

pullback(M,{r=1/x});
2

2 2 e ^d x
coframing({e ,d x},{x},{d e => --------},{x neq 0})

x

pullback(ws,{x=0});

***** Map image not within target coframing in pullback

pullback({y*d y,d y - d x},{y=x});

{d x*x}

restrict

Restrictions with respect to an EDS 〈map〉 (section 20.19.3) have the syntax

restrict(〈arg〉,〈map〉)

where 〈arg〉 can be any one of 〈EDS〉, 〈coframing〉, 〈system〉 or 〈p-form〉 expres-
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sion (sections 20.19.3, 20.19.2, 20.19.3). The result is of the same type as 〈arg〉.
The action of restrict is similar to that of pullback, except that only scalar
coefficients are affected: 1-form variables are unchanged.

Examples:

% Bring a system into normal form
% by restricting the coframing

S := eds({u*d v - v*d u},{d x});

s := EDS({v*d u - u*d v},{d x})

restrict(S,{u neq 0});

v
EDS({d v - ---*d u},{d x})

u

% Difference between restrict and pullback

pullback({x*d x - y*d y},{x=y,y=1});

{}

restrict({x*d x - y*d y},{x=y,y=1});

{d x - d y}

transform

A change of cobasis is made using the transform operator

transform(〈arg〉,〈transform〉)

where 〈arg〉 can be any one of 〈EDS〉, 〈coframing〉, 〈system〉 or 〈p-form〉 expres-
sion (sections 20.19.3, 20.19.2, 20.19.3) and 〈transform〉 is a list of substitutions
(cf section 20.19.3). The result is of the same type as 〈arg〉.

For an 〈EDS〉 or 〈coframing〉, transform can detect whether the tranformation
is given in the forward or reverse direction and invert accordingly. Structure equat-
ions are updated correctly. If an exact cobasis element is eliminated, its expression
in terms of the new cobasis is added to the list of structure equations, since the
corresponding coordinate may still be present elsewhere in the structure.



667

Example:

S := contact(1,{x},{u});

s := EDS({d u - u *d x},{d x})
x

new := {e(1) = first system S,w(1) = d x};

1 1
new := {e =d u - d x*u ,w =d x}

x

S := transform(S,new);

1 1
s := EDS({e },{w })

structure_equations s;

1 1
{d e => - d u ^w ,

x
1

d w => 0,

1 1
d u => e + u *w ,

x
1

d x => w }

lift

Many of the analysis tools (section 20.19.7) cannot treat systems containing 0-
forms. The lift operator

lift 〈EDS〉

solves the 0-forms in the system and uses the solution to pull back to a smaller
manifold. This may generate new 0-form conditions (in the course of bringing the
pulled-back system into normal form), in which case the process is repeated until
the system is generated in positive degree. In non-linear problems, the solution
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space of the 0-forms may be a variety, in which case a compound 〈EDS〉 (section
20.19.3) will result. If edsverbose is on (section 20.19.9), the solutions are
displayed as they are generated.

Example:

S := augment(contact(2,{x,y},{u}),{u(-y,-y)-u(-x,-x)})$
on edsverbose;
lift S;

Solving 0-forms
New equations:
u =u
y y x x

EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x x y

d u - u *d x - u *d y},{d x,d y})
y x y x x

20.19.7 Analysing exterior systems

This section describes higher level operators for extracting information about ex-
terior systems. Many of them require a 〈EDS〉 in normal form (section 20.19.3)
generated in positive degree as input, but some can also analyse a 〈system〉 (section
20.19.3) or a single 〈p-form〉. Only trivial examples are provided in this section,
but many of these operators are used in the longer examples in the test file which
accompanies this package.

cartan_system

The Cartan system of a form or system S is the smallest Pfaffian system C such
that Λ(C) contains a set I of forms algebraically equivalent to S. The Cartan sys-
tem is also known as the associated Pfaff system or retracting space. An alternative
characterisation is to note that the annihilator C⊥ comprises all vectors V satisfy-
ing iV S ≃ 0 (mod S). Note this is a purely algebraic concept: S need not be
closed under differentiation. See also cauchy_system (section 20.19.7).
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The operator

cartan_system 〈arg〉

returns the Cartan system of 〈arg〉, which may be an 〈EDS〉, a 〈system〉 or a single
〈p-form〉 expression (sections 20.19.3, 20.19.3). For an 〈EDS〉, the result is a Pfaf-
fian 〈EDS〉 on the same manifold, otherwise it is a 〈system〉. The argument must
be generated in positive degree.

Example:

cartan_system{d u^d v + d v^d w + d x^d y};

{d u - d w,d v,d x,d y}

cauchy_system

The Cauchy system C of a form or system S is the Cartan system or retracting
space of its closure under exterior differentiation (section 20.19.7). The annihilator
C⊥ consists of the Cauchy vectors for the S.

The operator

cauchy_system 〈arg〉

returns the Cauchy system of 〈arg〉, which may be an 〈EDS〉, a 〈system〉 or a single
〈p-form〉 expression (sections 20.19.3, 20.19.3). For an 〈EDS〉, the result is a Pfaf-
fian 〈EDS〉 on the same manifold, otherwise it is a 〈system〉. The argument must
be generated in positive degree.

Example:

cauchy_system{u*d v + v*d w + x*d y};

{d u,d v,d w,d x,d y}
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characters

The Cartan characters {s1, ..., sn} of an 〈EDS〉 or 〈tableau〉 (sections 20.19.3,
20.19.3) are obtained with

characters 〈EDS〉
or
characters 〈tableau〉

The zeroth character s0 is not returned, it is simply the number of 1-forms in the
〈EDS〉 (cf one_forms, section 20.19.5). The definition used for the last charac-
ter: sn = (d − n) − (s0 + s1 + ... + sn−1), where d is the manifold dimension,
allows Cartan’s test to be used even when Cauchy characteristics are present.

For a nonlinear 〈EDS〉, the Cartan characters can vary from stratum to stratum
of the Grassmann bundle variety of ordinary integral elements (cf. the operator
grassmann_variety in section 20.19.7). Nonetheless, they are constant on
each stratum, so it suffices to calculate them at one point (ie at one integral ele-
ment). This is done using the syntax

characters(〈EDS〉,〈integral element〉)

where 〈integral element〉 is a list of 1-forms (cf section 20.19.3).

The Cartan characters are calculated from the reduced characters for a fixed flag of
integral elements based on the 1-forms in the independence condition of an 〈EDS〉.
This can lead to incorrect results if the flag is somehow singular, so two switches
are provided to overcome this (section 20.19.13). First, genpos looks at a generic
flag by using a general linear transformation to put the system in general position.
This guarantees correct results, but can be too slow for practical purposes. Sec-
ondly, ranpos performs a linear transformation using a sparse matrix of random
integers. In most cases, this is much faster than using general position, and a few
repetitions give some confidence in the results.

Example:

S := pullback(contact(2,{x,y},{u}),{u(-x,-y)=0});

s := EDS({d u - u *d x - u *d y,
x y

d u - u *d x,
x x x
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d u - u *d y},{d x,d y})
y y y

characters S;

{1,1}

on ranpos; characters S;

{2,0}

fclosure

closure 〈EDS〉

returns the closure of the 〈EDS〉 under exterior differentiation.

Owing to conflicts with the requirements of a normal form (section 20.19.3),
closure cannot guarantee that the resulting system is closed if the 〈EDS〉 con-
tains 0-forms.

derived_system

derived_system 〈arg〉

returns the first derived system of 〈arg〉, which must be a Pfaffian 〈EDS〉 or 〈sys-
tem〉. Repeated use gives the derived flag leading to the maximal integrable sub-
system.

Example:

pform {p,r,x,y,z}=0; korder z;
derived_system eds({d z - q*d y,d p - e**z*d y,

d r - e**z*p*d y,d x},{d y});

z z
EDS({d p - e *d y,d r - e *p*d y,d x},{d y})

derived_system ws;

1
EDS({d p - ---*d r,d x},{d y})
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p

derived_system ws;

1
EDS({d p - ---*d r,d x},{d y})

p

fdim_grassmann_variety

dim_grassmann_variety 〈EDS〉

returns the dimension of the Grassmann bundle variety of ordinary integral ele-
ments for an 〈EDS〉 (cf grassmann_variety, section 20.19.7). This number
is useful, for example, in Cartan’s test. For a nonlinear 〈EDS〉, this can vary from
stratum to stratum of the variety, so

dim_grassmann_variety(〈EDS〉,〈integral element〉)

returns the dimension of the stratum containing the 〈integral element〉 (cf section
20.19.3).

dim

dim 〈arg〉

returns the dimension of the manifold underlying 〈arg〉, which can be either an
〈EDS〉 or a 〈coframing〉 (sections 20.19.3, 20.19.2).

involution

involution 〈EDS〉

repeatedly prolongs an 〈EDS〉 until it reaches involution or inconsistency (cf
prolong, section 20.19.7). The system must be in normal form (section 20.19.3)
and generated in positive degree. For nonlinear problems, all branches of the
prolongation tree are followed. The result is an 〈EDS〉 (usually a compound
one for nonlinear problems, see section 20.19.3) giving the involutive prolonga-
tion. In case some variety couldn’t be resolved during the process, the relevant
branch is truncated at that point and represented by a system with 0-forms, as with
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grassmann_variety (section 20.19.7). The result of involution might
then not be in involution.

If the edsverbose switch is on (section 20.19.9), a trace of the prolongations is
produced. See the Janet problem in the test file for an example.

linearise, linearize

A nonlinear exterior system can be linearised at some point on the manifold with
respect to any integral element, yielding a constant coefficient exterior system with
the same Cartan characters. In EDS, reference to the point is omitted, so the result
is an exterior system linearised with respect to a distribution of integral elements.
The syntax is

linearise(〈EDS〉,〈integral element〉)

but linearize will work just as well. See the isometric embeddings example in
the test file.

For a quasilinear 〈EDS〉 (cf. section 20.19.8),

linearise 〈EDS〉

returns an equivalent exterior system containing only linear generators.

Example:

f := d u^d x + d v^d y$
S := eds({f,d v^f},{d x,d y});

s := EDS({d u^d x + d v^d y,d u^d v^d x},{d x,d y})

linearise S;

EDS({d u^d x + d v^d y},{d x,d y})

integral_element

integral_element 〈EDS〉

returns a random 〈integral element〉 of the 〈EDS〉 (section 20.19.3). The system
must be in normal form (section 20.19.3) and generated in positive degree. This
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integral element is found using the method described by Wahlquist [Wah93] (es-
sentially the Cartan-Kähler construction filling in the free variables from each polar
system with random integer values). This method can fail on non-involutive sys-
tems, or 〈EDS〉 objects whose independence conditions indicate a singular flag of
integral elements (cf the discussion about Cartan characters, section 20.19.7).

See the isometric embedding problem in the test file for an example.

prolong

prolong 〈EDS〉

calculates the prolongation of the 〈EDS〉 to the Grassmann bundle variety of in-
tegral elements. The system must be in normal form (section 20.19.3) and gener-
ated in positive degree. The variety is decomposed using essentially the REDUCE
solve operator. If no solutions can be found, the variety is empty, and the pro-
longation is the inconsistent 〈EDS〉 (section 20.19.3). Otherwise, the result is a list
of variety components, which fall into three classes:

1. a submanifold of the Grassmann bundle which surjects onto the base mani-
fold. The result in this case is the pullback of the Grassmann bundle contact
〈EDS〉 to this submanifold.

2. a submanifold of the Grassmann bundle which does not surject onto the base
manifold (ie cannot be presented by solving for Grassmann bundle fibre co-
ordinates). The result in this case is the pullback of the original 〈EDS〉 to the
projection onto the base manifold. If 0-forms arise in bringing the pullback
to normal form, these are solved recursively and the system pulled back again
until the result is generated in positive degree (cf lift, section 20.19.6).

3. a component of the variety which solve was not able to resolve explicitly.
The result in this case is the Grassmann bundle contact 〈EDS〉 augmented
with the 0-forms which solve couldn’t treat. This can be extracted from
the result of prolong and manipulated further “by hand”,

The result returned by prolong will, in general, be a compound 〈EDS〉 (section
20.19.3). If the switch edsverbose (section 20.19.9) is on, a trace of the pro-
longation is printed.

The 〈map〉s which are generated in a prolong call are available subsequently
in the global variable pullback_maps. This facility is still very primitive and
unstructured. It should be extended to the involution operator as well...

Example:



675

pde := {u(-y,-y)=u(-x,-x)**2/2,u(-x,-y)=u(-x,-x)};

2
(u )

x x
pde := {u =---------,u =u }

y y 2 x y x x

S := pullback(contact(2,{x,y},{u}),pde)$
on edsverbose;
prolong S;

Reduction using new equations:
u =1
x x

Prolongation using new equations:
u =0
x x x

u =0
x x y

{EDS({d u - u *d x - u *d y,
x y

d u - d x - d y,
x

1
d u - d x - ---*d y},{d x,d y}),

y 2

EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x x x

2
(u )

x x
d u - u *d x - ---------*d y,

y x x 2

d u },{d x,d y})}
x x
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tableau

tableau 〈EDS〉

returns the 〈tableau〉 (section 20.19.3) of a quasilinear Pfaffian 〈EDS〉, which must
be in normal form and generated in positive degree.

Example:

tableau contact(2,{x,y},{u});

[d u d u ]
[ x x x y]
[ ]
[d u d u ]
[ x y y y]

torsion

For a semilinear Pfaffian exterior differential system, the torsion corresponds to
first-order integrability conditions for the system. Specifically,

torsion 〈EDS〉

returns a list of 0-forms describing the projection of the Grassmann bundle variety
of integral elements onto the base manifold. If the switch edssloppy (section
20.19.11) is on, quasilinear systems are treated as semilinear. A semilinear system
is involutive if both the torsion is empty, and Cartan’s test for the reduced characters
is satisfied.

Example:

S := pullback(contact(2,{x,y},{u}),
{u(-y,-y)=u(-x),u(-x,-y)=u});

s := EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u*d y,
x x x

d u - u*d x - u *d y},{d x,d y})



677

y x
torsion s;

{u - u }
x x y

grassmann_variety

Given an exterior system (S,Ω,M) with independence condition of rank n, the
Grassmann bundle of n-planes over M contains a submanifold characterised by
those n-planes compatible with the independence condition. All integral elements
must lie in this submanifold. The operator

grassmann_variety 〈EDS〉

returns the contact system for this part of the Grassmann bundle augmented by
the 0-forms specifying the variety of integral elements of S. In cases where
prolong (section 20.19.7) is unable to decompose the variety automatically,
grassmann_variety can be used in combination with zero_forms (sec-
tion 20.19.5) to calculate the variety conditions. Any solutions found “by hand”
can be incorporated using pullback (section 20.19.6).

Example: Using the system from the example in section 20.19.7:

zero_forms grassmann_variety S;

{ - u *u + u ,
x x x x x x x y

- u + u }
x x x x x y

solve ws;

Unknowns: {u ,u ,u }
x x x x x y x x

{{u =0,u =0},
x x y x x x

{u =1,u =u }}
x x x x x x x y
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The second solution contains an integrability condition.

20.19.8 Testing exterior systems

The operators in this section allow various properties of an 〈EDS〉 to be checked.
These checks are done automatically when required on entry to the routines in
sections 20.19.6 and 20.19.7, but sometimes it is useful to know explicitly. The
result is either a 1 (true) or a 0 (false), so the operators can be used in boolean
expressions within if statements etc. Since checking these properties can be very
time-consuming, the result of the first test is stored on the 〈properties〉 record of
an 〈EDS〉 to avoid re-checking. This memory can be cleared using the cleanup
operator.

closed

closed 〈arg〉

checks whether 〈arg〉, which may be an 〈EDS〉, a 〈system〉 or a single 〈p-form〉 is
closed under exterior differentiation.

Examples:

closed(x*d x);

1

closed {d u - p*d x,d p - p/y*d x};

0

involutive

involutive 〈EDS〉

checks whether 〈EDS〉 is involutive, using Cartan’s test. See the test file for exam-
ples.

pfaffian

pfaffian 〈EDS〉
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checks whether 〈EDS〉 is a Pfaffian system: generated by a set of 1-forms and their
exterior derivatives. The 〈EDS〉 must be in normal form (section 20.19.3) for this
to succeed. Systems with 0-forms are non-Pfaffian by definition in EDS.

Examples:

pfaffian eds({d u - p*d x - q*d y,d p^d x+d q^d y},
{d x,d y});

1

pfaffian eds({d u - p*d x - q*d y,d p^d q},{d x,d y});

0

quasilinear

An exterior system (S,Ω,M) is said to be quasilinear if, when written in the stand-
ard cobasis {θa, πρ, ωi} (section 20.19.3), its closure can be generated by a set of
forms which are of combined total degree 1 in {θa, πρ}. The operation

quasilinear 〈EDS〉

checks whether the closure of 〈EDS〉 is a quasilinear system. The 〈EDS〉 must be
in normal form (section 20.19.3) for this to succeed. Systems with 0-forms are not
quasilinear by definition in EDS.

Examples:

% A system where pi(rho)={d p,d q},
% and which looks non-linear

S := eds({d u - p*d x - q*d y,d p^d q^d y},{d x,d y})$

quasilinear S;

1

linearise closure S;

EDS({d u - p*d x - q*d y,
- d p^d x - d q^d y},{d x,d y})
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% One which is really non-linear

quasilinear
eds({d u - p*d x - q*d y,d p^d q},{d x,d y});

0

semilinear

Let (S,Ω,M) be such that, written in the standard cobasis {θa, πρ, ωi} (section
20.19.3), its closure is explicitly quasilinear. If the coefficients of {πρ} depend
only on the independent variables, then the system is said to be semilinear. The
operation

semilinear 〈EDS〉

checks whether closure of 〈EDS〉 is a semilinear system. The 〈EDS〉 must be in
normal form (section 20.19.3) for this to succeed. Systems with 0-forms are not
semilinear by definition in EDS.

For semilinear systems, the expressions determining the Grassmann bundle vari-
ety of integral elements will be linear in the Grassmann bundle fibre coordinates,
with coefficients which depend only upon the independent variables. This allows
alternative, faster algorithms to be used in analysis.

If the switch edssloppy is on (section 20.19.11), all quasilinear systems are
treated as if they are semilinear.

Examples:

% A semilinear system: @(u,y) = y*@(u,x)
S := eds({d u - p*d x - p*y*d y},{d x,d y})$
semilinear S;

1
% A quasilinear system: @(u,y) = u*@(u,x)
S := eds({d u - p*d x - p*u*d y},{d x,d y})$
quasilinear S;

1
semilinear S;

0
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on edssloppy;
semilinear S;

1

frobenius

frobenius 〈arg〉

checks whether 〈arg〉, which may be an 〈EDS〉 or a 〈system〉, is a completely inte-
grable Pfaffian system.

Examples:

if frobenius eds({d u -p*(d x+d y)},d x^d y)
then yes else no;

no

if frobenius eds({d u -u*(d x+d y)},d x^d y)
then yes else no;

yes

equiv

〈EDS1〉 equiv 〈EDS2〉

checks whether 〈EDS1〉 and 〈EDS2〉 are algebraically equivalent as exterior sys-
tems (ie generate the same algebraic ideal).

Examples:

S1 := contact(2,{x,y},{u})$
S2 := augment(S1,foreach f in system S1

join {d f,d x^d f})$
if S1 equiv S2 then yes else no;

no

if closure S1 equiv S2 then yes else no;
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yes

20.19.9 Switches

EDS provides several switches to govern the display of information and speed or
reliability of the results.

edsverbose

If edsverbose is on, a number of operators (eg prolong, involution) will
display additional information as the calculation progresses. For large problems,
this can produce too much output to be useful, so edsverbose is off by default.
This allows only warning (***) and error (*****) messages to be printed.

20.19.10 edsdebug

If edsdebug is on, EDS produces copious quantities of information, in addition
to that produced with edsverbose on. This information is for debugging pur-
poses, and may not make much sense without knowledge of the inner workings of
EDS. edsdebug is off by default.

20.19.11 edssloppy

Normally, EDS will not divide by any expressions it does not know to be nowhere
zero. If an 〈EDS〉 can be brought into normal form only by restricting away from
the zeroes of some coefficients, then these restrictions should be made using the
restrict operator (section 20.19.6). However, if edssloppy is on, then EDS

will, as a last resort, divide by whatever is necessary to bring an 〈EDS〉 into normal
form, invert a transformation, and so on. The relevant restrictions will be made
automatically, so no inconsistency should arise. In addition, with edssloppy on,
all quasilinear systems are treated as if they were semilinear (cf section 20.19.8).
edssloppy is off by default.

20.19.12 edsdisjoint

When decomposing a variety into (something like) smooth components, EDS nor-
mally pays no attention to whether the components are disjoint. Turning on the
switch edsdisjoint forces EDS to ensure the decomposition is a disjoint union
(cf disjoin, section 20.19.14). For large problems this can lead to a prolifera-
tion of singular pieces. If some of these turn out to be uninteresting, EDS cannot
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re-join the remaining pieces into a smaller decomposition. edsdisjoint is off
by default.

20.19.13 ranpos, genpos

When calculating Cartan characters (eg to check involution), EDS uses the inde-
pendence condition of an 〈EDS〉 as presented to define a flag of integral elements.
Depending on the cobasis and ordering, this flag may be singular, leading to in-
correct Cartan characters. To overcome this problem, the switches ranpos and
genpos provide a means to select other flags. With ranpos on, a flag defined
by taking a random linear transformation of the 1-forms in the independence con-
dition will be used. The results may still be incorrect, but the likelihood is much
lower. With genpos on, a generic (upper triangular) transformation is used. this
guarantees the correct Cartan characters, but reduces performance too much to be
useful for large problems. Both switches are off by default, and switching one
on automatically switches the other off. See section 20.19.7 for an example.

20.19.14 Auxiliary functions

This section describes various operators designed to ease working with exterior
forms and exterior systems in REDUCE.

invert

invert 〈transform〉

returns a 〈transform〉 which is inverse to the given one (section 20.19.6). If the
〈transform〉 given is only partial, the 1-form 〈kernel〉s to eliminate are chosen based
on the prevailing kernel ordering. If a background coframing (section 20.19.3)
is active, and edssloppy (section 20.19.11) is off, invert will divide by
nowhere-zero expressions only.

Examples:

set_coframing coframing{u,v,w,x,y,z}$
invert {d u = 3*d x - d y + 5*d z, d v = d x + 2*d z};

{d x=d v - 2*d z,d y= - d u + 3*d v - d z}

% A y coefficient forces a different choice of inverse
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invert {d u = 3*d x - y*d y + 5*d z, d v = d x + 2*d z};

{d x=2*d u - 5*d v + 2*d y*y,

d z= - d u + 3*d v - d y*y}

linear_divisors

linear_divisors 〈pform〉

returns a basis for the space of linear divisors (1-form factors) of a 〈p-form〉.

Example:

f := d p^d q^d u - d p^d q^d x*x + d p^d q^d z*y
- d u^d v^d x*x + d u^d v^d z*y + d u^d x^d y
+ d x^d y^d z*y$

linear_divisors f;

{d u - d x*x + d z*y}

exfactors

exfactors 〈pform〉

returns a list of factors for a 〈p-form〉, consisting of the linear divisors plus one
more factor. The list is ordered such that the original expression is a product of the
factors in this order.

Example:

f := d p^d q^d u - d p^d q^d x*x + d p^d q^d z*y
- d u^d v^d x*x + d u^d v^d z*y + d u^d x^d y
+ d x^d y^d z*y$

exfactors f;

{d p^d q - d v^d x*x + d v^d z*y + d x^d y,
d u - d x*x + d z*y}

f - (part(ws,0) := ^);

0
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index_expand

EXCALC caters for indexed variables in which various index names have been as-
signed a specific set of values. Any expression with paired indices is expanded au-
tomatically to an explicit sum over the index set (provided the EXCALC command
nosum has not been applied). The EDS operator index_expand is designed to
expand an expression with free indices to an explicit list over the index set, taking
some limited account of the possible index symmetries.

The syntax is

index_expand 〈arg〉

where 〈arg〉 can be an expression, a rule or equation or a boolean expression, or an
arbitrarily nested list of these items. The result is a flattened list.

Examples:

indexrange {i,j,k}={1,2,3},{a,b}={x,y};
pform {e(i),o(a,b)}=1;
index_expand(e(i)^e(j));

1 2 1 3 2 3
{e ^e ,e ^e ,e ^e }

index_expand{o(-a,-b)+o(-b,-a) => 0};

{2*o => 0,o + o => 0, 2*o => 0}
x x x y y x y y

pde2jet

A PDE system can be encoded into EDS jet variable notation using pde2jet. The
syntax is as for pde2eds:

pde2jet(〈pde〉 [,〈dependent〉,〈independent〉] )

where 〈pde〉 is a list of equations or expressions (implicitly assumed to vanish)
specifying the PDE system using either the standard REDUCE df operator, or the
EXCALC @ operator. If the optional variable lists 〈dependent〉 and 〈independent〉
are not given, pde2jet infers them from the expressions in 〈pde〉, using the same
rules as pde2eds (section 20.19.4).
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The result of pde2jet is the input 〈pde〉, with all derivatives of dependent vari-
ables replaced by indexed 0-form variables from the appropriate jet bundle. Unlike
pde2eds, pde2jet does not disturb the variable dependencies.

Example:

depend u,x,y; depend v,x,y;
pde2jet({df(u,y,y)=df(v,x),df(v,y)=y*df(v,x)});

{u =v ,
y y x

v =v *y}
y x

mkdepend

The mkdepend operator is intended for restoring the dependencies destroyed by
a call to pde2eds (section 20.19.4). The syntax is

mkdepend {〈list of variables〉,· · ·}

where the first variable in each list is declared to depend on the remaining ones.

disjoin

The disjoin operator takes a list of 〈maps〉 (section 20.19.3) describing a de-
composition of a variety, and returns an equivalent list of 〈maps〉 such that the
components are all disjoint. The background coframing (section 20.19.3) should
be set appropriately before calling disjoin. The syntax is

disjoin {〈map〉,· · ·}

Example:

set_coframing coframing {x,y};
disjoin {{x=0},{y=0}};

{{y=0,x neq 0},{x=0,y neq 0},{y=0,x=0}}
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cleanup

To avoid lengthy recomputations, EDS stores various properties (section 20.19.3)
and also many intermediate results in a hidden list attached to each 〈EDS〉. When
EDS detects a change in circumstances which could make the information innacu-
rate, it is discarded and recomputed. Unfortunately, this mechanism is not perfect,
and occasionally misses something which renders the results incorrect. In such a
case, it is possible to discard all the properties and hidden information using the
cleanup operator. The call

cleanup 〈arg〉

returns a copy of 〈arg〉, which may be a 〈coframing〉 or an 〈EDS〉 which has been
stripped of this auxilliary information. Note that the original input (with possible
innacuracies) is left undisturbed by this operation: the result of cleanup must be
used.

Example:

% An erroneous property assertion
S := eds({d u - p*d x},{d x,d y},{closed = 1})$
closure S;

EDS({d u - p*d x},{d x,d y});

S := cleanup S$
properties S;

{}

closure S;

EDS({d u - p*d x, - d p^d x},{d x,d y});
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reorder

All operations with a 〈coframing〉 or 〈EDS〉 temporarily override the prevailing ker-
nel order with their own. Thus the ordering of the cobasis elements in a 〈cofram-
ing〉 operator remains fixed, even when a REDUCE korder statement is issued.
To enforce conformity to the prevailing kernel order, the reorder operator is
available. The call

reorder 〈arg〉

returns a copy of 〈arg〉, which may be a 〈coframing〉 or an 〈EDS〉 which has been
reordered. Note that the original input is left undisturbed by this operation: the
result of reorder must be used.

Example:

M := coframing {x,y,z};

m := coframing({d x,d y,d z},{x,y,z},{},{})

korder z,y,x;
reorder m;

coframing({d z,d y,d x},{z,y,x},{},{})

20.19.15 Experimental facilities

This section describes various operators in EDS which either not algorithmically
well-founded, or whose implementation is very unstable, or which have known
bugs.

poincare

The poincare operator implements the homotopy integral found in the proof of
Poincaré’s lemma. The expansion point is the origin of the coordinates found in
the input. The syntax is

poincare 〈p-form〉

If f is a p-form, then poincare f is a (p − 1)-form, and f - poincare d
f is an exact p-form.
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Examples:

poincare(3*d x^d y^d z);

d x^d y*z - d x^d z*y + d y^d z*x

d ws;

3*d x^d y^d z

2*x*d y - poincare d(2*x*d y);

d x*y + d y*x

invariants

The invariants operator implements the algorithm implicit in the inductive
proof of the Frobenius theorem. The syntax is

invariants(〈system〉 [,〈list of coordinate〉] )

where 〈system〉 is a set of 1-forms satisfying the Frobenius condition. The optional
second argument specifies the order in which the coordinates are projected away
to get a trivially integrable system. The CRACK and ODESOLVE packages are
used to solve the ODE systems which arise, so the limitations of these packages
constrain the scope of this operator as well.

Examples:

invariants {d x*y + d y*x*z + d z*log(y)*x*y};

z
{ - y *x}

invariants {d y*z**2 - d y*z + d z*y,
d x*(1 - z) + d z*x};

x y*(z - 1)
{-------,-----------}
z - 1 z
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symbol_relations

The symbol_relations operator finds the linear relations between the entries
of the tableau matrix for a quasilinear system. The syntax is

symbol_relations(〈EDS〉, 〈identifier〉)

where 〈EDS〉 is a quasilinear Pfaffian system and 〈identifier〉 is used to create a
2-indexed 1-form which will label the tableau entries.

Example:

S := pde2eds {df(u,y,y) = df(u,x,x)};

s := EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x x y

d u - u *d x - u *d y},d x^d y)
y x y x x

symbol_relations(S,pi);

1 2
{pi - pi ,

x y
1 2

pi - pi }
y x

symbol_matrix

The symbol_matrix operator returns the symbol matrix for a quasilinear sys-
tem in terms of a given variable. The syntax is

symbol_matrix(〈EDS〉, 〈identifier〉)

where 〈EDS〉 is a quasilinear Pfaffian system and 〈identifier〉 is used to create an
indexed 0-form which will parameterise the matrix.



691

Example:

% With the same system as for symbol_relations:

symbol_matrix(S,xi);

[xi - xi ]
[ x y]
[ ]
[xi - xi ]
[ y x]

characteristic_variety

The characteristic_variety operator returns the equations specifying the
characteristic variety for a quasilinear system in terms of a given variable. The
syntax is

characteristic_variety(〈EDS〉, 〈identifier〉)

where 〈EDS〉 is a quasilinear Pfaffian system and 〈identifier〉 is used to create an
indexed 0-form variable. The result is a list of two lists: the first being the variety
equations and the second the variables involved.

Example:

% With the same system as for symbol_relations:

characteristic_variety(S,xi);

2 2
{{(xi ) - (xi ) },

x y
{xi ,xi }}

x y

20.19.16 Command tables

The tables in this appendix summarise the commands available in EDS. More
detailed descriptions of the syntax and function of each command are to be found
in the earlier sections. In each case, examples of the command are given, whereby
the argument variables have the following types (see section 20.19.2):
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E, E′ 〈EDS〉
S 〈system〉
M , N 〈coframing〉, or a 〈system〉 specifying a 〈coframing〉
r 〈integer〉
Ω 〈p-form〉
f 〈map〉
rsx 〈list of inequalities〉
cob 〈list of 1-form variables〉
crd, dep, ind 〈list of 0-form variables〉
drv 〈list of rules for exterior derivatives〉
pde 〈list of expressions or equations〉
X 〈transform〉
T 〈tableau〉
P 〈integral element〉

Command Function

coframing(cob,crd,rsx,drv) constructs a 〈coframing〉 with the given
cobasis cob, coordinates crd, restrictions rsx
and structure equations drv: crd, rsx and
drv are optional

coframing(S) constructs a 〈coframing〉 capable of
supporting the given 〈system〉

eds(S,Ω,M) constructs a simple 〈EDS〉 object with given
system and independence condition: if M is
not supplied, it is deduced from the rest

contact(r,M,N) constructs the 〈EDS〉 for the contact system
of the jet bundle Jr(M,N)

pde2eds(pde,dep,ind) converts a PDE system to an EDS:
dependent and independent variables are
deduced if they are not specified (variable
dependencies are removed)

set_coframing(M)
set_coframing(E)

sets background coframing and returns
previous one

set_coframing() clears background coframing and returns
previous one

Table 20.8: Commands for constructing EDS objects
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Command Function

coframing(E) extracts the underlying 〈coframing〉
coframing() returns the current background coframing
cobasis(M)
cobasis(E)

extracts the underlying cobasis

coordinates(M)
coordinates(E)

extracts the coordinates

structure_equations(M)
structure_equations(E)

extracts the rules for exterior derivatives for
cobasis and coordinates

restrictions(M)
restrictions(E)

extracts the inequalities describing the
restrictions in the 〈coframing〉

system(E) extracts the 〈system〉 part of E
independence(E) extracts the independence condition from E

as a Pfaffian 〈system〉
properties(E) returns the currently known properties of the

〈EDS〉 E as a list of equations
〈keyword〉=〈value〉

one_forms(E)
one_forms(S)

selects the 1-forms from a system

zero_forms(E)
zero_forms(S)

selects the 0-forms from a system

Table 20.9: Commands for inspecting EDS objects

Command Function

augment(E,S) appends the extra forms in S to the system in
E

M cross N
E cross N

forms the direct product of two coframings:
an 〈EDS〉 E is lifted to the extended space

pullback(E,f)
pullback(S,f)
pullback(Ω,f)

pulls back the first argument using the 〈map〉
f

pullback(M,f) returns a 〈coframing〉 N suitable as the
source for f : N →M

restrict(E,f)
restrict(S,f)
restrict(Ω,f)

restricts the first argument to the points
specified by the 〈map〉 f

restrict(M,f) adds the restrictions in f to M
transform(M,X)
transform(E,X)
transform(S,X)
transform(Ω,X)

applies the change of cobasis X to the first
argument: for a 〈coframing〉 M or an 〈EDS〉
E, X may be specified in either the forward
or reverse direction

lift(E) eliminates any 0-forms in E by solving and
pulling back

Table 20.10: Commands for manipulating EDS objects
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Command Function

cartan_system(E)
cartan_system(S)
cartan_system(Ω)

calculates the Cartan system (associated
Pfaff system, retracting space): no
differentiations are performed

cauchy_system(E)
cauchy_system(S)
cauchy_system(Ω)

calculates the Cauchy system: the Cartan
system of the closure under exterior
differentiation

characters(E)
characters(T)

calculates the (reduced) Cartan characters
{s1, ..., sn} (E quasilinear)

characters(E,P) Cartan characters for a non-linear E at
integral element P

closure(E) calculates the closure of E under exterior
differentiation

derived_system(E)
derived_system(S)

calculates the first derived system of the
Pfaffian system E or S

dim_grassmann_variety(E)
dim_grassmann_variety(E,P)

dimension of the Grassman bundle variety of
integral elements: for non-linear E, the base
element P must be given

dim(M)
dim(E)

returns the manifold dimension

involution(E) repeatedly prolongs E to involution (or
inconsistency)

linearise(E,P) linearise the (non-linear) EDS E with
respect to the integral element P

integral_element(E) find a random 〈integral element〉 of E
prolong(E) prolongs E, and projects back down to a

subvariety of the original manifold if
integrability conditions arise

tableau(E) calculates the 〈tableau〉 of the quasilinear
Pfaffian 〈EDS〉 E

torsion(E) returns a 〈system〉 of 0-forms specifying the
integrability conditions for the semilinear or
quasilinear Pfaffian 〈EDS〉 E

grassmann_variety(E) returns the contact 〈EDS〉 for the Grassmann
bundle of n-planes over the manifold of E,
augmented by the 0-forms specifying the
variety of integral elements of E

Table 20.11: Commands for analysing exterior systems
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Command Function

closed(E)
closed(S)
closed(Ω)

checks for closure under exterior
differentiation

involutive(E) applies Cartan’s test for involution
pfaffian(E) checks if E is generated by 1-forms and

their exterior derivatives
quasilinear(E) tests if the closure of E can be generated by

forms at most linear in the complement of
the independence condition

semilinear(E) tests if the closure of E is quasilinear and, in
addition, the coefficients of the linear terms
contain only independent variables or
constants

E equiv E′ checks whether E and E′ are algebraically
equivalent

Table 20.12: Commands for testing exterior systems

Switch Function

edsverbose if on, displays additional information as
calculations progress

edsdebug if on, produces copious quantities of internal
information, in addition to that produced by
edsverbose

edssloppy if on, allows EDS to divide by expressions
not known to be non-zero and treats
quasilinear systems as semilinear

edsdisjoint if on, forces varieties to be decomposed into
disjoint components

ranpos
genpos

if on, uses a random or generic flag of
integral elements when calculating Cartan
characters: otherwise the independence
condition as presented guides the choice of
flag

Table 20.13: Switches (all off by default)
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Command Function

coordinates(S) scans the expressions in S for coordinates
invert(X) returns the inverse 〈transform〉 X−1

structure_equations(X)
structure_equations(X,X−1)

returns exterior derivatives of lhs(X)

linear_divisors(Ω) calculates a basis for the space of 1-form
factors of Ω

exfactors(Ω) as for linear_divisors, but with the
additional (non-linear) factor

index_expand(any) returns a list of copies of its argument, with
free EXCALC indices replaced by successive
values from the relevant index range

pde2jet(pde,dep,ind) converts a PDE system into jet bundle
notation, replacing derivatives by jet bundle
coordinates (variable dependencies are not
affected)

mkdepend(list) restores variable dependencies destroyed by
pde2eds

disjoin({f, g, ...}) decomposes the variety specified by the
given 〈map〉 variables into a disjoint union

cleanup(E)
cleanup(M)

returns a fresh copy of E or M with all
properties and stored results removed

reorder(E)
reorder(M)

returns a fresh copy of E or M , conforming
to the prevailing REDUCE kernel order

Table 20.14: Auxilliary functions
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Command Function

poincare(Ω) calculates the homotopy integral from the
proof of Poincaré’s lemma: if Ω is exact,
then the result is a form whose exterior
derivative gives back Ω

invariants(E,crd)
invariants(S,crd)

calculates the invariants (first integrals) of a
completely integrable Pfaffian system using
the inductive proof of the Frobenius
theorem: the optional second argument
specifies the order in which the coordinates
are to be projected away

symbol_relations(E,π) returns relations between the entries of the
tableau matrix, represented by 2-indexed
〈1-form〉 variables πa

i

symbol_matrix(E,ξ) returns the symbol matrix for a quasilinear
〈EDS〉 E as a function of 〈0-form〉 variables
ξi

characteristic_variety(E,ξ) returns equations describing the
characteristic variety of E in terms of
〈0-form〉 variables ξi

Table 20.15: Experimental functions (unstable)
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20.20 ELLIPFN: A Package for Elliptic Functions and
Integrals

Additional documentation and examples can be found in the files efellip.tex,
eftheta.tst and efweier.tst in the packages/ellipfn directory.

Author: Lisa Temme and Alan Barnes, with contributions from Winfried Neun and
several others

20.20.1 Elliptic Functions: Introduction

The package ELLIPFN is designed to provide algebraic and numeric manipulations
of many elliptic functions, namely:

• Jacobi’s Elliptic Functions;

• Elliptic Integrals;

• Nome and Related Functions;

• Jacobi’s Theta Functions and their derivatives;

• Weierstrass Elliptic Functions and the Sigma Function;

• Other Sigma Functions;

• Period Lattice and Related Functions;

• Inverse Elliptic Functions.

The implementation of the functions in this and the next two subsections have been
substantially revised by Alan Barnes in 2019. This is to bring the notation more into
line with standard (British) texts such as Whittaker & Watson [WW69] and Lawden
[Law89] and also to correct a number of errors and omissions. These changes and
additions will be itemised in the relevant sections below. New subsections has
been added starting in 2021 to support Weierstrassian Elliptic functions, Sigma
functions, inverse Jacobi elliptic functions and finally symmetric elliptic integrals.

The functions in this subsection are for the most part autoloading; the exceptions
being the subsidiary utility functions such as the AGM function, the quasi-period
factors, lattice functions, derivatives of the theta functions and symmetric elliptic
integrals.
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20.20.2 Jacobi Elliptic Functions

The following functions have been implemented:

• The 12 Jacobi Elliptic Functions

• The Jacobi Amplitude Function

• Arithmetic Geometric Mean

• Descending Landen Transformation

The following Jacobi elliptic functions are available:-

• jacobisn(u,k)

• jacobidn(u,k)

• jacobicn(u,k)

• jacobicd(u,k)

• jacobisd(u,k)

• jacobind(u,k)

• jacobidc(u,k)

• jacobinc(u,k)

• jacobisc(u,k)

• jacobins(u,k)

• jacobids(u,k)

• jacobics(u,k)

These differ somewhat from the originals implemented by Lisa Temme in that the
second argument is now the modulus (usually denoted by k in most texts rather
than its square m). The notation for the most part follows Lawden [Law89]. The
last nine Jacobi functions are related to the three basic ones: jacobisn(u,k),
jacobicn(u,k) and jacobidn(u,k) and use Glaisher’s notation. For ex-
ample

ns(x, k) =
1

sn(u, k)
, cs(x, k) =

cn(u, k)

sn(u, k)
, cd(x, k) =

cn(u, k)

dn(u, k)
.

All twelve functions are doubly periodic in the complex plane. The primitive pe-
riods and the positions of the zeros and poles of the functions are conveniently
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expressed in terms of the so-called quarter periods K(k) and iK′(k) which are
complete elliptic integrals of the first kind. The details are displayed in the table
below; in all cases the pole is single and the corresponding residue is given in the
last column of the table. As the functions are doubly-periodic, there are, of course,
infinitely many other zeros and poles. These occur at points ‘congruent’ to the
points given in the table obtained by translating by 2mK+ 2inK′ where m and n
are arbitrary integers.

Function Period1 Period2 Zero Pole Residue
sn 4K 2iK′ 0 iK′ 1/k
ns 4K 2iK′ iK′ 0 1
cd 4K 2iK′ K K+ iK′ −1/k
dc 4K 2iK′ K+ iK′ K −1
cn 4K 2(K + iK′) K iK′ −i/k
nc 4K 2(K + iK′) iK′ K −1/k′
sd 4K 2(K + iK′) 0 K + iK′ −i/(kk′)
ds 4K 2(K + iK′) K + iK′ 0 1
dn 4iK′ 2K K + iK′ iK′ −i
nd 4iK′ 2K iK′ K+ iK′ −i/k′
sc 4iK′ 2K 0 K −1/k′
cs 4iK′ 2K K 0 1

All other periods of the Jacobi functions can be expressed as linear combinations
of the two primitive periods with integer coefficients. Thus, for example, 4iK′ is a
period of cn as

4iK′ = 2(K +K′)− 4K

Extensive rule lists are provided for differentiation of these functions with respect
to either argument, for argument shifts by integer multiples of the two quarter pe-
riods K(k) and iK′(k) and finally Jacobi’s transformations for a purely imaginary
first argument.

Rules are also provided for the values of the twelve Jacobi functions at the ‘eighth’
period values: K/2, iK′/2 and (K+ iK′)/2. For these rules to yield correct values
it is essential that the switch precise_complex is ON, otherwise Reduce will
often incorrectly simplify the results if they involve complex values of k or k′. It
should also be noted that the rule for dn((K(k) + iK′(k))/2, k) differs from that
on DLMF:NIST which appears to give incorrect values for some values of k. The
rule used in REDUCE is not only simpler, but appears to give correct values in all
cases as do the derived rules for cd, sd, nd, ds and dc. It is derived from the third
of the identities (2.2.19) of Lawden [Law89] with u = −(K(k) + iK′(k))/2 and
the corresponding identities for sn and cn on the DLMF NIST site.

Some care must be exercised when applying the ‘eighth’ period rules when the
modulus k belongs to the negative real or imaginary axes as K(k) and all twelve
Jacobi functions sn(x, k) etc. are even functions of the modulus k. The rule should

https://dlmf.nist.gov/22.5#i
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be applied when the modulus has no assigned value and then resimplifying the
result after assigning the modulus its required value.

Complex split functions have recently been implemented for the 12 Jacobi funct-
ions for the cases when the modulus k is either real or imaginary. Thus REPART
and IMPARTwill now return rational expressions involving the twelve Jacobi func-
tions with real arguments and a real modulus |k| < 1. As far as I (AB) am aware
there are no known methods of implementing split functions for general complex
values of the modulus.

Four useful rule lists TO_SN, TO_CN, TO_DN and NO_GLAISHER are provided
for user convenience. The first TO_SN replaces occurences of the squares of cn
and dn in favour of the square of sn using the ‘Pythagorean’ identities. TO_CN
and TO_DN apply these identities to replace squares in favour of cn and dn respec-
tively. At most one of these rule sets should be active at any one time to avoid a po-
tential infinite recursion in the simplification. The fourth rule list NO_GLAISHER
replaces all occurences of the nine subsidiary Jacobi elliptic functions ns, sc, sd,
. . . by reciprocals and quotients of the ‘basic’ Jacobi elliptic functions sn, cn and
dn.

A fifth rule list JACOBIADDITIONRULES applies addition rules when the first
argument of any Jacobi function is a sum. Note that this rule list is NO LONGER
active by default. There are many equivalent ways of expressing the right-hand
sides of these rules. Previously all the rules were expressed using only the ‘basic’
Jacobi functions: sn, cn and dn. Currently, however, the right-hand sides of the
rules for the reciprocal and quotient Glaisher functions ns, cs, sd etc are expressed
using the three Glaisher functions with the same ‘denominator’ as on the left-hand
side. Thus the rule for ns is expressed in terms of ns, cs and ds whilst that for cd is
expressed in terms of nd, cd and sd whereas the rules for the three ‘basic’ functions
are unchanged and use only sn, cn and dn. Note, however, that the previous form
of these rules will be obtained if the rule-list NO_GLAISHER is also active.

If the switch rounded is ON and both arguments of a Jacobi function are purely
numerical, it will be evaluated numerically (previously it was necessary for both
the switches rounded and complex to be ON). Of course, if either argument is a
complex number, the switch complex must also be ON for numerical evaluation
to be triggered.

The numerical evaluation of the Jacobi functions uses their definitions in terms of
theta functions which are valid for all complex values of the argument and modulus.
Since theta functions are inherently complex-valued, it is necessary to turn the
switch complex ON during the evaluation even if both the argument and the
modulus of the Jacobi function are real (for example when the modulus |k| > 1).
The switch complex is, however, returned to its old value as the computation
completes.

The traditional AGM and ϕ-function based algorithms which were used when the
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argument and modulus are both real and |k| < 1 have been corrected. There was
a problem with the numerical evaluation of dn, nd, sd, ds, cd, dc re-
sulting in largish rounding errors for some values of the arguments. There was no
problem with previous evaluation of sn, ns, cn, nc, sc, cs and these
produced the same results (modulo acceptable rounding errors) as the theta func-
tion based methods. In fact in all cases when both the arguments are real and
|k| < 1, the traditional algorithms have been reinstated as they are somewhat faster
than the theta function based methods.

Jacobi Amplitude Function

This function is defined as

am(u, k) =

∫ u

0
dn(z, k)dz.

As dn(z, k) has poles with residue −i at points z = (4m + 1)iK′(k) + 2nK(k)
and others with residue +i when z = (4m + 3)iK′(k) + 2nK(k) where m and n
are arbitrary integers, am(z, k) has logarithmic singularities at these points. In fact
the amplitude function is multivalued with its principal value v, say, being given by
choosing the contour in the defining integral to be the straight line segment between
0 and u. Other values are given by v + 2nπ where n is an arbitrary integer and
depend on how the chosen contour winds around the logarithmic branch points. To
obtain a single valued function it is necessary to introduce branch cuts between the
points iK′(k) and 3iK′(k) and between corresponding congruent branch points.

A rule list is provided for to simplify this function for special values of the argu-
ments and for differentiation with respect to either argument. When the switch
rounded is ON and both arguments are numeric, REDUCE will attempt to eval-
uate jacobiam(z,k) numerically. Several possible methods are available to
evalaute the function, for example summation of its Fourier series and an AGM-
based method due to Sala (see DLMF:NIST for more details. Currently the AGM-
based method is used and this certainly produces reliable results if the modulus k
is real and |ℑ(z)| < K′(k). These agree with those produced by the Fourier series
method although rounding errors become significant as |ℑ(z)| approaches K′(k).
If k is complex both methods produce the same results when the imaginary parts
of k and z are not too large, but it is difficult to give precise bounds on the size of
these.

For general values of z and k the AGM-based method always produces a value
except perhaps at the logarithmic branch points but these, I believe, are not correct
as they fail to satisfy the identity

sn(z, k) = sin(am(z, k))

https://dlmf.nist.gov/22.20#vi
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where sn is calculated using the theta function method. The Fourier series method
fails to converge in these cases and so is not used except for comparison purposes.
Currently an alternative method of evaluation due to Sala is being investigated; it
uses the Poisson summation formula and is claimed to be valid for all z and k
except at branch points.

20.20.3 Some Numerical Procedures

This section briefly describes several procedures which are primarily intended for
use in the numerical evaluation of the various elliptic functions and integrals rather
than for direct use by users.

Arithmetic Geometric Mean (AGM)

A procedure to evaluate the AGM of initial values a0, b0, c0 exists as
AGM_function(a0, b0, c0) and will return
{N,AGM, {aN , . . . , a0}, {bN , . . . , b0}, {cN , . . . , c0}}, whereN is the number of
steps to compute the AGM to the desired accuracy.

To determine the Elliptic Integrals K(m), E(m) we use initial values a0 = 1; b0 =√
1− k2 ; c0 = k.

Descending Landen Transformation

The procedure to evaluate the Descending Landen Transformation of ϕ and α uses
the following equations:

(1 + sinαn+1)(1 + cosαn) = 2 where αn+1 < αn,

tan(ϕn+1 − ϕn) = cosαn tanϕn where ϕn+1 > ϕn.

It can be called using landentrans(ϕ0, α0) and will return
{{ϕ0, . . . , ϕn}, {α0, . . . , αn}}.

20.20.4 Legendre’s Elliptic Integrals

The following functions have been implemented:

• Complete & Incomplete Elliptic Integrals of the First Kind

• Complete & Incomplete Elliptic Integrals of the Second Kind

• Jacobi’s Epsilon & Zeta Functions
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• Complete & Incomplete Ellpitic Integrals of the Third Kind

• Some Utility Functions

These again differ somewhat from the originals implemented by Lisa Temme as the
second argument is now the modulus k rather that its square. Also in the original
implementation there was some confusion between Legendre’s form and Jacobi’s
form of the incomplete elliptic integrals of the second kind; E(u, k) denoted the
first in numerical evaluations and the second in the derivative formulae for the
Jacobi elliptic functions with respect to their second argument. This confusion was
perhaps understandable as in the literature some authors use the notation E(u, k)
for the Legendre form and others for Jacobi’s form.

To bring the notation more into line with that in the NIST Digital Library of Math-
ematical Functions and avoid any possible confusion, E(u, k) is used for the Leg-
endre form and E(u, k) for Jacobi’s form. This differs from the 2019 version of
this section which followed Lawden [Law89] chapter 3, where the notation D(ϕ, k)
and E(u, k) were used for the Legendre and Jacobi forms respectively.

A number of rule lists have been provided to implement, where appropriate, deriva-
tives of these functions, addition rules and periodicity and quasi-periodicity prop-
erties and to provide simplifications for special values of the arguments.

Elliptic F

The Elliptic F function can be used as EllipticF(phi,k) and will return the
value of the Incomplete Elliptic Integral of the First Kind:

F(ϕ, k) =

∫ ϕ

0
(1− k2 sin2 θ)−1/2dθ.

This is actually closely related to the inverse Jacobi function arcsn; in fact for
−π/2 <= ℜϕ <= π/2:

F(ϕ, k) = arcsn(sinϕ, k)

.

Elliptic K

The Elliptic K function can be used as EllipticK(k) and will return the value
of the Complete Elliptic Integral of the First Kind:

K(k) = F(π/2, k) =

∫ π/2

0
(1− k2 sin2 θ)−1/2dθ.
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This is one of the quarter periods of the Jacobi elliptic functions and is often used in
the calculation of other elliptic functions. The complementary Elliptic K′ function
can be used as EllipticK!′(k). Note that iK′(k) is the other quarter period of
the Jacobi elliptic functions.

Elliptic E

The Elliptic E function comes with either one or two arguments; used with two
arguments as EllipticE(u,k) it will return the value of Legendre’s form of
the Incomplete Elliptic Integral of the Second Kind:

E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 θ dθ.

When called with one argument EllipticE(k)will return the value of the Com-
plete Elliptic Integral of the Second Kind:

E(k) = E(π/2, k) =

∫ π/2

0

√
1− k2 sin2 θ dθ.

The complementary Elliptic E′ function can be used as EllipticE!′(k).

The complete integrals are actually multi-valued; to obtain single valued functions
it is necessary to introduce branch cuts. For K(k) and E(k) these are (−∞,−1] ∪
[1,+∞). The functions are continuous if the two components of the branch cut
are approached from the second and fourth quadrants respectively. For K′(k) and
E′(k) the branch cut is (−∞, 0] with continuity if the cut is approached from the
second quadrant. For more details, see Lawden [Law89] sections 8.12 to 8.14. The
principal values of K(k) and E(k) are even functions of k.

The numerical evaluation of the complete integrals is more robust and uses sym-
metric elliptic integrals. They should now work for all complex values of the mod-
ulus and return the principal value of the integral concerned. Note that for all
complex values of k, the well-known identities:

K′(k) = K(
√
1− k2) E′(k) = E(

√
1− k2).

are not actually valid for the principal values of the functions concerned. It is
necessary that ℜk >= 0 with in addition if ℜk = 0, ℑk >= 0. One of the
consequences of this is that the principal values of K′(k) and E′(k) are not even
functions.

General values for the four complete integrals together with the principal value
when ℜk < 0 are given in the table below, where n is an arbitrary integer,
k′ =

√
1− k2 and the expressions in the second and third columns refer always to

principal values:
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Function General Value Principal Value when ℜ(k) < 0
and when ℜ(k) = 0 and ℑ(k) < 0

K(k) K(k)− 2inK(k′) K(−k)
K′(k) K(k′)− 4inK(k) K(k′)∓ 2iK(−k)
E(k) E(k)− 2in(K(k′)− E(k′)) E(−k)
E′(k) E(k′)− 4in(K(k)− E(k)) E(k′)∓ 2i(K(−k)− E(−k))

In the third column the upper and lower alternative signs are taken when k lies in
the second and third quadrants respectively.

One quite subtle point arises: although the twelve Jacobi elliptic functions and
K(k) are even functions of the modulus k, the quarter period iK′(k) is not (see
the second row of the table above). If ℜ(k) > 0, then for example 4K(k) and
2iK′(k) = 2iK(k′) are primitive periods of sn(x, k). However, if we use −k as
the modulus, the first primitive period obtained is the same (since K(k) is an even
function) but the second is different namely: 2iK′(−k) = 2iK(k′)± 4K(k). This
explains why some of the values returned by the ‘eighth’ period rules for sn etc.
are not even functions of k.

Elliptic D

The Elliptic D function also comes with either one or two arguments; used with two
arguments as EllipticD(u,k) it will return the value of an alternative form of
Legendre’s Incomplete Elliptic Integral of the Second Kind:

D(ϕ, k) =

∫ ϕ

0

sin2 θ√
1− k2 sin2 θ

dθ.

When called with one argument EllipticD(k)will return the value of the Com-
plete Elliptic Integral of the Second Kind:

D(k) = D(π/2, k) =

∫ π/2

0

sin2 θ√
1− k2 sin2 θ

dθ.

The integrals of the first and second kind are related:

E(k) = K(k)− k2D(k), E(ϕ, k) = F(ϕ, k)− k2D(ϕ, k).

For all the elliptic integrals, rule lists are provided for simplification for special
values of the argument(s), differentiation with respect to either argument and shift
rules for the incomplete integrals so that their first argument lies in the range 0 <=
ϕ <= π/2.

If the arguments of the elliptic integral function are numeric and the switch
rounded is ON, the numerical value will be returned. As with Jacobi elliptic
functions, if any argument is complex then numerical evaluation will only occur if
the switch complex is also ON.
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Numerical evaluation should now succeed for all complex values of the arguments
provided, of course, the corresponding integral exists. The incomplete integrals
F(ϕ, k), E(ϕ, k), D(ϕ, k) and Π(ϕ, a, k) are all multi-valued as there are branch
points in the defining integrands when sin(ϕ) = ±1 and k sin(ϕ) = ±1.

For numerical evaluation when the first argument ϕ is complex there are issues
that arise which are absent when ϕ is real. One might use the the straight line
contour from θ = 0 to θ = ϕ, but this is leads to integrals that are difficult to
evaluate. When |ℜϕ| ≤ π/2, the change of variable x = sin θ is applied and the
value returned uses the straight line contour between x = 0 and x = sin(ϕ). This
will produce a different value if the loop formed by the two contours encloses a
branch point. When |ℜϕ| > π/2 the contour used is the straight line segment
along the real axis from 0 to the multiple of π nearest to ϕ followed by the straight
line segment from between x = 0 and x = sin(ϕ). When ϕ is real the contours in
the θ and x planes coincide. Other contours between the two endpoints will yield
different values depending on how the contour winds around the two branch points.

Note also that if the contour contains a branch point, there is sign ambiguity as
the branch point is crossed depending on which branch of the square root in the
integrand is chosen. It seems logical to choose the principal branch.

For example when k > 1 & 1/k < y < 1∫ y

0

dx√
1− x2

√
1− k2x2

is taken to be∫ 1/k

0

dx√
1− x2

√
1− k2x2

− i
∫ y

1/k

dx√
1− x2

√
k2x2 − 1

.

Elliptic Π

The Elliptic Π function can be used as EllipticPi( ) and will return the value
of the Elliptic Integral of the Third Kind.

The Elliptic Π function comes with either two or three arguments; when called
with three arguments EllipticPi(phi,a,k) will return the value of the In-
complete Elliptic Integral of the Third Kind:

Π(ϕ, a, k) =

∫ ϕ

0

(
(1− a2 sin2 θ)

√
1− k2 sin2 θ

)−1
dθ.

For −π/2 ≤ ℜϕ ≤ π/2, the incomplete integral may be written in the form:

Π(ϕ, a, k) =

∫ sinϕ

0

(
(1− a2t2)

√
(1− t2)(1− k2t2)

)−1
dt.
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When called with two arguments as EllipticPi(a,k) it will return the value
of the Complete Elliptic Integral of the Third Kind:

Π(a, k) = Π(π/2, a, k) =

∫ π/2

0

(
(1− a2 sin2 θ)

√
1− k2 sin2 θ

)−1
dθ

=

∫ 1

0

(
(1− a2t2)

√
(1− t2)(1− k2t2)

)−1
dt.

For certain values of a namely 0, ±1 and ±k the integrals reduce to elliptic inte-
grals of the first and second kinds.

20.20.5 Jacobi’s Elliptic Integrals

Jacobi E

The Jacobi E function can be used as jacobiE(u,k); it will return the value of
Jacobi’s form of the Incomplete Elliptic Integral of the Second Kind:

E(u, k) =
∫ u

0
dn2(v, k) dv.

The relationship between the two forms of incomplete elliptic integrals can be ex-
pressed as

E(u, k) = E(am(u), k).

Note that

E(k) = E(K(k), k) =

∫ K(k)

0
dn2(v, k) dv.

On a GUI that supports calligraphic characters (NB. this is now the case with the
CSL GUI), there is no problem and it is rendered as E(u, k) in accordance with
NIST usage. On non-GUI interfaces the Jacobi E function is rendered as E_j.

Jacobi’s Zeta Function

This can be called as jacobiZeta(u,k) and refers to Jacobi’s (elliptic) Zeta
function Z(u, k) whereas the operator Zeta will invoke Riemann’s ζ function. It
is closely related to Jacobi’s Epsilon function jacobie; in fact

Z(u, k) = E(u, k)− uE(k)/K(k).
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20.20.6 Symmetric Elliptic Integrals

The functions in this section are currently only intended for use for in the numerical
evaluation of the ‘classical’ elliptic integrals discussed above and in certain other
‘basic’ elliptic integrals. The switch rounded should be ON.

Symmetric elliptic integrals are a relatively new development in the theory of ellip-
tic functions mainly due to Carlson and his collaborators; an extensive bibliography
is available on the NIST Digital Library of Mathematical Functions starting at the
link DLMF:NIST, Bibliography. They have a number of advantages over more
traditional approaches; see for example Advantages of Symmetry.

The fundamental symmetric integrals are all integrals over the positive real line and
involve the function s(t) =

√
t+ x

√
t+ y

√
t+ z where x, y, z ∈ C\(−∞, 0] but,

except where otherwise stated, at most one of x, y, z may be zero.

RF(x, y, z) =
1

2

∫ ∞

0

dt

s(t)

RG(x, y, z) =
1

4

∫ ∞

0

1

s(t)

(
x

t+ x
+

y

t+ y
+

z

t+ z

)
tdt

RJ(x, y, z, p) =
3

2

∫ ∞

0

dt

s(t)(t+ p)

RD(x, y, z) =
3

2

∫ ∞

0

dt

s(t)(t+ z)
z ̸= 0, x+ y ̸= 0

RC(x, y) =
1

2

∫ ∞

0

dt√
t+ x)(t+ y)

y ̸= 0

The first three integrals defined above are symmetric in x, y, z and are termed sym-
metric elliptic integrals of the first, second and third kinds respectively. RD and
RC are degnerate versions of RJ and RF respectively as

RD(x, y, z) = RJ(x, y, z, z) RC(x, y) = RF(x, y, y)

RD is an elliptic integral of the second kind and is only symmetric in x, y whilst
RC is an elementary integral, but can be numerically evaluated efficiently without
needing to distinguish between the trigonometric and hyperbolic cases. For certain
special values of p the integral RJ of the third kind degenerates into integrals of
the first and second kinds. For numeric evaluations it turns out that the use of
RD is more convenient than that of RG (which is not currently implemented in
REDUCE). For more information see §19.15-19.29 of the DLMF:NIST.

The Legendre elliptic integrals may all be expressed in terms of the symmetric

https://dlmf.nist.gov/bib/C#bib449
https://dlmf.nist.gov/19.15
https://dlmf.nist.gov/19#PT3
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integrals; the complete integrals satisfy

K(k) = RF(0, k′2, 1)

D(k) = RD(0, k′2, 1)/3

E(k) = RF(0, k′2, 1)− k2RD(0, k′2, 1)/3

Π(a, k) = RF(0, k′2, 1) + a2RJ(0, k′2, 1, 1− a2)/3

where here and below k′ =
√
1− k2. For the incomplete integrals, defining s =

sinϕ with −π/2 ≤ ℜϕ ≤ π/2, we have

F(ϕ, k) = sRF(1− s2, 1− k2s2, 1)
D(ϕ, k) = s3RD(1− s2, 1− k2s2, 1)/3
E(ϕ, k) = F(ϕ, k)− k2s3RD(1− s2, 1− k2s2, 1)/3

Π(ϕ, a, k) = F(ϕ, k) + a2s3RJ(1− s2, 1− k2s2, 1, 1− a2s2)/3

The above formulae are only valid when the range of integration does not include
one or more branch points of the integrand (when s is real and s2 > 1 or when ks
is real and (ks)2 > 1). In these cases it is necessary to split the range of integration
at the branch points resulting in two or three elliptic integrals.

Currently the Carlson’s duplication method is used to evaluate the symmetric el-
liptic integrals of the first, second and third kinds RF, RD and RJ (and also the
related elementary integral RC). For more details see the DLMF website: Dupli-
cation Method. In particular the REDUCE code is essentially a translation from
Fortran of the code of Carlson & Notis [CN81] generalised for complex arguments
and structured to avoid GO TO.

Alternatively the symmetric integral RF may be evaluated using a sequence of
quadratic transformations which converge rapidly to the elementary hyperbolic in-
tegral:

RC(X2 + Y 2, X2) = RF(X2, X2, X2 + Y 2) = arctanh(Y/(X2 + Y 2))/Y.

More information on this method due to Carlson in the 1990’s may be found on the
DLMF website: Quadratic Transformations.

Basic Elliptic Integrals

Elliptic integrals involving the square root s(t) of a cubic or quartic polynomial
in which the range of integration is an arbitrary interval [y, x] of the real line are
considered. Again there are three basic kinds: first, second and third. Carlson
[Car88] & [Car99] showed how each of these can be expressed as a fundamental

https://dlmf.nist.gov/19.36#i
https://dlmf.nist.gov/19.36#i
https://dlmf.nist.gov/19.36#ii
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symmetric elliptic integral of the corresponding kind over the range [0,∞). Let

Xα =
√
aα + bαx 1 ≤ α ≤ 5

Yβ =
√
aβ + bβy 1 ≤ β ≤ 5

dαβ = aαbβ − aβbα dαβ ̸= 0 if α ̸= β

s(t) =
∏4

α=1

√
aα + bαt

and where the four line segments with end points aα + bαy and aα + bαx for
1 ≤ α ≤ 4 lie in C \ (−∞, 0). Note that if s(t) is a cubic then one simply chooses
supplies unity i.e. aα = 1, bα = 0 as a fourth factor of s(t).

Then integrals of the first and second kinds take the form:∫ x

y

dt

s(t)
= 2RF(U2

12, U
2
13, U

2
23)∫ x

y

(a1 + b1t)dt

(a4 + b4t)s(t)
=

2

3
d12d14RD(U2

12, U
2
13, U

2
23) +

2X1Y1
X4Y4U23

if U23 ̸= 0

where in the second equation we have chosen (wlog) the distinguished factors to
have indices 1 & 4.

For any permutation α, β, γ, δ of 1,2,3,4, let

Uαβ = (XαXβYγYδ +XγXδYαYβ)/(x− y) for x, y finite

=
√
bα
√
bβYγYδ + YαYβ

√
bγ
√
bδ for x =∞

= XαXβ

√
−bγ

√
−bδ +XγXδ

√
−bα

√
−bβXγ for y = −∞

Clearly Uαβ = Uβα = Uγδ = Uδγ and at most one of U12, U13, U23 is zero since
U2
αβ − U2

αγ = dαδdβγ ̸= 0, thus at most one of the parameters of RF and RD
is zero. If X4 or Y4 is zero,that is if a4 + b4t vanishes at one end of the range of
integration, the integral of the second kind diverges.

In the ‘awkward’ case when U23 = 0 or U2
12 + U2

13 = 0, the above method breaks
down. However it is still possible to calculate the required integral; choose β = 2
or β = 3 so that bβ ̸= 0 and note that

bβ

∫
(a1 + b1t)dt

(a4 + b4t)s(t)
− b1

∫
(aβ + bβt)dt

(a4 + b4t)s(t)
= d1β

∫
dt

(a4 + b4t)s(t)

b4

∫
(aβ + bβt)dt

(a4 + b4t)s(t)
− bβ

∫
(a4 + b4t)dt

(a4 + b4t)s(t)
= dβ4

∫
dt

(a4 + b4t)s(t)
.

The second term on the lhs of the second equation reduces to bβ
∫
1/s(t)dt and so

is an integral of the first kind. Thus the required integral can be expressed in terms
of an integral of the second kind and one of the first kind.

Integrals of the third kind take the form∫ x

y

(a1 + b1t)dt

(a5 + b5t)s(t)
=

2d12d13d14
3d15

RJ(U2
12, U

2
13, U

2
23, U

2
15) + RC(S2

15, Q
2
15)
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where

S15 =

(
X2X3X4

X1
Y 2
5 +

Y2Y3Y4
Y1

X2
5

)
/(x− y) for x, y finite

=
X2X3X4

X1
Y 2
5 +

Y2Y3Y4
Y1

X2
5 for x =∞ or y = −∞

U2
15 = U2

1β −
d1γd1δdβ5

d15
= U2

βγ −
d1βd1γdδ5

d15
̸= 0

Q2
15 =

(X5Y5)
2

(X1Y1)2
U2
15 where S2

15 −Q2
15 =

d25d35d45
d15

̸= 0

where β, γ, δ is a permutation of 2,3,4. Again at most one of the parameters of RJ
is zero. This method will break down when calculating S15 if a1 + b1t vanishes at
either the upper or lower limit of integration as either X1 or Y1 is zero. However
the situation can be remedied by choosing β so that Xβ ̸= 0, Yβ ̸= 0 and bβ ̸= 0
and using similar methods to that used for the awkward case for integrals of the
second kind.

Note if the integration range is (−∞,+∞), the above formulae for integrals of all
three kinds are not valid and the integral needs to be split into two at, say, zero.
Similarly if the integration range is such that the integrand has branch points, the
integration range will need to be split into two at each of these branch points.

In REDUCE elliptic integrals of the three kinds may be evaluated numeri-
cally when the switch rounded is ON by calling the functions ellint_1st,
ellint_2nd and ellint_3rd. The first two parameters are the lower and up-
per limits of the integration range; these are followed by 4 (or 5 for ellint_3rd)
two-element lists {a1, b1}, {a2, b2} . . ..

Known bug: As pointed out by Carlson & FitzSimmons [CF00], the algorithms
for RF & RJ may break down when s(t) is the product of two quadratic factors
each with complex conjugate zeros x1±iy1 & x2±iy2. One of the three quantities
U12, U13, U23 may be negative and this causes the algorithm to return an incorrect
result. This error only arises when the crossing point (neccessarily real) of the
diagonals of the parallellogram in the complex plane formed by the four zeros of
s(t) lies inside the range of integration. The algorithm also appears to produce
the correct result when the crossing point is inside the range of integration but is
‘sufficiently close’ to either end of the range – the precise condition appears to be
unknown. In the same paper Carlson & FitzSimmons propose a modified algorithm
of the same ilk to overcome these difficulties, however it is yet to be implemented
in REDUCE.

Some Examples

In this subsection some of the advantages of symmetry are illustrated; the formula
for the integral of the first kind replaces the 28 formulae in Gradshteyn and Ryzhik.
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For the cubic case one of the factors in s(t) is simply taken to be unity whilst for
cases of the form ∫ β

α

dx√
(a+ bx2)(c+ dx2)

one must use the substitution t = x2 to obtain

1

2

∫ β2

α2

dt√
t(a+ bt)(c+ dt)

Moreover the restriction that one limit of integration be a branch point of the inte-
grand is eliminated without doubling the number of standard integrals in the result.
Similarly the formula for the integral of the second kind replaces no less than 144
cases in Gradshteyn and Ryzhik (72 each for the quartic and cubic cases). For cases
where the numerator in the integrand is unity one simply takes a1 = 0, b1 = 1 and
if there is to be no apparent term of the form (a4 + b4t)

3/2 in its denominator one
takes a4 = 0, b4 = 1.

When 0 ≤ ϕ ≤ π/2, the fundamental integrals of the first, second and third kinds
F(ϕ, k), E(ϕ, k), D(ϕ, k) and Π(ϕ, a, k) may be written as

F(ϕ, k) =
1

2

∫ s2

0

dt√
t(1− t)(1− k2t)

E(ϕ, k) =
1

2

∫ s2

0

√
1− k2tdt√
t(1− t)

D(ϕ, k) =
1

2

∫ s2

0

√
tdt√

(1− t)(1− k2t)

Π(ϕ, a, k) =
1

2

∫ s2

0

dt√
t(1− t)(1− k2t)(1− a2t)

where in all four cases use has been made of the substitution t = sin2 θ and s =
sinϕ. In the last three equations one takes a4 = 1, b4 = 0 so that the fourth factor
in s(t) is unity and in the fourth equation one also takes a1 = 1, b1 = 0.

20.20.7 Some Numerical Utility Functions

Five utility functions are provided:

• nome2mod(q)

• nome2mod!′(q)

• nome2!K(q)

• nome2!K!′(q)
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• nome(k)

These are only operative when the switch rounded is on and their argument is
numerical. The first pair relate the nome q of the theta functions with the moduli k
and k′ =

√
1− k2 of the associated Jacobi elliptic functions.

The second pair return the quarter periods K and K′ respectively of the Jacobi
elliptic functions associated with the nome q.

Finally, nome(k) returns the nome q associated with the modulus k of a Jacobi
elliptic function and is essentially the inverse of nome2mod.

20.20.8 Jacobi Theta Functions

These theta functions differ from those originally defined by Lisa Temme in a num-
ber of respects. Firstly four separate functions of two arguments are defined:

• elliptictheta1(u,tau) ϑ1(u, τ)

• elliptictheta2(u,tau) ϑ2(u, τ)

• elliptictheta3(u,tau) ϑ3(u, τ)

• ellipticthetas(u,tau) ϑ4(u, τ)

rather than a single function with three arguments (with the first argument taking
integer values in the range 1 to 4). Secondly the periods are 2π, 2π, π and π re-
spectively (NOT 4K, 4K, 2K and 2K). Thirdly the second argument is the modulus
τ = a+ ib where b = ℑτ > 0 and hence the quasi-period of the theta functions is
πτ .

The second parameter was previously the nome q = eiπτ where |q| < 1 since
ℑτ > 0. As a consequence elliptictheta1 and elliptictheta2
were multi-valued owing to the appearance of q1/4 in their defining expansions.
elliptictheta3 and elliptictheta4 were, however, single-valued func-
tions of q.

Regarded as functions of τ , elliptictheta1 and elliptictheta2 are
single-valued functions. The nome is given by q = exp(iπτ) so that the con-
dition ℑ(τ) > 0 ensures that |q| < 1. Note also in this case q1/4 is inter-
preted as exp(iπτ/4) rather than the principal value of q1/4. Thus, τ , 2 + τ ,
4 + τ and 6 + τ produce four different values of both elliptictheta1 and
elliptictheta2 although they all correspond to the same nome q.
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The four theta functions are defined by their Fourier series:

ϑ1(z, τ) = 2eiπτ/4
∞∑
n=0

(−1)nqn2+n sin(2n+ 1)z

ϑ2(z, τ) = 2eiπτ/4
∞∑
n=0

qn
2+n cos(2n+ 1)z

ϑ3(z, τ) = 1 + 2
∞∑
n=1

qn
2
cos 2nz

ϑ4(z, τ) = 1 + 2

∞∑
n=1

(−1)nqn2
cos 2nz.

Utilising the periodicity and quasi-periodicity of the theta functions some gener-
alised shift rules are implemented to shift their first argument into the base period
parallelogram with vertices

(π/2, πτ/2), (−π/2, πτ/2), (−π/2,−πτ/2), (π/2,−πτ/2).

Together with the relation ϑ1(0, τ) = 0, these shift rules serve to simplify all four
theta functions to zero when appropriate.

Numerical Evaluation

When the switch rounded is ON and the arguments are purely numerical, the
theta functions are evaluated numerically. Note that as the modulus τ is necessarily
complex with a positive imaginary part, the switch complex should normally be
ON.

However, there is one exception if the second parameter is purely real and lies
between 0 and 1, it is interpreted as the nome q rather than the modulus. This ex-
ception facilitates the evaluation and graphing of theta functions in the case when
both the argument and the nome are real which occurs frequently in practical ap-
plications. Theta functions are not defined if the second parameter has a negative
imaginary part or if it is real and <= 0 or >= 1 and the numerical evaluation fails.

In what follows a and b will denote the real and imaginary parts of τ respectively
and so |q| = exp(−πb) and arg q = πa. The series for the theta functions are
fairly rapidly convergent due to the quadratic growth of the exponents of the nome
q – except for values of q for which |q| is near to 1 (i.e. b = ℑτ close to zero). In
such cases the direct algorithm would suffer from slow convergence and rounding
errors. For such values of |q|, Jacobi’s transformation τ ′ = −1/τ can be used to
produce a smaller value of the nome and so increase the rate of convergence. This
works very well for real values of q, or equivalently for τ purely imaginary since
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q′ = q1/b
2
, but for complex values the gains are somewhat smaller. The Jacobi

transformation produces a nome q′ for which |q′| = |q|1/(a2+b2).

When ℜq < 0, the Jacobi transformation is preceded by either the modular trans-
formation τ ′ = τ + 1 when ℑq < 0, or τ ′ = τ − 1 when ℑq > 0, which both
have the effect of multiplying q by −1, so that the new nome has a non-negative
real part and |a| ≤ 1/2. Thus the worst case occurs for values of the nome q near
to ±i where |q′| ≈ |q|4.

By using a series of Jacobi transformations preceded, if necessary by τ -shifts to
ensure |a| <= 1/2, |q| may be reduced to an acceptable level. Somewhat arbi-
trarily these Jacobi’s transformations are used until b > 0.6 (i.e. |q| < 0.15). This
seems to produce reasonable behaviour. In practice more than two applications of
Jacobi transformations are rarely necessary.

The previous version of the numerical code returned the principal values of ϑ1 and
ϑ2, that is the ones obtained by taking the principal value of q1/4 in their series
expansions. The current version replaces q1/4 by exp(iπτ/4). If the principal
value is required, it is easily obtained by multiplying by the ‘correcting’ factor
q1/4 exp(−iπτ/4).

Derivatives of Theta Functions

Four functions are provided:

• theta1d(u,ord,tau)

• theta2d(u,ord,tau)

• theta3d(u,ord,tau)

• theta4d(u,ord,tau)

These return the dth derivatives of the respective theta functions with respect to
their first argument u; the third parameter τ is as for theta functions; either the
modulus if ℑτ > 0 or the nome if τ is real and lies between 0 and 1. These func-
tions are only triggered when the switch rounded is ON and their arguments are
numeric with d being a positive integer. They are provided mainly to support the
implementation the Weierstrassian and Sigma functions discussed in the following
subsection.

The numeric code simply sums the Fourier series for the required derivatives. Un-
like the theta functions themselves the code does not use the quasi-periodicity nor
modular transformations to speed up the convergence of the series by reducing the
sizes of ℑu and |q|. In the numerical evaluation of the Weierstrassian and Sigma
functions these functions are only called after the necessary shifts of the argument
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u and modular transformations of τ have been performed. These are much simpler
in this context.

Nevertheless they may be used from top level and numerical experiments reveal
that the rounding errors are not significant provided |q| is not near one (say |q| <
0.9) and u is real or at least has a relatively small imaginary part.

20.20.9 Weierstrass Elliptic & Sigma Functions

Three main functions of three arguments are defined:

• ℘(u, ω1, ω3) — weierstrass(u,omega1,omega3)

• ζw(u, ω1, ω3) — weierstrassZeta(u,omega1,omega3)

• σ(u, ω1, ω3) — weierstrass_sigma(u,omega1,omega3)

The notation used is broadly similar used by Lawden [Law89] which is also used in
the NIST Digital Library of Mathematical Functions DLMF:NIST. However, ζw is
used for the Weierstrassian Zeta function to distinguish it from the Riemann Zeta
function and the usual symbol ℘ is used for the Weierstrassian elliptic function
itself.

The two primitive periods of the Weierstrass function are 2ω1 and 2ω3 and these
must satisfy ℑ(ω3/ω1) ̸= 0. The two periods are normally numbered so that
τ = ω3/ω1 has a positive imaginary part and hence the nome q = exp(iπτ)
satisfies |q| < 1.

Any linear combination Ωm,n = 2mω1 + 2nω3 where m and n are integers (not
both zero) is also a period. The set of all such periods plus the origin form a lattice.
In the literature −(ω1 + ω3) is often denoted by ω2 and 2ω2 is clearly also a half-
period; this accounts for the gap in the numbering of primitive periods. The period
ω2 is little used in the REDUCE rule sets for the Weierstrassian elliptic and related
functions.

The primitive periods are not unique; indeed any periods 2Ω1 and 2Ω3 defined by
the unimodular integer bilinear transformation:

Ω1 = aω1 + bω3, Ω3 = cω1 + dω3, where ad− bc = 1

are also primitive. This fact is very useful in the numerical evaluation of the Weier-
strassian and Sigma functions as a sequence of such transformations may be used
to increase the size ℑτ and so reduce the size of |q|. Thus the Fourier series for the
theta functions and their derivatives will converge rapidly. In theory these transfor-
mations may be used to reduce the size of |q| until ℑτ ≥

√
3/2 when |q| < 0.06.

However, in numerical evaluations in REDUCE it is sufficient to use these trans-
formations only until ℑτ > 0.7, i.e. until |q| < 0.11. In practice only two or three

https://dlmf.nist.gov/
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iterations are required and usually very much smaller values of |q| are achieved
particularly when τ is purely imaginary i.e. q is real.

The Weierstrassian function is even and has a pole of order 2 at all lattice points.
The Zeta and Sigma functions are only quasi-periodic on the lattice. Zeta is odd
and has simple poles of residue 1 at all lattice points. The basic Sigma function
σ(u, ω1, ω3) is odd and regular everywhere as is the function ϑ1(u, τ) to which it
is closely related. It has zeros at all lattice points. All three functions ℘, ζw and σ
are homogenous of degrees −2, −1 and +1 respectively. The functions are related
by

℘(u) = −ζ ′w(u), ζw(u) = σ′(u)/σ(u),

where the lattice parameters have been omitted for conciseness.

Rule sets are provided which implement all the properties such as double period-
icity discussed above. The rule for the derivative of the Weierstrass function has
recently been corrected; it involves the square root of 4℘(u)3 − g2℘(u) − g3 and
to allow for the ambiguity of the sign of the square root it includes an operator
epsilon_w whose value is either +1 or −1. Its value changes at the poles of the
Weierstrass function, at points where the value of the Weierstrass function is one
of the three lattice roots e1, e2 or e3 and also where 4℘(u)3−g2℘(u)−g3 becomes
negative as its square root has a branch cut there.

For numerical evaluation the switches rounded and complex must both be ON
and all three parameters of the Weierstrassian functions must be numeric. It is not,
however, necessary to ensure ℑ(ω3/ω1) > 0 as the second and third parameters
will be swapped if required. Numerical evaluation of ϵw has now been imple-
mented for all complex values of its three parameters, but currently it should be
regarded as somewhat experimental; it uses fairly crude numerical approximations
to the derivative in order to choose the sign of thecorrect branch of the square root.
By and large the literature does not discuss how the sign may be determined for
general complex values of the arguments. One exception is the Dover Handbook
of Mathematical Functions[AS72] which gives a prescription (without proof) only
for the special cases where the lattice associated with the Weierstrass function is
either rectangular or rhombic, i.e. when the invariants g2 and g3 are real.

Alternative forms of the Weierstrass Functions

Three commonly used alternative forms of the Weierstrassian functions in which
they are regarded as functions of the lattice invariants g2 and g3 rather than the
primitive half-periods ω1 and ω3 are provided:

• ℘(u | g2, g3) — weierstrass1(u,g2,g3)

• ζw(u | g2, g3) — weierstrassZeta1(u,g2,g3)
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• σ(u | g2, g3) — weierstrass_sigma0(u,g2,g3).

Note the trailing zero rather than 1 in the third of these functions to avoid a clash
with the notation for the other sigma functions below. Note also that for output
they are distinguished by separating the first and second arguments by a vertical
bar rather than a comma.

The rule for differentiation of this variant of the Weierstrass function involves the
operator epsilon_w1 whose value is either +1 or −1 and is analogous to the
operator epsilon_w.

If the arguments of the Weierstrassian and sigma are all numeric, the functions will
only be evaluated if both rounded and complex are ON. The only exceptions
are the functions weierstrass1, weierstrassZeta1 and weierstrass_sigma0; these are
real-valued for real arguments and if all three arguments are real it suffices that
the switch rounded is ON. Similar remarks apply to those lattice functions (see
below) which are functions of the lattice invariants g2 and g3. Numerical evaluation
of ϵw1 has now been implemented for all complex values of its three parameters
as for ϵw although for real values of its three parameters it suffices that the switch
ROUNDED is on.

Numerical Evaluation

If the discriminant g32−27g23 vanishes, the functions Weierstrass1, WeierstrassZeta
and Weierstrass_sigma0 become elementary:

℘(u|4b4/3, 8b6/27) = b2(cosec2(bu)− 1/3)

℘(u|4b4/3,−8b6/27) = b2(cosech2(bu) + 1/3)

ζw(u|4b4/3, 8b6/27) = b(cot(bu) + bu/3)

ζw(u|4b4/3,−8b6/27) = b(coth(bu)− bu/3)
σ(u|4b4/3, 8b6/27) = exp(b2u2/6) sin(bu)

σ(u|4b4/3,−8b6/27) = exp(−b2u2/6) sinh(bu)

where b is an arbitrary complex constant chosen for typographical simplicity. In
these cases the Weierstrass function becomes singly periodic, the other period be-
coming infinite.

Laurent Series Expansions

Currently the Weierstrass and Weierstrass Zeta functions may be expanded as
power series using the extendible power series package tps. The expansions about
zero and the points mω1 + nω3 for integer m and n are informative whilst those
about other points whilst correct are not. Power series expansion of the Weier-
strass function about points where it vanishes (there are two such points in each
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fundamental parallelogram) is also of interest. Currently the Weierstrass Sigma
functions (described below) cannot be expanded using tps and result in rather inel-
egant errors.

Currently using the taylor package the expansions of the Weierstrass, Weierstrass
Zeta and Weierstrass Sigma about zero and 2mω1 + 2nω3 are incorrect whilst
those about the mid-lattice points mω1 + nω3 are formally correct, but not fully
simplified.

Other Sigma Functions

Three further Sigma functions are also provided:

• σ1(u, ω1, ω3) — weierstrass_sigma1(u,omega1,omega3)

• σ2(u, ω1, ω3) — weierstrass_sigma2(u,omega1,omega3)

• σ3(u, ω1, ω3) — weierstrass_sigma3(u,omega1,omega3)

These are all even functions, regular everywhere, homogenous of degree zero and
doubly quasi-periodic. They are closely related to the theta functions ϑ2, ϑ3 and
ϑ4 respectively; but note the difference in numbering. For more information on
the properties these sigma functions, see Lawden [Law89]; they do not appear in
the NIST Digital Library of Mathematical Functions, but are included here for
completeness. These three functions have no corresponding versions where the
second and third arguments are the lattice invariants g2 and g3.

Quasi-Period Factors & Lattice Functions

Ten functions are provided:

• e1(ω1, ω3) — lattice_e1(omega1, omega3);

• e2(ω1, ω3) — lattice_e2(omega1, omega3);

• e3(ω1, ω3) — lattice_e3(omega1, omega3);

• g2(ω1, ω3) — lattice_g2(omega1, omega3);

• g3(ω1, ω3) — lattice_g3(omega1, omega3);

• ∆(ω1, ω3) — lattice_delta(omega1, omega3);

• G(ω1, ω3) — lattice_g(omega1, omega3);

• η1(ω1, ω3) — eta1(omega1, omega3);
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• η2(ω1, ω3) — eta2(omega1, omega3);

• η3(ω1, ω3) — eta3(omega1, omega3).

These are operative when the switches rounded and complex are ON and their
arguments are numerical. The first three are referred to as lattice roots and are
related to the invariants g2, g3, the discriminant ∆ = g32 − 27g23 and a closely
related invariant G = g32/(27g

2
3) of the Weierstrassian elliptic function ℘. The

lattice roots also appear in the numerical evaluation of the Weierstrass function.
These lattice roots satisfy:

e1 + e2 + e3 = 0, g2 = 2(e21 + e22 + e23), g3 = 4e1e2e3.

If the discriminant ∆ vanishes or equivalently if G = 1, there are at most two
distinct lattice roots and the elliptic function degenerates to an elementary one.
The advantage of the invariant G is that it is a function of τ = ω3/ω1 only.

The remaining three functions eta1, eta2 & eta3 appear in the rules for the
quasi-periodicity of the four sigma functions and of the Weierstrassian Zeta func-
tion. They are also used in the numerical evaluation of these functions when the
switches rounded and complex are ON. The quasi-period relations are:

ζw(u+ 2ωj) = ζw(u) + 2ηj

σ(u+ 2ωj) = −exp(2ηj(u+ ωj))σ(u)

σk(u+ 2ωj) = exp(2ηj(u+ ωj))σk(u) if j ̸= k

σj(u+ 2ωj) = −exp(2ηj(u+ ωj))σj(u)

ζw(ωj) = ηj

σj(ωj) = 0,

where the lattice parameters have been omitted for conciseness and j, k = 1 . . . 3.
The quasi-period factors satisfy

η1 + η2 + η3 = 0, η1ω3 − η3ω1 = η2ω1 − η1ω2 = η3ω2 − η2ω3 = iπ/2.

Nine functions are provided which depend on the lattice invariants g2 and g3 rather
than the lattice half-periods:

• e1(|g2, g3) — lattice1_e1(g2, g3);

• e2(|g2, g3) — lattice1_e2(g2, g3);

• e3(|g2, g3) — lattice_e3(g2, g3);

• ω1(|g2, g3) — lattice_omega1(g2, g3);

• ω2(|g2, g3) — lattice_omega2(g2, g3);
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• ω3(|g2, g3) — lattice_omega3(g2, g3);

• η1(|g2, g3) — eta_1(g2,g3);

• η2(|g2, g3) — eta_2(g2,g3);

• η3(|g2, g3) — eta_3(g2,g3);

The first three return the lattice roots, the second triple return the three lattice half-
periods and the final three return the quasi-period factors. As with the alternative
Weierstrass functions which depend on the invariants, these nine functions are dis-
tinguished from the similar functions depending on the periods by preceding their
arguments with a vertical bar.

As well as the scalar-valued functions discussed above in this section, there are six
functions which return a list as their value:

• lattice_roots(omega1,omega3) — returns {e1, e2, e3}

• lattice_invariants(omega1,omega3)— returns {g2, g3, ∆, G};

• quasi_period_factors(omega1,omega3)— returns {η1, η2, η3};

• lattice_generators(g2,g3) — returns {ω1, ω3}.

• lattice1_roots(g2,g3) — returns {e1, e2, e3}

• quasi_periods(g2,g3) — returns {η1, η2, η3}.

The first three depend on the lattice half-periods ω1 and ω3 whilst the fourth, fifth
and sixth are functions of the invariants g2 and g3. These list-valued functions
are actually more efficient than calling the corresponding scalar-valued functions
individually. These functions are only useful when the switches rounded and
complex are ON and their arguments are all numerical. Note that the call se-
quence:

lattice_generators(g2,g3);
lattice_invariants(first ws, second ws);
{first ws, second ws};

should reproduce the list {g2, g3}, perhaps with small rounding errors. The corre-
sponding sequence with the function lattice_generators being called after
lattice_invariants (and g2 & g3 replaced by w1 & w3), in general, will
not produce the same pair of lattice generators since the generators are only defined
up to a unimodular bilinear integer transformation.

For details of the algorithm used to calculate the lattice generators from the invari-
ants see the DLMF:NIST chapter on Lattice Calculations.

https://dlmf.nist.gov/23.22#ii
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20.20.10 Inverse Jacobi Elliptic Functions

The following inverses of the 12 Jacobi elliptic functions are available:-

• arcsn(u,k)

• arcdn(u,k)

• arccn(u,k)

• arccd(u,k)

• arcsd(u,k)

• arcnd(u,k)

• arcdc(u,k)

• arcnc(u,k)

• arcsc(u,k)

• arcns(u,k)

• arcds(u,k)

• arccs(u,k)

Thus, for example,

jacobisn(arcsn(x, k), k) --> x
jacobisc(arcsc(x, k), k) --> x

A rule list is provided to simplify these functions for special values of their ar-
guments such x = 0, k = 0 and k = 1, to implement the inverse function sim-
plification formulae illustrated immediately above and for differentiation of these
functions with respect to their two arguments.

Note that arccs is not defined to be an odd function of its first argument unlike cs.
Instead it is taken to satisfy:

arccs(−x, k) = 2K(k)− arccs(x, k).

This is analogous to the situation in Reduce for acot where

arctan(−x) = −arctan(x), arccot(−x) = π − arccot(x).

This choice means that the range of (real) principal values of arccs is connected –
it is the open set (0, 2K(k)).
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When their arguments are numerical, these functions will be evaluated numeri-
cally if the rounded switch is ON. Note that in some cases the result may have
an imaginary part even if both arguments are real, hence the switch complex is
always turned ON temporarily during numerical evaluation and afterwards restored
to its original value.

Note also that for arcdn and arcnd a zero value of the modulus k is excluded (since
dn(x, 0) = nd(x, 0) = 1 ∀x).

As the Jacobi elliptic functions are doubly periodic, their inverse functions are
multi-valued. The numerical value returned is the principal value v which lies in
the parallelogram in the complex plane whose vertices are given in the table below.
Other values of the inverse functions are indicated in the fifth column of the table
below where m and n are arbitrary integers.

Function Quarter Periods Principal Other
p q Parallelogram Values

arcsn K iK′ −(p+ q), −p+ q, 2mp+ 2nq + (−1)mv
p+ q, p− q

arccn K K+ iK′ −q, q, 2p+ q, 2p− q 4mp+ 2nq ± v
arcdn iK′ K 0, 2p, 2(p+ q), 2q 2mq + 4np± v
arcns K iK′ −(p+ q), −p+ q, 2mp+ 2nq + (−1)mv

p+ q, p− q
arcnc K K + iK′ −q, q, 2p+ q, 2p− q 4mp+ 2nq ± v
arcnd iK′ K 0, 2p, 2(p+ q), 2q 2mq + 4np± v
arccd K iK′ −q, q, 2p+ q, 2p− q 4mp+ 2nq ± v
arcdc K iK′ −q, q, 2p+ q, 2p− q 4mp+ 2nq ± v
arcsd K K+ iK′ −(p+ q), −p+ q, 2mp+ 2nq + (−1)mv

p+ q, p− q
arcds K K + iK′ −(p+ q), −p+ q, 2mp+ 2nq + (−1)mv

p+ q, p− q
arcsc iK′ K −(p+ q), −p+ q, 2mq + 2nq + (−1)nv

p+ q, p− q
arccs iK′ K −p, p, p+ 2q, −p+ 2q 2mq + 2nq + (−1)nv

When both arguments are real and |k| <= 1 and when there are certain restrictions
on the range of the first parameter x (see the table below), then the principal value
of the inverse function is real. It lies in the range given in the third column of the
table below. (c.f. the inverse trigonometric functions). In these cases the integrand
in the defining integral has no branch points and a faster algorithm which uses only
real arithmetic is adopted. Other real values of the inverse functions are indicated
in the fourth column of the table below where n is an arbitrary integer.
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Fn Domain Principal Value v Other real values
arcsn: |x| ≤ 1 −K(k) ≤ v ≤ K(k) 2nK(k) + (−1)nv
arccn: |x| ≤ 1 0 ≤ v ≤ 2K(k) 4nK(k)± v
arccd: |x| ≤ 1 0 ≤ v ≤ 2K(k) 4nK(k)± v
arcns: |x| ≥ 1 −K(k) ≤ v ≤ K(k) & v ̸= 0 2nK(k) + (−1)nv
arcnc: |x| ≥ 1 0 ≤ v ≤ 2K(k) & v ̸= K(k) 4nK(k)± v
arcdc: |x| ≥ 1 0 ≤ v ≤ 2K(k) & v ̸= K(k) 4nK(k)± v
arcdn: k′ ≤ x ≤ 1 0 ≤ v ≤ K(k) 2nK(k)± v
arcnd: 1 ≤ x ≤ 1/k′ 0 ≤ v ≤ K(k) 2nK(k)± v
arcds: |x| ≥ k′ −K(k) ≤ v ≤ K(k) & v ̸= 0 2nK(k) + (−1)nv
arcsd: |x| ≤ 1/k′ −K(k) ≤ v ≤ K(k) 2nK(k) + (−1)nv
arcsc: x ∈ R −K(k) < v < K(k) 2nK(k) + v
arccs: x ∈ R 0 < v < 2K(k) 2nK(k) + v (v ̸= 0)

The numerical values of the inverse functions are calculated by expressing them in
terms of the symmetric elliptic integral:

RF (x, y, z) =

∫ ∞

0
1/
√

(t− x)(t− y)(t− z) dt.

For more details see the DLMF website: Inverse Jacobian Elliptic Functions.

https://dlmf.nist.gov/19.25#v
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20.20.11 Table of Elliptic Functions and Integrals

Function Operator

am(u, k) jacobiam(u,k)
sn(u, k) jacobisn(u,k)
dn(u, k) jacobidn(u,k)
cn(u, k) jacobicn(u,k)
cd(u, k) jacobicd(u,k)
sd(u, k) jacobisd(u,k)
nd(u, k) jacobind(u,k)
dc(u, k) jacobidc(u,k)
nc(u, k) jacobinc(u,k)
sc(u, k) jacobisc(u,k)
ns(u, k) jacobins(u,k)
ds(u, k) jacobids(u,k)
cs(u, k) jacobics(u,k)

Inverse Functions of the above:
arcsn(u, k) arcsn(u,k)
arccn(u, k) arccn(u,k)

...
arccs(u, k) arccs(u,k)

Complete Integral
(1st kind) K(k) ellipticK(k)

K′(k) ellipticK!’(k)
Incomplete Integral

(1st kind) F(ϕ, k) ellipticF(phi,k)
Complete Integral

(2nd kind) E(k) ellipticE(k)
E′(k) ellipticE!’(k)

Legendre Incomplete
Integral (2nd kind) E(u, k) ellipticE(u,k)

Alternative Incomplete
Integral (2nd kind) D(u, k) ellipticD(u,k)

Jacobi Incomplete
Integral (2nd kind) E(u, k) jacobiE(u,k)

Jacobi’s Zeta Z(u, k) jacobiZeta(u,k)
ϑ1(u, τ) elliptictheta1(u,tau)
ϑ2(u, τ) elliptictheta2(u,tau)
ϑ3(u, τ) elliptictheta3(u,tau)
ϑ4(u, τ) elliptictheta4(u,tau)

℘(u, ω1, ω3) weierstrass(u,omega1,omega3)
ζw(u, ω1, ω3) weierstrassZeta(u,omega1,omega3)
σ(u, ω1, ω3) weierstrass_sigma(u,omega1,omega3)
σ1(u, ω1, ω3) weierstrass_sigma1(u,omega1,omega3)
σ2(u, ω1, ω3) weierstrass_sigma2(u,omega1,omega3)
σ3(u, ω1, ω3) weierstrass_sigma3(u,omega1,omega3)
℘(u | g2, g3) weierstrass1(u,g2,g3)
ζw(u | g2, g3) weierstrassZeta1(u,g2,g3)
σ(u | g2, g3) weierstrass_sigma0(u,g2,g3)
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20.21 EXCALC: A Differential Geometry Package

EXCALC is designed for easy use by all who are familiar with the calculus of Mod-
ern Differential Geometry. The program is currently able to handle scalar-valued
exterior forms, vectors and operations between them, as well as non-scalar valued
forms (indexed forms). It is thus an ideal tool for studying differential equations,
doing calculations in general relativity and field theories, or doing simple things
such as calculating the Laplacian of a tensor field for an arbitrary given frame.

Author: Eberhard Schrüfer
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20.21.1 Introduction

EXCALC is designed for easy use by all who are familiar with the calculus of
Modern Differential Geometry. Its syntax is kept as close as possible to standard
textbook notations. Therefore, no great experience in writing computer algebra
programs is required. It is almost possible to input to the computer the same as what
would have been written down for a hand-calculation. For example, the statement

f*x^y + u _| (y^z^x)

would be recognized by the program as a formula involving exterior products and
an inner product. The program is currently able to handle scalar-valued exterior
forms, vectors and operations between them, as well as non-scalar valued forms
(indexed forms). With this, it should be an ideal tool for studying differential
equations, doing calculations in general relativity and field theories, or doing such
simple things as calculating the Laplacian of a tensor field for an arbitrary given
frame. With the increasing popularity of this calculus, this program should have an
application in almost any field of physics and mathematics.

Since the program is completely embedded in REDUCE, all features and facilities
of REDUCE are available in a calculation. Even for those who are not quite com-
fortable in this calculus, there is a good chance of learning it by just playing with
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the program.

This is the last release of version 2. A much extended differential geometry pack-
age (which includes complete symbolic index simplification, tensors, mappings,
bundles and others) is under development.

Complaints and comments are appreciated and should be send to the author. If the
use of this program leads to a publication, this document should be cited, and a
copy of the article to the above address would be welcome.

20.21.2 Declarations

Geometrical objects like exterior forms or vectors are introduced to the system by
declaration commands. The declarations can appear anywhere in a program, but
must, of course, be made prior to the use of the object. Everything that has no
declaration is treated as a constant; therefore zero-forms must also be declared.

An exterior form is introduced by

pform 〈 declaration1 〉, 〈 declaration2 〉, . . . ;

where

〈 declaration 〉 ::= 〈 name 〉 | 〈 list of names 〉=〈 number 〉 | 〈 identifier 〉 |
〈 expression 〉
〈 name 〉 ::= 〈 identifier 〉 | 〈 identifier 〉(〈 arguments 〉)

For example

pform u=k,v=4,f=0,w=dim-1;

declares u to be an exterior form of degree k, v to be a form of degree 4, f to be a
form of degree 0 (a function), and w to be a form of degree dim-1.

If the exterior form should have indices, the declaration would be

pform curv(a,b)=2,chris(a,b)=1;

The names of the indices are arbitrary.

Exterior forms of the same degree can be grouped into lists to save typing.

pform {x,y,z}=0,{rho(k,l),u,v(k)}=1;

The declaration of vectors is similar. The command tvector takes a list of
names.

tvector 〈 name1 〉, 〈 name2 〉, . . . ;
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For example, to declare x as a vector and comm as a vector with two indices, one
would say

tvector x,comm(a,b);

If a declaration of an already existing name is made, the old declaration is removed,
and the new one is taken.

The exterior degree of a symbol or a general expression can be obtained with the
function

exdegree 〈 expression 〉;

Example:

exdegree(u + 3*chris(k,-k));

1

20.21.3 Exterior Multiplication

Exterior multiplication between exterior forms is carried out with the nary infix op-
erator ^ (wedge). Factors are ordered according to the usual ordering in REDUCE
using the commutation rule for exterior products.

Example 1

pform u=1,v=1,w=k;

u^v;

u^v

v^u;

- u^v

u^u;

0

w^u^v;

k
( - 1) *u^v^w
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(3*u-a*w)^(w+5*v)^u;

a*(5*u^v^w - u^w^w)

It is possible to declare the dimension of the underlying space by

spacedim 〈 number 〉 | 〈 identifier 〉;

If an exterior product has a degree higher than the dimension of the space, it is
replaced by 0:

spacedim 4;

pform u=2,v=3;

u^v;

0

20.21.4 Partial Differentiation

Partial differentiation is denoted by the operator @. Its capability is the same as the
REDUCE df operator.

Example 2

@(sin x,x);

cos(x)

@(f,x);

0

An identifier can be declared to be a function of certain variables. This is done
with the command fdomain. The following would tell the partial differentiation
operator that f is a function of the variables x and y and that h is a function of x.

fdomain f=f(x,y),h=h(x);

Applying @ to f and h would result in

@(x*f,x);
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f + x*@ f
x

@(h,y);

0

The partial derivative symbol can also be an operator with a single argument. It
then represents a natural base element of a tangent vector.

Example 3

a*@ x + b*@ y;

a*@ + b*@
x y

20.21.5 Exterior Differentiation

Exterior differentiation of exterior forms is carried out by the operator d. Products
are normally differentiated out, i.e.

pform x=0,y=k,z=m;

d(x * y);

x*d y + d x^y

d(r*y);

r*d y

d(x*y^z);

k
( - 1) *x*y^d z + x*d y^z + d x^y^z

This expansion can be suppressed by the command noxpnd d.

noxpnd d;

d(y^z);
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d(y^z)

To obtain a canonical form for an exterior product when the expansion is switched
off, the operator d is shifted to the right if it appears in the leftmost place.

d y ^ z;

k
- ( - 1) *y^d z + d(y^z)

Expansion is performed again when the command xpnd d is executed.

Functions which are implicitly defined by the fdomain command are expanded
into partial derivatives:

pform x=0,y=0,z=0,f=0;

fdomain f=f(x,y);

d f;

@ f*d x + @ f*d y
x y

If an argument of an implicitly defined function has further dependencies the chain
rule will be applied e.g.

fdomain y=y(z);

d f;

@ f*d x + @ f*@ y*d z
x y z

Expansion into partial derivatives can be inhibited by noxpnd @ and enabled
again by xpnd @.

The operator is of course aware of the rules that a repeated application always leads
to zero and that there is no exterior form of higher degree than the dimension of
the space.

d d x;
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0

pform u=k;
spacedim k;

d u;

0

20.21.6 Inner Product

The inner product between a vector and an exterior form is represented by the
diphthong _| (underscore or-bar), which is the notation of many textbooks. If the
exterior form is an exterior product, the inner product is carried through any factor.

Example 4

pform x=0,y=k,z=m;

tvector u,v;

u _| (x*y^z);

k
x*(( - 1) *y^u _| z + u _| y^z)

In repeated applications of the inner product to the same exterior form the vector
arguments are ordered e.g.

(u+x*v) _| (u _| (3*z));

- 3*u _| v _| z

The duality of natural base elements is also known by the system, i.e.

pform {x,y}=0;

(a*@ x+b*@(y)) _| (3*d x-d y);

3*a - b
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20.21.7 Lie Derivative

The Lie derivative can be taken between a vector and an exterior form or between
two vectors. It is represented by the infix operator |_ . In the case of Lie differen-
tiating, an exterior form by a vector, the Lie derivative is expressed through inner
products and exterior differentiations, i.e.

pform z=k;

tvector u;

u |_ z;

u _| d z + d(u _| z)

If the arguments of the Lie derivative are vectors, the vectors are ordered using the
anticommutivity property, and functions (zero forms) are differentiated out.

Example 5

tvector u,v;

v |_ u;

- u |_ v

pform x=0,y=0;

(x*u) |_ (y*v);

- u*y*v _| d x + v*x*u _| d y + x*y*u |_ v

20.21.8 Hodge-* Duality Operator

The Hodge-* duality operator maps an exterior form of degree k to an exterior form
of degree n-k, where n is the dimension of the space. The double application
of the operator must lead back to the original exterior form up to a factor. The
following example shows how the factor is chosen here

spacedim n;
pform x=k;

# # x;
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2
(k + k*n)

( - 1) *x*sgn

The indeterminate sgn in the above example denotes the sign of the determinant of
the metric. It can be assigned a value or will be automatically set if more of the
metric structure is specified (via coframe), i.e. it is then set to g/|g|, where g is the
determinant of the metric. If the Hodge-* operator appears in an exterior product of
maximal degree as the leftmost factor, the Hodge-* is shifted to the right according
to

pform {x,y}=k;

# x ^ y;

2
(k + k*n)

( - 1) *x^# y

More simplifications are performed if a coframe is defined.

20.21.9 Variational Derivative

The function vardf returns as its value the variation of a given Lagrangian n-form
with respect to a specified exterior form (a field of the Lagrangian). In the shared
variable bndeq!*, the expression is stored that has to yield zero if integrated over
the boundary.

Syntax:

vardf(〈 Lagrangian n-form 〉,〈 exterior form 〉)

Example 6

spacedim 4;

pform l=4,a=1,j=3;

%Lagrangian of the e.m. field
l:=-1/2*d a ^ # d a - a^# j$

vardf(l,a);
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- (# j + d # d a) %Maxwell’s equations

bndeq!*;

- ’a^# d a %Equation at the boundary

Restrictions:

In the current implementation, the Lagrangian must be built up by the fields and
the operations d, #, and @. Variation with respect to indexed quantities is currently
not allowed.

For the calculation of the conserved currents induced by symmetry operators (vec-
tor fields), the function noether is provided. It has the syntax:

noether(〈 Lagrangian n-form 〉,〈 field 〉,〈 symmetry generator 〉)

Example 7

pform l=4,a=1,f=2;

spacedim 4;

l := -1/2*d a^#d a; %Free Maxwell field;

tvector x; %An unspecified generator;

noether(l,a,x);

( - 2*d(x _| a)^# d a + d a^x _| # d a

- x _| d a^# d a)/2

The above expression would be the canonical energy momentum 3-forms of the
Maxwell field, if X is interpreted as a translation;

20.21.10 Handling of Indices

Exterior forms and vectors may have indices. On input, the indices are given as
arguments of the object. A positive argument denotes a superscript and a negative
argument a subscript. On output, the indexed quantity is displayed two dimension-
ally if nat is on. Indices may be identifiers or numbers.

Example 8
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pform om(k,l)=m,e(k)=1;

e(k)^e(-l);

k
e ^e

l

om(4,-2);

4
om

2

In the current release, full simplification is performed only if an index range is
specified. It is hoped that this restriction can be removed soon. If the index range
(the values that the indices can obtain) is specified, the given expression is evalu-
ated for all possible index values, and the summation convention is understood.

Example 9

indexrange t,r,ph,z;

pform e(k)=1,s(k,l)=2;

w := e(k)*e(-k);

t r ph z
w := e *e + e *e + e *e + e *e

t r ph z

s(k,l):=e(k)^e(l);

t t
s := 0

r t t r
s := - e ^e

ph t t ph
s := - e ^e

.
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.

.

If the expression to be evaluated is not an assignment, the values of the expression
are displayed as an assignment to an indexed variable with name ns. This is done
only on output, i.e. no actual binding to the variable ns occurs.

e(k)^e(l);

t t
ns := 0

r t t r
ns := - e ^e

.

.

.

It should be noted, however, that the index positions on the variable ns can some-
times not be uniquely determined by the system (because of possible reorderings in
the expression). Generally it is advisable to use assignments to display complicated
expressions.

A range can also be assigned to individual index-names. For example, the declara-
tion

indexrange {k,l}={x,y,z},{u,v,w}={1,2};

would assign to the index identifiers k,l the range values x,y,z and to the index
identifiers u,v,w the range values 1,2. The use of an index identifier not listed in
previous indexrange statements has the range of the union of all given index ranges.

With the above example of an indexrange statement, the following index evalua-
tions would take place

pform w n=0;

w(k)*w(-k);

x y z
w *w + w *w + w *w
x y z
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w(u)*w(-u);

1 2
w *w + w *w
1 2

w(r)*w(-r);

1 2 x y z
w *w + w *w + w *w + w *w + w *w
1 2 x y z

In certain cases, one would like to inhibit the summation over specified index
names, or at all. For this the command

nosum 〈 indexname1 〉, . . . ;

and the switch nosum are available. The command nosum has the effect that
summation is not performed over those indices which had been listed. The com-
mand renosum enables summation again. The switch nosum, if on, inhibits any
summation.

It is possible to declare symmetry properties for an indexed quantity by the com-
mand index_symmetries. A prototypical example is as follows

index_symmetries u(k,l,m,n):
symmetric in {k,l},{m,n}
antisymmetric in {{k,l},{m,n}},

g(k,l),h(k,l): symmetric;

It declares the object u symmetric in the first two and last two indices and anti-
symmetric with respect to commutation of the given index pairs. If an object is
completely symmetric or antisymmetric, the indices need not to be given after the
corresponding keyword as shown above for g and h.

If applicable, this command should be issued, since great savings in memory and
execution time result. Only strict components are printed.

The commands symmetric and antisymmetric of earlier releases have no effect.
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20.21.11 Metric Structures

A metric structure is defined in EXCALC by specifying a set of basis one-forms
(the coframe) together with the metric.

Syntax:

coframe 〈 identifier 〉〈 (index1) 〉=〈 expression1 〉,
〈 identifier 〉〈 (index2) 〉=〈 expression2 〉,
.
.
.
〈 identifier 〉〈 (indexn) 〉=〈 expressionn 〉

with metric 〈 name 〉=〈 expression 〉;

This statement automatically sets the dimension of the space and the index range.
The clause with metric can be omitted if the metric is Euclidean and the short-
hand with signature 〈diagonal elements 〉 can be used in the case of
a pseudo-Euclidean metric. The splitting of a metric structure in its metric tensor
coefficients and basis one-forms is completely arbitrary including the extremes of
an orthonormal frame and a coordinate frame.

Example 10

%Polar coframe
coframe e r=d r, e(ph)=r*d ph

with metric g=e(r)*e(r)+e(ph)*e(ph);

%Same as before
coframe e(r)=d r,e(ph)=r*d(ph);

%A Lorentz coframe
coframe o(t)=d t, o x=d x

with signature -1,1;

%A lightcone coframe
coframe b(xi)=d xi, b(eta)=d eta

with metric w=-1/2*(b(xi)*b(eta)+b(eta)*b(xi));

%Polar coordinate basis
coframe e r=d r, e ph=d ph

with metric g=e r*e r+r**2*e ph*e ph;



743

Individual elements of the metric can be accessed just by calling them with the
desired indices. The value of the determinant of the covariant metric is stored in
the variable detm!*. The metric is not needed for lowering or raising of indices
as the system performs this automatically, i.e. no matter in what index position
values were assigned to an indexed quantity, the values can be retrieved for any
index position just by writing the indexed quantity with the desired indices.

Example 11

coframe e t=d t,e x=d x,e y=d y
with signature -1,1,1;

pform f(k,l)=0;

index_symmetries f(k,l): antisymmetric;

f(k,l) := 0$
f(-t,-x):=ex$ f(-x,-y):=b$
on nero;

f(k,-l);

x
ns := - ex

t

t
ns := - ex

x

y
ns := - b

x

x
ns := b

y

Any expression containing differentials of the coordinate functions will be trans-
formed into an expression of the basis one-forms.The system also knows how to
take the exterior derivative of the basis one-forms.

Example 12 (Spherical coordinates)
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coframe e(r)=d(r),
e(th)=r*d(th),
e(ph)=r*sin(th)*d(ph);

d r^d th;

r th
(e ^e )/r

d(e(th));

r th
(e ^e )/r

pform f=0;

fdomain f=f(r,th,ph);

factor e;

on rat;

%the "gradient" of f in spherical coordinates;
d f;

r th ph
e *@ f + (e *@ f)/r + (e *@ f)/(r*sin(th))

r th ph

The frame dual to the frame defined by the coframe command can be introduced
by frame command.

frame 〈 identifier 〉;

This command causes the dual property to be recognized, and the tangent vectors
of the coordinate functions are replaced by the frame basis vectors.

Example 13

%Cylindrical coframe;
coframe b r=d r,b ph=r*d ph,e z=d z;

frame x;
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on nero;

x(-k) _| b(l);

r
ns := 1
r

ph
ns := 1

ph

z
ns := 1
z

%The commutator of the dual frame;
x(-k) |_ x(-l);

ns := x /r
ph r ph

ns := ( - x )/r
r ph ph

%i.e. it is not a coordinate base;

As a convenience, the frames can be displayed at any point in a program by the
command displayframe;.

The Hodge-* duality operator returns the explicitly constructed dual element if
applied to coframe base elements. The metric is properly taken into account.

The total antisymmetric Levi-Cevita tensor eps is also available. The value of
eps with an even permutation of the indices in a covariant position is taken to be
+1.

20.21.12 Riemannian Connections

The command riemannconx is provided for calculating the connection 1 forms.
The values are stored on the name given to riemannconx. This command is far
more efficient than calculating the connection from the differential of the basis
one-forms and using inner products.
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Example 14(Calculate the connection 1-form and curvature 2-form on S(2))

coframe e th=r*d th,e ph=r*sin(th)*d ph;

riemannconx om;

om(k,-l); %Display the connection forms;

th
ns := 0

th

ph ph
ns := (e *cos(th))/(sin(th)*r)

th

th ph
ns := ( - e *cos(th))/(sin(th)*r)

ph

ph
ns := 0

ph

pform curv(k,l)=2;

curv(k,-l):=d om(k,-l) + om(k,-m)^om(m-l);
%The curvature forms

th
curv := 0

th

ph th ph 2
curv := ( - e ^e )/r

th
%Of course it was a sphere with
%radius R.

th th ph 2
curv := (e ^e )/r

ph
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ph
curv := 0

ph

20.21.13 Killing Vectors

The command killing_vector is provided for calculating the determining
system of partial differential equations of Killing vectors for a given metric struc-
ture provided by the coframe statement. The result is a list where the first entry is
a vector constructed from the identifier given to the command and the second entry
consists of a list of partial differential equations for the coefficients of this vector.

Example 15 (Calculate the determining pde’s for a Killing vector of S(2))

coframe e th = d th,e ph = sin th*d ph;

killing_vector u;

ph th
{@ *u + @ *u ,

ph th

th
{@ (u ),

th

ph 2 th
@ (u )*sin(th) + @ (u ),
th ph

th ph
cos(th)*u + @ (u )*sin(th)}}

ph

20.21.14 Ordering and Structuring

The ordering of an exterior form or vector can be changed by the command
forder. In an expression, the first identifier or kernel in the arguments of
forder is ordered ahead of the second, and so on, and ordered ahead of all not
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appearing as arguments. This ordering is done on the internal level and not only on
output. The execution of this statement can therefore have tremendous effects on
computation time and memory requirements. remforder brings back standard
ordering for those elements that are listed as arguments.

An expression can be put in a more structured form by renaming a subexpression.
This is done with the command KEEP which has the syntax

keep 〈 name1 〉=〈 expression1 〉,〈 name2 〉=〈 expression2 〉, . . .

The effect is that rules are set up for simplifying 〈 name 〉 without introducing its
definition in an expression. In an expression the system also tries by reordering to
generate as many instances of 〈 name 〉 as possible.

Example 16

pform x=0,y=0,z=0,f=0,j=3;

keep j=d x^d y^d z;

j;

j

d j;

0

j^d x;

0

fdomain f=f(x);

d f^d y^d z;

@ f*j
x

The capabilities of keep are currently very limited. Only exterior products should
occur as righthand sides in keep.
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20.21.15 Summary of Operators and Commands

Table 20.16 summarizes EXCALC commands and the page number they are de-
fined on.

^ Exterior Multiplication 731
@ Partial Differentiation 732
@ Tangent Vector 733
# Hodge-* Operator 736
_| Inner Product 735
|_ Lie Derivative 736
coframe Declaration of a coframe 742
d Exterior differentiation 733
displayframe Displays the frame 745
eps Levi-Civita tensor 745
exdegree Calculates the exterior degree of an expression 731
fdomain Declaration of implicit dependencies 732
forder Ordering command 747
frame Declares the frame dual to the coframe 744
indexrange Declaration of indices 739
index_symmetries Declares arbitrary index symmetry properties 741
keep Structuring command 748
killing_vector Structuring command 747
metric Clause of COFRAME to specify a metric 742
noether Calculates the Noether current 738
nosum Inhibits summation convention 741
noxpnd d Inhibits the use of product rule for d 733
noxpnd @ Inhibits expansion into partial derivatives 734
pform Declaration of exterior forms 730
remforder Clears ordering 748
renosum Enables summation convention 741
riemannconx Calculation of a Riemannian Connection 745
signature Clause of coframe to specify a pseudo- 742

Euclidean metric
spacedim Command to set the dimension of a space 732
tvector declaration of vectors 730
vardf Variational derivative 737
xpnd d Enables the use of product rule for d 734

(default)
xpnd @ Enables expansion into partial derivatives 734

(default)

Table 20.16: EXCALC Command Summary
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20.21.16 Examples

The following examples should illustrate the use of EXCALC. It is not intended
to show the most efficient or most elegant way of stating the problems; rather the
variety of syntactic constructs are exemplified. The examples are on a test file
distributed with EXCALC.

% Problem:
% --------
% Calculate the PDE’s for the isovector of the heat equation.
% (c.f. B.K. Harrison, f.B. Estabrook,
% "Geometric Approach...",
% J. Math. Phys. 12, 653, 1971)

% The heat equation @ psi = @ psi is equivalent to the set
% xx t

% of exterior equations (with u=@ psi, y=@ psi):
% T x

pform {psi,u,x,y,t}=0,a=1,{da,b}=2;

a := d psi - u*d t - y*d x;

da := - d u^d t - d y^d x;

b := u*d x^d t - d y^d t;

% Now calculate the PDE’s for the isovector.

tvector v;

pform {vpsi,vt,vu,vx,vy}=0;
fdomain vpsi=vpsi(psi,t,u,x,y),

vt=vt(psi,t,u,x,y),vu=vu(psi,t,u,x,y),
vx=vx(psi,t,u,x,y),vy=vy(psi,t,u,x,y);

v := vpsi*@ psi + vt*@ t + vu*@ u + vx*@ x + vy*@ y;

factor d;
on rat;

i1 := v |_ a - l*a;

pform o=1;
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o := ot*d t + ox*d x + ou*d u + oy*d y;

fdomain f=f(psi,t,u,x,y);

i11 := v _| d a - l*a + d f;

let vx=-@(f,y),vt=-@(f,u),vu=@(f,t)+u*@(f,psi),
vy=@(f,x)+y*@(f,psi),vpsi=f-u*@(f,u)-y*@(f,y);

factor ^;

i2 := v |_ b - xi*b - o^a + zeta*da;

let ou=0,oy=@(f,u,psi),ox=-u*@(f,u,psi),
ot=@(f,x,psi)+u*@(f,y,psi)+y*@(f,psi,psi);

i2;

let zeta=-@(f,u,x)-@(f,u,y)*u-@(f,u,psi)*y;

i2;

let xi=-@(f,t,u)-u*@(f,u,psi)+@(f,x,y)
+u*@(f,y,y)+y*@(f,y,psi)+@(f,psi);

i2;

let @(f,u,u)=0;

i2; % These PDE’s have to be solved.

clear a,da,b,v,i1,i11,o,i2,xi,t;
remfdomain f,vpsi,vt,vu,vx,vy;
clear @(f,u,u);

% Problem:
% --------
% Calculate the integrability conditions for the
% system of PDE’s:
% (c.f. B.F. Schutz,
% "Geometrical Methods of Mathematical Physics"
% Cambridge University Press, 1984, p. 156)

% @ z /@ x + a1*z + b1*z = c1
% 1 1 2
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% @ z /@ y + a2*z + b2*z = c2
% 1 1 2

% @ z /@ x + f1*z + g1*z = h1
% 2 1 2

% @ z /@ y + f2*z + g2*z = h2
% 2 1 2 ;

pform w(k)=1,integ(k)=4,{z(k),x,y}=0,{a,b,c,f,g,h}=1,
{a1,a2,b1,b2,c1,c2,f1,f2,g1,g2,h1,h2}=0;

fdomain a1=a1(x,y),a2=a2(x,y),b1=b1(x,y),b2=b2(x,y),
c1=c1(x,y),c2=c2(x,y),f1=f1(x,y),f2=f2(x,y),
g1=g1(x,y),g2=g2(x,y),h1=h1(x,y),h2=h2(x,y);

a:=a1*d x+a2*d y$
b:=b1*d x+b2*d y$
c:=c1*d x+c2*d y$
f:=f1*d x+f2*d y$
g:=g1*d x+g2*d y$
h:=h1*d x+h2*d y$

% The equivalent exterior system:
factor d;
w(1) := d z(-1) + z(-1)*a + z(-2)*b - c;
w(2) := d z(-2) + z(-1)*f + z(-2)*g - h;
indexrange 1,2;
factor z;
% The integrability conditions:

integ(k) := d w(k) ^ w(1) ^ w(2);

clear a,b,c,f,g,h,x,y,w(k),integ(k),z(k);
remfdomain a1,a2,b1,c1,c2,f1,f2,g1,g2,h1,h2;

% Problem:
% --------
% Calculate the PDE’s for the generators of the
% d-theta symmetries of the Lagrangian system of the
% planar Kepler problem.
% c.f. W.Sarlet, F.Cantrijn, Siam Review 23, 467, 1981
% Verify that time translation is a d-theta symmetry
% and calculate the corresponding integral.

pform {t,q(k),v(k),lam(k),tau,xi(k),eta(k)}=0,theta=1,f=0,
{l,glq(k),glv(k),glt}=0;
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tvector gam,y;

indexrange 1,2;

fdomain tau=tau(t,q(k),v(k)),xi=xi(t,q(k),v(k)),
f=f(t,q(k),v(k));

l := 1/2*(v(1)**2 + v(2)**2) + m/r$ % The Lagrangian.

pform r=0;
fdomain r=r(q(k));
let @(r,q 1)=q(1)/r,@(r,q 2)=q(2)/r,q(1)**2+q(2)**2=r**2;

lam(k) := -m*q(k)/r; % The force.

gam := @ t + v(k)*@(q(k)) + lam(k)*@(v(k))$

eta(k) := gam _| d xi(k) - v(k)*gam _| d tau$

% Symmetry generator.
y := tau*@ t + xi(k)*@(q(k)) + eta(k)*@(v(k))$

theta := l*d t + @(l,v(k))*(d q(k) - v(k)*d t)$

factor @;

s := y |_ theta - d f$

glq(k) := @(q k) _| s;
glv(k) := @(v k) _| s;
glt := @(t) _| s;

% Translation in time must generate a symmetry.
xi(k) := 0;
tau := 1;

glq k := glq k;
glv k := glv k;
glt;

% The corresponding integral is of course the energy.
integ := - y _| theta;

clear l,lam k,gam,eta k,y,theta,s,glq k,glv k,glt,t,
q k,v k,tau,xi k;

remfdomain r,f,tau,xi;
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% Problem:
% --------
% Calculate the "gradient" and "Laplacian" of a function
% and the "curl" and "divergence" of a one-form in
% elliptic coordinates.

coframe e u = sqrt(cosh(v)**2 - sin(u)**2)*d u,
e v = sqrt(cosh(v)**2 - sin(u)**2)*d v,
e phi = cos u*sinh v*d phi;

pform f=0;

fdomain f=f(u,v,phi);

factor e,^;
on rat,gcd;
order cosh v, sin u;
% The gradient:
d f;

factor @;
% The Laplacian:
# d # d f;

% Another way of calculating the Laplacian:
-#vardf(1/2*d f^#d f,f);

remfac @;

% Now calculate the "curl" and the "divergence"
% of a one-form.

pform w=1,a(k)=0;

fdomain a=a(u,v,phi);

w := a(-k)*e k;
% The curl:
x := # d w;

factor @;
% The divergence:
y := # d # w;

remfac @;
clear x,y,w,u,v,phi,e k,a k;
remfdomain a,f;
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% Problem:
% --------
% Calculate in a spherical coordinate system
% the Navier Stokes equations.

coframe e r=d r, e theta =r*d theta,
e phi = r*sin theta *d phi;

frame x;

fdomain v=v(t,r,theta,phi),p=p(r,theta,phi);

pform v(k)=0,p=0,w=1;

% We first calculate the convective derivative.

w := v(-k)*e(k)$

factor e; on rat;

cdv := @(w,t) + (v(k)*x(-k)) |_ w - 1/2*d(v(k)*v(-k));

%next we calculate the viscous terms;

visc := nu*(d#d# w - #d#d w) + mu*d#d# w;

% Finally we add the pressure term and print the components
% of the whole equation.

pform nasteq=1,nast(k)=0;

nasteq := cdv - visc + 1/rho*d p$

factor @;

nast(-k) := x(-k) _| nasteq;

remfac @,e;

clear v k,x k,nast k,cdv,visc,p,w,nasteq,e k;
remfdomain p,v;

% Problem:
% --------
% Calculate from the Lagrangian of a vibrating rod
% the equation of motion and show that the invariance
% under time translation leads to a conserved current.
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pform {y,x,t,q,j}=0,lagr=2;

fdomain y=y(x,t),q=q(x),j=j(x);

factor ^;

lagr := 1/2*(rho*q*@(y,t)**2 - e*j*@(y,x,x)**2)*d x^d t;

vardf(lagr,y);

% The Lagrangian does not explicitly depend on time;
% therefore the vector field @ t generates a symmetry.
% The conserved current is

pform c=1;
factor d;

c := noether(lagr,y,@ t);

% The exterior derivative of this must be zero or a multiple
% of the equation of motion (weak conservation law)
% to be a conserved current.

remfac d;

d c;

% i.e. it is a multiple of the equation of motion.

clear lagr,c,j,y,q;
remfdomain y,q,j;

% Problem:
% --------
% Show that the metric structure given by Eguchi and Hanson
% induces a self-dual curvature.
% c.f. T. Eguchi, P.B. Gilkey, A.J. Hanson,
% "Gravitation, Gauge Theories and Differential Geometry",
% Physics Reports 66, 213, 1980

for all x let cos(x)**2=1-sin(x)**2;

pform f=0,g=0;
fdomain f=f(r), g=g(r);

coframe o(r) = f*d r,
o(theta) = (r/2)*(sin(psi)*d theta

- sin(theta)*cos(psi)*d phi),
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o(phi) = (r/2)*(-cos(psi)*d theta
- sin(theta)*sin(psi)*d phi),

o(psi) = (r/2)*g*(d psi + cos(theta)*d phi);

frame e;

pform gamma(a,b)=1,curv2(a,b)=2;
index_symmetries gamma(a,b),curv2(a,b): antisymmetric;

factor o;

gamma(-a,-b) := -(1/2)*( e(-a) _| (e(-c) _| (d o(-b)))
-e(-b) _| (e(-a) _| (d o(-c)))
+e(-c) _| (e(-b) _| (d o(-a))) )

*o(c)$

curv2(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c)$

let f=1/g,g=sqrt(1-(a/r)**4);

pform chck(k,l)=2;
index_symmetries chck(k,l): antisymmetric;

% The following has to be zero for a self-dual curvature.

chck(k,l) := 1/2*eps(k,l,m,n)*curv2(-m,-n) + curv2(k,l);

clear gamma(a,b),curv2(a,b),f,g,chck(a,b),o(k),e(k),
r,phi,psi;

remfdomain f,g;

% Example:
% -------
% 6-dimensional FRW model with quadratic curvature terms in
% the Lagrangian (Lanczos and Gauss-Bonnet terms).
% cf. Henriques, Nuclear Physics, B277, 621 (1986)

for all x let cos(x)**2+sin(x)**2=1;

pform {r,s}=0;
fdomain r=r(t),s=s(t);

coframe o(t) = d t,
o(1) = r*d u/(1 + k*(u**2)/4),
o(2) = r*u*d theta/(1 + k*(u**2)/4),
o(3) = r*u*sin(theta)*d phi/(1 + k*(u**2)/4),
o(4) = s*d v1,
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o(5) = s*sin(v1)*d v2
with metric g =-o(t)*o(t)+o(1)*o(1)+o(2)*o(2)+o(3)*o(3)

+o(4)*o(4)+o(5)*o(5);

frame e;

on nero; factor o,^;

riemannconx om;

pform curv(k,l)=2,{riemann(a,b,c,d),ricci(a,b),riccisc}=0;

index_symmetries
curv(k,l): antisymmetric,
riemann(k,l,m,n): antisymmetric in {k,l},{m,n}

symmetric in {{k,l},{m,n}},
ricci(k,l): symmetric;

curv(k,l) := d om(k,l) + om(k,-m)^om(m,l);

riemann(a,b,c,d) := e(d) _| (e (c) _| curv(a,b));

% The rest is done in the Ricci calculus language,

ricci(-a,-b) := riemann(c,-a,-d,-b)*g(-c,d);

riccisc := ricci(-a,-b)*g(a,b);

pform {laglanc,inv1,inv2} = 0;

index_symmetries riemc3(k,l),riemri(k,l),
hlang(k,l),einst(k,l): symmetric;

pform {riemc3(i,j),riemri(i,j)}=0;

riemc3(-i,-j) := riemann(-i,-k,-l,-m)*riemann(-j,k,l,m)$
inv1 := riemc3(-i,-j)*g(i,j);
riemri(-i,-j) := 2*riemann(-i,-k,-j,-l)*ricci(k,l)$
inv2 := ricci(-a,-b)*ricci(a,b);
laglanc := (1/2)*(inv1 - 4*inv2 + riccisc**2);

pform {einst(a,b),hlang(a,b)}=0;

hlang(-i,-j) := 2*(riemc3(-i,-j) - riemri(-i,-j) -
2*ricci(-i,-k)*ricci(-j,K) +
riccisc*ricci(-i,-j) -
(1/2)*laglanc*g(-i,-j));
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% The complete Einstein tensor:

einst(-i,-j) := (ricci(-i,-j) - (1/2)*riccisc*g(-i,-j))*alp1
+ hlang(-i,-j)*alp2$

alp1 := 1$
factor alp2;

einst(-i,-j) := einst(-i,-j);

clear o(k),e(k),riemc3(i,j),riemri(i,j),curv(k,l),
riemann(a,b,c,d),ricci(a,b),riccisc,t,u,v1,v2,
theta,phi,r,om(k,l),einst(a,b),hlang(a,b);

remfdomain r,s;

% Problem:
% --------
% Calculate for a given coframe and given torsion the
% Riemannian part and the torsion induced part of the
% connection. Calculate the curvature.

% For a more elaborate example see:
% E.Schruefer, F.W. Hehl, J.D. McCrea,
% "Application of the REDUCE package EXCALC to the Poincare
% gauge field theory of gravity",
% GRG Journal, vol. 19, (1988) 197--218

pform {ff, gg}=0;

fdomain ff=ff(r), gg=gg(r);

coframe o(4) = d u + 2*b0*cos(theta)*d phi,
o(1) = ff*(d u + 2*b0*cos(theta)*d phi) + d r,
o(2) = gg*d theta,
o(3) = gg*sin(theta)*d phi

with metric g = -o(4)*o(1)-o(4)*o(1)+o(2)*o(2)+o(3)*o(3);

frame e;

pform {tor(a),gwt(a)}=2,gamma(a,b)=1,
{u1,u3,u5}=0;

index_symmetries gamma(a,b): antisymmetric;

fdomain u1=u1(r),u3=u3(r),u5=u5(r);

tor(4) := 0$
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tor(1) := -u5*o(4)^o(1) - 2*u3*o(2)^o(3)$

tor(2) := u1*o(4)^o(2) + u3*o(4)^o(3)$

tor(3) := u1*o(4)^o(3) - u3*o(4)^o(2)$

gwt(-a) := d o(-a) - tor(-a)$

% The following is the combined connection.
% The Riemannian part could have equally well been
% calculated by the RIEMANNCONX statement.

gamma(-a,-b) := (1/2)*( e(-b) _| (e(-c) _| gwt(-a))
+e(-c) _| (e(-a) _| gwt(-b))
-e(-a) _| (e(-b) _| gwt(-c)) )*o(c);

pform curv(a,b)=2;
index_symmetries curv(a,b): antisymmetric;
factor ^;

curv(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c);

clear o(k),e(k),curv(a,b),gamma(a,b),theta,phi,
x,y,z,r,s,t,u,v,p,q,c,cs;

remfdomain u1,u3,u5,ff,gg;

showtime;
end;
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20.22 FIDE: Finite Difference Method for Partial Differ-
ential Equations

This package performs automation of the process of numerically solving partial
differential equations systems (PDES) by means of computer algebra. For PDES
solving, the finite difference method is applied. The computer algebra system RE-
DUCE and the numerical programming language FORTRAN are used in the pre-
sented methodology. The main aim of this methodology is to speed up the process
of preparing numerical programs for solving PDES. This process is quite often,
especially for complicated systems, a tedious and time consuming task.

Author: Richard Liska

20.22.1 Abstract

The FIDE package performs automation of the process of numerical solving par-
tial differential equations systems (PDES) by means of computer algebra. For
PDES solving finite difference method is applied. The computer algebra system
REDUCE and the numerical programming language FORTRAN are used in the
presented methodology. The main aim of this methodology is to speed up the
process of preparing numerical programs for solving PDES. This process is quite
often, especially for complicated systems, a tedious and time consuming task. In
the process one can find several stages in which computer algebra can be used
for performing routine analytical calculations, namely: transforming differential
equations into different coordinate systems, discretization of differential equations,
analysis of difference schemes and generation of numerical programs. The FIDE

package consists of the following modules:

EXPRES for transforming PDES into any orthogonal coordinate system.

IIMET for discretization of PDES by integro-interpolation method.

APPROX for determining the order of approximation of difference scheme.

CHARPOL for calculation of amplification matrix and characteristic polynomial
of difference scheme, which are needed in Fourier stability analysis.

HURWP for polynomial roots locating necessary in verifying the von Neumann
stability condition.

LINBAND for generating the block of FORTRAN code, which solves a system
of linear algebraic equations with band matrix appearing quite often in dif-
ference schemes.
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Version 1.1 of the FIDE package is the result of porting FIDE package to REDUCE
3.4. In comparison with Version 1.0 some features has been changed in the LIN-
BAND module (possibility to interface several numerical libraries).

For reference, see [LD90].

20.22.2 EXPRES

A Module for Transforming Differential Operators and Equations into an Arbitrary
Orthogonal Coordinate System

This module makes it possible to express various scalar, vector, and tensor differ-
ential equations in any orthogonal coordinate system. All transformations needed
are executed automatically according to the coordinate system given by the user.
The module was implemented according to the similar MACSYMA module from
[1].

The specification of the coordinate system

The coordinate system is specified using the following statement:

SCALEFACTORS <d>,<tr 1>,...,<tr d>,<cor 1>,...,<cor d>;
<d> ::= 2 | 3 coordinate system dimension
<tr i> ::= "algebraic expression" the expression of the

i-th Cartesian coordinate
in new coordinates

<cor i> ::= "identifier" the i-th new coordinate

All evaluated quantities are transformed into the coordinate system set by the last
SCALEFACTORS statement. By default, if this statement is not applied, the three-
dimensional Cartesian coordinate system is employed. During the evaluation of
SCALEFACTORS statement the metric coefficients, i.e. scale factors SF(i), of a
defined coordinate system are computed and printed. If the WRCHRI switch is
ON, then the nonzero Christoffel symbols of the coordinate system are printed too.
By default the WRCHRI switch is OFF.

The declaration of tensor quantities

Tensor quantities are represented by identifiers. The VECTORS declaration de-
clares the identifiers as vectors, the DYADS declaration declares the identifiers as
dyads. i.e. two-dimensional tensors, and the TENSOR declaration declares the
identifiers as tensor variables. The declarations have the following syntax:
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<declaration> <id 1>,<id 2>,...,<id n>;
<declaration> ::= VECTORS | DYADS | TENSOR
<id i> ::= "identifier"

The value of the identifier V declared as vector in the two-dimensional coordinate
system is (V(1), V(2)), where V(i) are the components of vector V. The value of
the identifier T declared as a dyad is ((T(1,1), T(1,2)), (T(2,1), T(2,2))). The value
of the tensor variable can be any tensor (see below). Tensor variables can be used
only for a single coordinate system, after the coordinate system redefining by a
new SCALEFACTORS statement, the tensor variables have to be re-defined using
the assigning statement.

New infix operators

For four different products between the tensor quantities, new infix operators have
been introduced (in the explaining examples, a two-dimensional coordinate system,
vectors U, V, and dyads T, W are considered):

. - scalar product U.V = U(1)*V(1)+U(2)*V(2)
? - vector product U?V = U(1)*V(2)-U(2)*V(1)
& - outer product U&V = ((U(1)*V(1),U(1)*V(2)),

(U(2)*V(1),U(2)*V(2)))
# - double scalar product T#W = T(1,1)*W(1,1)+

T(1,2)*W(1,2)+T(2,1)*W(2,1)+T(2,2)*W(2,2)

The other usual arithmetic infix operators +, -, *, ** can be used in all situations
that have sense (e.g. vector addition, a multiplication of a tensor by a scalar, etc.).

New prefix operators

New prefix operators have been introduced to express tensor quantities in its com-
ponents and the differential operators over the tensor quantities:

VECT - the explicit expression of a vector in its components

DYAD - the explicit expression of a dyad in its components

GRAD - differential operator of gradient

DIV - differential operator of divergence

LAPL - Laplace’s differential operator

CURL - differential operator of curl
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DIRDF - differential operator of the derivative in direction (1st argument is the
directional vector)

The results of the differential operators are written using the DIFF operator.
DIFF(<scalar>,<cor i>) expresses the derivative of <scalar> with respect to the
coordinate <cor i>. This operator is not further simplified. If the user wants to
make it simpler as common derivatives, he performs the following declaration:

FOR ALL X,Y LET DIFF(X,Y) = DF(X,Y); .

Then, however, we must realize that if the scalars or tensor quantities do not di-
rectly explicitly depend on the coordinates, their dependencies have to be declared
using the DEPEND statements, otherwise the derivative will be evaluated to zero.
The dependence of all vector or dyadic components (as dependence of the name of
vector or dyad) has to appear before VECTORS or DYADS declarations, otherwise
after these declarations one has to declare the dependencies of all components. For
formulating the explicit derivatives of tensor expressions, the differentiation oper-
ator DF can be used (e.g. the differentiation of a vector in its components).

Tensor expressions

Tensor expressions are the input into the EXPRES module and can have a variety
of forms. The output is then the formulation of the given tensor expression in
the specified coordinate system. The most general form of a tensor expression
<tensor> is described as follows (the conditions (d=i) represent the limitation on
the dimension of the coordinate system equalling i):

<tensor> ::= <scalar> | <vector> | <dyad>
<scalar> ::= "algebraic expression, can contain <scalars>" |

"tensor variable with scalar value" |
<vector 1>.<vector 2> | <dyad 1>#<dyad 2> |
(d=2)<vector 1>?<vector 2> | DIV <vector> |
LAPL <scalar> | (d=2) ROT <vector> |
DIRDF(<vector>,<scalar>)

<vector> ::= "identifier declared by VECTORS statement" |
"tensor variable with vector value" |
VECT(<scalar 1>,...,<scalar d>) | -<vector> |
<vector 1>+<vector 2> | <vector 1>-<vector 2> |
<scalar>*<vector> | <vector>/<scalar> |
<dyad>.<vector> | <vector>.<dyad> | (d=3)
<vector 1>?<vector 2> | (d=2) <vector>?<dyad> |
(d=2) <dyad>?<vector> | GRAD <scalar> |
DIV <dyad> | LAPL <vector> | (d=3) ROT
<vector> | DIRDF(<vector 1>,<vector 2>) |
DF(<vector>,"usual further arguments")

<dyad> ::= "identifier declared by DYADS statement" |



765

"tensor variable with dyadic value" |
DYAD((<scalar 11>,...,<scalar 1d>),...,
(<scalar d1>,...,<scalar dd>)) | -<dyad> |
<dyad 1>+<dyad 2> | <dyad 1>-<dyad 2> |
<scalar>*<dyad> | <dyad>/<scalar> |
<dyad 1>.<dyad 2> | <vector 1>&<vector 2> |
(d=3) <vector>?<dyad> | (d=3) <dyad>?<vector> |
GRAD <vector> |
DF(<dyad>,"usual further arguments")

Assigning statement

The assigning statement for tensor variables has a usual syntax, namely:

<tensor variable> := <tensor>
<tensor variable> ::= "identifier declared TENSOR" .

The assigning statement assigns the tensor variable the value of the given tensor
expression, formulated in the given coordinate system. After a change of the coor-
dinate system, the tensor variables have to be redefined.

For reference, see [Wir80].

20.22.3 IIMET

A Module for Discretizing the Systems of Partial Differential Equations

This program module makes it possible to discretize the specified system of par-
tial differential equations using the integro-interpolation method, minimizing the
number of the used interpolations in each independent variable. It can be used
for non-linear systems and vector or tensor variables as well. The user specifies
the way of discretizing individual terms of differential equations, controls the dis-
cretization and obtains various difference schemes according to his own wish.

Specification of the coordinates and the indices corresponding to them

The independent variables of differential equations will be called coordinates. The
names of the coordinates and the indices that will correspond to the particular coor-
dinates in the difference scheme are defined using the COORDINATES statement:

COORDINATES <coordinate 1>{,<coordinate i>} [ INTO
<index 1>{,<index i>}];

<coordinate i> ::= "identifier" - name of coordinate
<index i> ::= "identifier" - name of index
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This statement specifies that the <coordinate i> will correspond to the <index i>.
A new COORDINATES statement cancels the definitions given by the preceding
COORDINATES statement. If the part [ INTO ... ] is not included in the statement,
the statement assigns the coordinates the indices I, J, K, L, M, N, respectively. If
it is included, the number of coordinates and the number of indices should be the
same.

2.2 Difference grids

In the discretization, orthogonal difference grids are employed. In addition to the
basic grid, called the integer one, there is another, the half-integer grid in each co-
ordinate, whose cellular boundary points lie in the centers of the cells of the integer
grid. The designation of the cellular separating points and centers is determined by
the CENTERGRID switch: if it is ON and the index in the given coordinate is I,
the centers of the grid cells are designated by indices I, I + 1,..., and the boundary
points of the cells by indices I + 1/2,..., if, on the contrary, the switch is OFF, the
cellular centers are designated by indices I + 1/2,..., and the boundary points by
indices I, I + 1,... (see Fig. 2.1).

ON CENTERGRID
I-1/2 I I+1/2 I+1 I+3/2

---|--------|--------|--------------|--------------|----
I I+1/2 I+1 I+3/2 I+2

OFF CENTERGRID

Figure 2.1 Types of grid

In the case of ON CENTERGRID, the indices i,i+1,i-1... thus designate the centers
of the cells of the integer grid and the boundary points of the cells of the half-integer
grid, and, similarly, in the case of OFF CENTERGRID, the boundaries of the cells
of the integer grid and the central points of the half-integer grid. The meaning
of the integer and half-integer grids depends on the CENTERGRID switch in the
described way. After the package is loaded, the CENTERGRID is ON. Obviously,
this switch is significant only for non-uniform grids with a variable size of each
cell. The grids can be uniform, i.e. with a constant cell size - the step of the grid.
The following statement:

GRID UNIFORM,<coordinate>{,<coordinate>};

defines uniform grids in all coordinates occurring in it. Those coordinates that do
not occur in the GRID UNIFORM statement are supposed to have non-uniform
grids. In the outputs, the grid step is designated by the identifier that is made by
putting the character H before the name of the coordinate. For a uniform grid,
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this identifier (e.g. for the coordinate X the grid step HX) has the meaning of a
step of an integer or half-integer grids that are identical. For a non-uniform grid,
this identifier is an operator and has the meaning of a step of an integer grid, i.e.
the length of a cell whose center (in the case of ON CENTERGRID) or beginning
(in the case of OFF CENTERGRID) is designated by a single argument of this
operator. For each coordinate s designated by the identifier i, this step of the integer
non-uniform grid is defined as follows:

Hs(i+j) = s(i+j+1/2) - s(i+j-1/2) at ON CENTERGRID
Hs(i+j) = s(i+j+1) - s(i+j) at OFF CENTERGRID

for all integers j (s(k) designates the value of the coordinate s in the cellular bound-
ary point subscripted with the index k). The steps of the half-integer non-uniform
grid are not applied in outputs.

Declaring the dependence of functions on coordinates

In the system of partial differential equations, two types of functions, in other
words dependent variables can occur: namely, the given functions, whose values
are known before the given system is solved, and the sought functions, whose val-
ues are not available until the system of equations is solved. The functions can be
scalar, vector, or tensor, for vector or tensor functions the EXPRES module has to
be applied at the same time. The names of the functions employed in the given
system and their dependence on the coordinates are specified using the DEPEN-
DENCE statement.

DEPENDENCE <dependence>{,<dependence>};
<dependence> ::= <function>([<order>],<coordinate>{,

<coordinate>})
<function> ::= "identifier" - the name of the function
<order> ::= 1|2 tensor order of the function (the value

of the function is 1 - vector, 2 - dyad
(two-dimensional tensor))

Every <dependence> in the statement determines on which <coordinates> the
<function> depends. If the tensor <order> of the function occurs in the <de-
pendence>, the <function> is declared as a vector or a dyad. If, however, the
<function> has been declared by the VECTORS and DYADS statements of the
EXPRES module, the user need not present the tensor <order>. By default, a func-
tion without any declaration is regarded as scalar. In the discretization, all scalar
components of tensor functions are replaced by identifiers that arise by putting suc-
cessively the function name and the individual indices of the given component (e.g.
the tensor component T(1,2), written in the EXPRES module as T(1,2), is repre-
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sented by the identifier T12). Before the DEPENDENCE statement is executed,
the coordinates have to be defined using the COORDINATES statement. There
may be several DEPENDENCE statements. The DEPENDENCE statement can-
cels all preceding determinations of which grids are to be used for differentiating
the function or the equation for this function. These determinations can be either
defined by the ISGRID or GRIDEQ statements, or computed in the evaluation of
the IIM statement. The GIVEN statement:

GIVEN <function>{,<function>};

declares all functions included in it as given functions whose values are known to
the user or can be computed. The CLEARGIVEN statement:

CLEARGIVEN;

cancels all preceding GIVEN declarations. If the TWOGRID switch is ON, the
given functions can be differentiated both on the integer and the half-integer grids.
If the TWOGRID switch is OFF, any given function can be differentiated only on
one grid. After the package is loaded, the TWOGRID is ON.

Functions and difference grids

Every scalar function or scalar component of a vector or a dyadic function occur-
ring in the discretized system can be discretized in any of the coordinates either
on the integer or half-integer grid. One of the tasks of the IIMET module is to
find the optimum distribution of each of these dependent variables of the system
on the integer and half-integer grids in all variables so that the number of the per-
formed interpolations in the integro-interpolation method will be minimal. Using
the statement

SAME <function>{,<function>};

all functions given in one of these declarations will be discretized on the same
grids in all coordinates. In each SAME statement, at least one of these functions
in one SAME statement must be the sought one. If the given function occurs in
the SAME statement, it will be discretized only on one grid, regardless of the state
of the TWOGRID switch. If a vector or a dyadic function occurs in the SAME
statement, what has been said above relates to all its scalar components. There
are several SAME statements that can be presented. All SAME statements can be
canceled by the following statement:

CLEARSAME;

The SAME statement can be successfully used, for example, when the given func-
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tion depends on the function sought in a complicated manner that cannot be in-
cluded either in the differential equation or in the difference scheme explicitly, and
when both the functions are desired to be discretized in the same points so that
the user will not be forced to execute the interpolation during the evaluation of the
given function. In some cases, it is convenient too to specify directly which vari-
able on which grid is to be discretized, for which case the ISGRID statement is
applied:

ISGRID <s-function>{,<s-function>};
<s-function> ::= <function>([<component>,]<s-grid>

{,<s-grid>})
<s-grid> ::= <coordinate> .. <grid>,
<grid> ::= ONE | HALF designation of the integer

(ONE) and half-integer
(HALF) grids

<component> ::= <i-dim> | for the vector <function>
<i-dim>,<i-dim> for the dyadic <function>

it is not presented for the
scalar <function>

<i-dim> ::= *| "natural number from 1 to the space dimension
the space dimension is specified in the EXPRES
module by the SCALEFACTORS statement, * means
all components

The statement defines that the given functions or their components will be dis-
cretized in the specified coordinates on the specified grids, so that, for example,
the statement ISGRID U (X..ONE,Y..HALF), V(1,Z..ONE), T(*,1,X..HALF); de-
fines that scalar U will be discretized on the integer grid in the coordinate X, and
on the half-integer one in the coordinate Y, the first component of vector V will
be on the integer grid in the coordinate Z, and the first column of tensor T will be
on the half-integer grid in the coordinate X. The ISGRID statement can be applied
more times. The functions used in this statement have to be declared before by the
DEPENDENCE statement.

Equations and difference grids

Every equation of the system of partial differential equations is an equation for
some sought function (specified in the IIM statement). The correspondence be-
tween the sought functions and the equations is mutually unambiguous. The
GRIDEQ statement makes it possible to determine on which grid an individual
equation will be discretized in some or all coordinates

GRIDEQ <g-function>{,<g-function>};
<g-function> ::= <function>(<s-grid>{,<s-grid>})

Every equation can be discretized in any coordinate either on the integer or half-
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integer grid. This statement determines the discretization of the equations given by
the functions included in it in given coordinates, on given grids. The meaning of
the fact that an equation is discretized on a certain grid is as follows: index I used
in the DIFMATCH statements (discussed in the following section), specifying the
discretization of the basic terms, will be located in the center of the cell of this
grid, and indices I+1/2, I-1/2 from the DIFMATCH statement on the boundaries
of the cell of this grid. The actual name of the index in the given coordinate is
determined using the COORDINATES statement, and its location on the grid is set
by the CENTERGRID switch.

Discretization of basic terms

The discretization of a system of partial differential equations is executed succes-
sively in individual coordinates. In the discretization of an equation in one coor-
dinate, the equation is linearized into its basic terms first that will be discretized
independently then. If D is the designation for the discretization operator in the
coordinate x, this linearization obeys the following rules:

1. D(a+b) = D(a)+D(b)
2. D(-a) = -D(a)
3. D(p.a) = p.D(a) (p does not depend on coordinate x)
4. D(a/p) = D(a)/p

The linearization lasts as long as some of these rules can be applied. The basic
terms that must be discretized after the linearization have then the forms of the
following quantities:

1. The actual coordinate in which the discretization is performed.

2. The sought function.

3. The given function.

4. The product of the quantities 1 - 7.

5. The quotient of the quantities 1 - 7.

6. The natural power of the quantities 1 - 7.

7. The derivative of the quantities 1 - 7 with respect to the actual coordinate.

The way of discretizing these basic terms, while the functions are on integer and
half-integer grids, is determined using the DIFMATCH statement:

DIFMATCH <coordinate>,<pattern term>,{{<grid specification>,}
<number of interpolations>, <discretized term>};
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<coordinate> ::= ALL | "identifier" - coordinate name from
COORDINATES statement

<pattern term> ::= <pattern coordinate>|
<pattern sought function>|
<pattern given function>|<pattern term> *
<pattern term>|<pattern term> / <pattern term>|
<pattern term> ** <exponent>|
DIFF(<pattern term>,<pattern coordinate>[,<order
of derivative>])|
<declared operator>(<pattern term>{,<pattern term>})

<pattern coordinate> ::= X
<pattern sought function> ::= U | V | W
<pattern given function> ::= F | G
<exponent> ::= N | "integer greater than 1"
<order of derivative> ::= "integer greater than 2"
<grid specification> ::= <pattern function>=<grid>
<pattern function> ::= <pattern sought function>|

<pattern given function>
<number of interpolations> ::= "non-negative integer"
<discretized term> ::=

<pattern operator>(<index expression>)|
"natural number"|DI|DIM1|DIP1|DIM2|DIP2|
<declared term> | - <discretized term> |
<discretized term> + <discretized term> |
<discretized term> * <discretized term> |
<discretized term> / <discretized term> |
(<discretized term>) |
<discretized term> **<exponent>

<pattern operator> ::= X | U | V | W | F | G
<index expression> ::= <pattern index> |

<pattern index> + <increment> |
<pattern index> - <increment>

<pattern index> ::= I
<increment> = "rational number"
DIFCONST <declared term>{,<declared term>};
<declared term> ::= "identifier" - the constant parameter of

the difference scheme.
DIFFUNC <declared operator>{,<declared operator>};
<declared operator> ::= "identifier" - prefix operator, that

can appear in discretized equations (e.g. SIN).

The first parameter of the DIFMATCH statement determines the coordinate for
which the discretization defined in it is valid. If ALL is used, the discretization
will be valid for all coordinates, and this discretization is accepted when it has
been checked whether there has been no other discretization defined for the given
coordinate and the given pattern term. Each pattern sought function, occurring in
the pattern term, must be included in the specification of the grids. The pattern
given functions from the pattern term can occur in the grid specification, but in
some cases (see below) need not. In the grid specification the maximum number
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of 3 pattern functions may occur. The discretization of each pattern term has to
be specified in all combinations of the pattern functions occurring in the grid spec-
ification, on the integer and half-integer grids, that is 2**n variants for the grid
specification with n pattern functions (n=0,1,2,3). The discretized term is the dis-
cretization of the pattern term in the pattern coordinate X in the point X(I) on the
pattern grid (see Fig. 2.2), and the pattern functions occurring in the grid specifi-
cation are in the discretized term on the respective grids from this specification (to
the discretized term corresponds the grid specification preceding it).

integer grid
X(I-1) X(I) X(I+1)

| DIM1 | DIP1 |
---|------|------|-------------|-------------|-----|-----|---

| DIM2 | DI | DIP2 |
X(I-3/2) X(I-1/2) X(I+1/2) X(I+3/2)

half-integer grid

Figure 2.2 Pattern grid

The pattern grid steps defined as

DIM2 = X(I - 1/2) - X(I - 3/2)
DIM1 = X(I) - X(I - 1)
DI = X(I + 1/2) - X(I - 1/2)
DIP1 = X(I + 1) - X(I)
DIP2 = X(I + 3/2) - X(I + 1/2)

can occur in the discretized term. In the integro-interpolation method, the dis-
cretized term is specified by the integral

<discretized term>=1/(X(I+1/2)-X(I-1/2))*
DINT(X(I-1/2),X(I+1/2),

<pattern term>,X),

where DINT is operator of definite integration DINT(from, to, function, variable).
The number of interpolations determines how many interpolations were needed for
calculating this integral in the given discrete form (the function on the integer or
half-integer grid). If the integro-interpolation method is not used, the more conve-
nient is the distribution of the functions on the half-integer and integer grids, the
smaller number is chosen by the user. The parameters of the difference scheme
defined by the DIFCONST statement can occur in the discretized expression too
(for example, the implicit-explicit scheme on the implicit layer multiplied by the
constant C and on the explicit one by (1-C)). As a matter of fact, all DIFMATCH
statements create a base of pattern terms with the rules of how to discretize these
terms in individual coordinates under the assumption that the functions occurring
in the pattern terms are on the grids determined in the grid specification (all combi-
nations must be included). The DIFMATCH statement does not check whether the
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discretized term is actually the discretization of the pattern term or whether in the
discretized term occur the functions from the grid specification on the grids given
by this specification. An example can be the following definition of the discretiza-
tion of the first and second derivatives of the sought function in the coordinate R
on a uniform grid:

DIFMATCH R,DIFF(U,X),U=ONE,2,(U(I+1)-U(I-1))/(2*DI);
U=HALF,0,(U(I+1/2)-U(I-1/2))/DI;

DIFMATCH R,DIFF(U,X,2),U=ONE,0,(U(I+1)-2*U(I)+U(I-1))/DI**2,
U=HALF,2,(U(I+3/2)-U(I+1/2)-U(I-1/2)+U(I-3/2))/(2*DI**2);

All DIFMATCH statements can be cleared by the statement

CLEARDIFMATCH;

After this statement user has to supply its own DIFMATCH statements. But now
back to the discretizing of the basic terms obtained by the linearization of the par-
tial differential equation, as mentioned at the beginning of this section. Using the
method of pattern matching, for each basic term a term representing its pattern is
found in the base of pattern terms (specified by the DIFMATCH statements). The
pattern matching obeys the following rules:

1. The pattern for the coordinate in which the discretization is executed is the
pattern coordinate X.

2. The pattern for the sought function is some pattern sought function, and this
correspondence is mutually unambiguous.

3. The pattern for the given function is some pattern given function, or, in case
the EQFU switch is ON, some pattern sought function, and, again, the cor-
respondence of the pattern with the given function is mutually unambiguous
(after loading the EQFU switch is ON).

4. The pattern for the products of quantities is the product of the patterns of
these quantities, irrespective of their sequence.

5. The pattern for the quotient of quantities is the quotient of the patterns of
these quantities.

6. The pattern for the natural power of a quantity is the same power of the
pattern of this quantity or the power of this quantity with the pattern exponent
N.

7. The pattern for the derivative of a quantity with respect to the coordinate in
which the discretization is executed is the derivative of the pattern of this
quantity with respect to the pattern coordinate X of the same order of differ-
entiation.
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8. The pattern for the sum of the quantities that have the same pattern with the
identical correspondence of functions and pattern functions is this common
pattern (so that it will not be necessary to multiply the parentheses during
discretizing the products in the second and further coordinates).

When matching the pattern of one basic term, the program finds the pattern term
and the functions corresponding to the pattern functions, maybe also the exponent
corresponding to the pattern exponent N. After determining on which grids the in-
dividual functions and the individual equations will be discretized, which will be
discussed in the next section, the program finds in the pattern term base the dis-
cretized term either with pattern functions on the same grids as are the functions
from the basic term corresponding to them in case that the given equation is differ-
entiated on the integer grid, or with pattern functions on inverse grids (an inverse
integer grid is a half-integer grid, and vice versa) compared with those used for
the functions from the basic term corresponding to them in case the given equation
is differentiated on the half-integer grid (the discretized term in the DIFMATCH
statement is expressed in the point X(I), i.e. on the integer grid, and holds for the
discretizing of the equation on the integer grid; with regard to the substitutions for
the pattern index I mentioned later, it is possible to proceed in this way and not nec-
essary to define the discretization in the points X(I+1/2) too, i.e. on the half-integer
grid). The program replaces in the thus obtained discretized term:

1. The pattern coordinate X with the particular coordinate s in which the dis-
cretization is actually performed.

2. The pattern index I and the grid steps DIM2, DIM1, DI, DIP1, DIP2 with
the expression given in table 2.1 according to the state of the CENTERGRID
switch and to the fact whether the given equation is discretized on the integer
or half-integer grid (i is the index corresponding to the coordinate s according
to the COORDINATES statement, the grid steps were defined in section 2.2)

3. The pattern functions with the corresponding functions from the basic term
and, possibly, the pattern exponent with the corresponding exponent from
the basic term.

--------------------------------------------------------------------
| the equation discretized on |
| the integer grid | the half-integer grid |
| CENTERGRID |CENTERGRID|CENTERGRID| CENTERGRID |
| OFF | ON | OFF | ON |
|------------------------------------------------------------------|
| I | i | i+1/2 |
|----|-------------------------------------------------------------|
|DIM2|(Hs(i-2)+Hs(i-1))/2| Hs(i-1) |(Hs(i-1)+Hs(i))/2 |
|DIM1| Hs(i-1) | (Hs(i-1)+Hs(i))/2 | Hs(i) |
|DI |(Hs(i-1)+Hs(i))/2 | Hs(i) |(Hs(i)+Hs(i+1))/2 |
|DIP1| Hs(i) | (Hs(i)+Hs(i+1))/2 | Hs(i+1) |
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|DIP2|(Hs(i)+Hs(i+1))/2 | Hs(i+1) |(Hs(i+1)+Hs(i+2))/2|
--------------------------------------------------------------------

Table 2.1 Values of the pattern index and
the pattern grid steps.

More details will be given now to the discretization of the given functions and its
specification. The given function may occur in the SAME statement, which makes
it bound with some sought function, in other words it can be discretized only on one
grid. This means that all basic terms, in which this function occurs, must have their
pattern terms in whose discretization definitions by the DIFMATCH statement the
pattern function corresponding to the mentioned given function has to occur in the
grid specification. If the given function does not occur in the SAME statement and
the TWOGRID switch is OFF, i.e. it can be discretized only on one grid again,
the same holds true. If, however, the given function does not occur in the SAME
statement and the TWOGRID switch is ON, i.e. it can be discretized simultane-
ously on the integer and the half-integer grids, then the basic terms of the equations
including this function have their pattern terms in whose discretization definitions
the pattern function corresponding to the mentioned given function need not occur
in the grid specification. If, however, in spite of all, this pattern function in the dis-
cretization definition does occur in the grid specification, it is the alternative with
a smaller number of interpolations occurring in the DIFMATCH statement that
is selected for each particular basic term with a corresponding pattern (the given
function can be on the integer or half-integer grid). Before the discretization is exe-
cuted, it is necessary to define using the DIFMATCH statements the discretization
of all pattern terms that are the patterns of all basic terms of all equations appearing
in the discretized system in all coordinates. The fact that the pattern terms of the
basic terms of partial equations occur repeatedly in individual systems has made
it possible to create a library of the discretizations of the basic types of pattern
terms using the integro-interpolation method. This library is a component part of
the IIMET module (in its end) and makes work easier for those users who find
the pattern matching mechanism described here too difficult. New DIFMATCH
statements have to be created by those whose equations will contain a basic term
having no pattern in this library, or those who need another method to perform
the discretization. The described implemented algorithm of discretizing the basic
terms is sufficiently general to enable the use of a nearly arbitrary discretization on
orthogonal grids.

Discretization of a system of equations

All statements influencing the run of the discretization that one want use in this
run have to be executed before the discretization is initiated. The COORDI-
NATES, DEPENDENCE, and DIFMATCH statements have to occur in all appli-
cations. Further, if necessary, the GRID UNIFORM, GIVEN, ISGRID, GRIDEQ,
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SAME, and DIFCONST statements can be used, or some of the CENTREGRID,
TWOGRID, EQFU, and FULLEQ switches can be set. Only then the discretization
of a system of partial differential equations can be started using the IIM statement:

IIM <array>{,<sought function>,<equation>};
<array> ::= "identifier" - the name of the array for

storing the result
<sought function> ::= "identifier" - the name of the

function whose behavior is
described by the equation

<equation> ::= <left side> = <right side>
<left side> ::= "algebraic expression", the derivatives

are designated by the DIFF operator
<right side> ::= "algebraic expression"

Hence, in the IIM statement the name of the array in which the resulting difference
schemes will be stored, and the pair sought function - equation, which describes
this function, are specified. The meaning of the relation between the sought func-
tion and its equation during the discretization lies in the fact that the sought function
is preferred in its equation so that the interpolation is not, if possible, used in dis-
cretizing the terms of this equation that contain it. In the equations, the functions
and the coordinates appear as identifiers. The identifiers that have not been de-
clared as functions by the DEPENDENCE statement or as coordinates by the CO-
ORDINATES statement are considered constants independent of the coordinates.
The partial derivatives are expressed by the DIFF operator that has the same syntax
as the standard differentiation operator DF. The functions and the equations can
also have the vector or tensor character. If these non-scalar quantities are applied,
the EXPRES module has to be used together with the IIMET module, and also
non-scalar differential operators such as GRAD, DIV, etc. can be employed. The
sequence performed by the program in the discretization can be briefly summed up
in the following items:

1. If there are non-scalar functions or equations in a system of equations, they
are automatically converted into scalar quantities by means of the EXPRES
module.

2. In each equation, the terms containing derivatives are transferred to the left
side, and the other terms to the right side of the equation.

3. For each coordinate, with respect to the sequence in which they occur in the
COORDINATES statement, the following is executed:

a) It is determined on which grids all functions and all equations in the actual
coordinate will be discretized, and simultaneously the limits are kept result-
ing from the ISGRID, GRIDEQ, and SAME statements if they were used.
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Such a distribution of functions and equations on the grids is selected among
all possible variants that ensures the minimum sum of all numbers of the
interpolations of the basic terms (specified by the DIFMATCH statement) of
all equations if the FULLEQ switch is ON, or of all left sides of the equat-
ions if the FULLEQ switch is OFF (after the loading the FULLEQ switch is
ON).

b) The discretization itself is executed, as specified by the DIFMATCH state-
ments.

4. If the array name is A, then if there is only one scalar equation in the IIM
statement, the discretized left side of this equation is stored in A(0) and the
discretized right side in A(1) (after the transfer mentioned in item 2), if there
are more scalar equations than one in the IIM statement, the discretization of
the left side of the i-th scalar equation is stored in A(i,0) and the discretiza-
tion of the right side in A(i,1).

The IIM statement can be used more times during one program run, and between its
calls, the discretizing process can be altered using other statements of this module.

Error messages

The IIMET module provides error messages in the case of the user’s errors. Sim-
ilarly as in the REDUCE system, the error reporting is marked with five stars :
"*****" on the line start. Some error messages are identical with those of the
REDUCE system. Here are given some other error messages that require a more
detailed explanation:

***** Matching of X term not found
- the discretization of the pattern term that is the

pattern of the basic term printed on the place X
has not been defined (using the DIFMATCH statement)

***** Variable of type F not defined on grids in DIFMATCH
- in the definition of the discretizing of the pattern

term the given functions were not used in the grid
specification and are needed now

***** X Free vars not yet implemented
- in the grid specification in the DIFMATCH statement

more than 3 pattern functions were used

***** All grids not given for term X
- in the definition of the discretization of the

pattern of the basic term printed on the place X not
all necessary combinations of the grid specification
of the pattern functions were presented
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20.22.4 APPROX

A Module for Determining the Precision Order of the Difference Scheme

This module makes it possible to determine the differential equation that is solved
by the given difference scheme, and to determine the order of accuracy of the
solution of this scheme in the grid steps in individual coordinates. The discrete
function values are expanded into the Taylor series in the specified point.

Specification of the coordinates and the indices corresponding to them

The COORDINATES statement, described in the IIMET module manual, speci-
fying the coordinates and the indices corresponding to them is the same for this
program module as well. It has the same meaning and syntax. The present module
version assumes a uniform grid in all coordinates. The grid step in the input dif-
ference schemes has to be designated by an identifier consisting of the character H
and the name of the coordinate, e.g. the step of the coordinate X is HX.

Specification of the Taylor expansion

In the determining of the approximation order, all discrete values of the functions
are expanded into the Taylor series in all coordinates. In order to determine the
Taylor expansion, the program needs to know the point in which it performs this
expansion, and the number of terms in the Taylor series in individual coordinates.
The center of the Taylor expansion is specified by the CENTER statement and the
number of terms in the Taylor series in individual coordinates by the MAXORDER
statement:

CENTER <center>{,<center>};
<center> ::= <coordinate> = <increment>
<increment> ::= "rational number"
MAXORDER <order>{,<order>};
<order> ::= <coordinate> = <number of terms>
<number of terms> ::= "natural number"

The increment in the CENTER statement determines that the center of the Taylor
expansion in the given coordinate will be in the point specified by the index I +
<increment>, where I is the index corresponding to this coordinate, defined using
the COORDINATES statement, e.g. the following example

COORDINATE T,X INTO N,J;
CENTER T = 1/2, X = 1;
MAXORDER T = 2, X = 3;
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specifies that the center of the Taylor expansion will be in the point (t(n+1/2),x(j+1))
and that until the second derivatives with respect to t (second powers of ht) and un-
til the third derivatives with respect to x (third powers of hx) the expansion will
be performed. The CENTER and MAXORDER statements can be placed only
after the COORDINATES statement. If the center of the Taylor expansion is not
defined in some coordinate, it is supposed to be in the point given by the index
of this coordinate (i.e. zero increment). If the number of the terms of the Taylor
expansion is not defined in some coordinate, the expansion is performed until the
third derivatives with respect to this coordinate.

Function declaration

All functions whose discrete values are to be expanded into the Taylor series must
be declared using the FUNCTIONS statement:

FUNCTIONS <name of function>{,<name of function>};
<name of function> ::= "identifier"

In the specification of the difference scheme, the functions are used as operators
with one or more arguments, designating the discrete values of the functions. Each
argument is the sum of the coordinate index (from the COORDINATES statement)
and a rational number. If some index is omitted in the arguments of a function, this
functional value is supposed to lie in the point in which the Taylor expansion is
performed, as specified by the CENTER statement. In other words, if the COOR-
DINATES and CENTER statements, shown in the example in the previous section,
are valid, then it holds that U(N+1) = U(N+1,J+1) and U(J-1) = U(N+1/2,J-1). The
FUNCTIONS statement can declare both the sought and the known functions for
the expansion.

Order of accuracy determination

The order of accuracy of the difference scheme is determined by the APPROX
statement:

APPROX (<diff. scheme>);
<diff. scheme> ::= <l. side> = <r. side>
<l. (r.) side> ::= "algebraic expression"

In the difference scheme occur the functions in the form described in the preceding
section, the coordinate indices and the grid steps described in section 3.1, and the
other symbolic parameters of the difference scheme. The APPROX statement ex-
pands all discrete values of the functions declared in the FUNCTIONS statement
into the Taylor series in all coordinates (the point in which the Taylor expansion
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is performed is specified by the CENTER statement, and the number of the ex-
pansion terms by the MAXORDER statement), substitutes the expansions into the
difference scheme, which gives a modified differential equation. The modified dif-
ferential equation, containing the grid steps too, is an equation that is really solved
by the difference scheme (into the given orders in the grid steps). The partial
differential equation, whose solution is approximated by the difference scheme, is
determined by replacing the grid steps by zeros and is displayed after the following
message:

"Difference scheme approximates differential equation"

Then the following message is displayed:

"with orders of approximation:"

and the lowest powers (except for zero) of the grid steps in all coordinates, occur-
ring in the modified differential equation are written. If the PRAPPROX switch
is ON, then the rest of the modified differential equation is printed. If this rest is
added to the left hand side of the approximated differential equation, one obtain
modified equation. By default the PRAPPROX switch is OFF. If the grid steps are
found in some denominator in the modified equation, i.e. with a negative exponent,
the following message is written, preceding the approximated differential equation:

"Reformulate difference scheme, grid steps remain in denominator"

and the approximated differential equation is not correctly determined (one of its
sides is zero). Generally, this message means that there is a term in the difference
scheme that is not a difference replacement of the derivative, i.e. the ratio of the
differences of the discrete function values and the discrete values of the coordinates
(the steps of the difference grid). The user, however, must realize that in some cases
such a term occurs purposefully in the difference scheme (e.g. on the grid boundary
to keep the scheme conservative).

20.22.5 CHARPOL

A Module for Calculating the Amplification Matrix and the Characteristic Polyno-
mial of the Difference Scheme

This program module is used for the first step of the stability analysis of the differ-
ence scheme using the Fourier method. It substitutes the Fourier components into
the difference scheme, calculates the amplification matrix of the scheme for tran-
sition from one time layer to another, and computes the characteristic polynomial
of this matrix.
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Commands common with the IIMET module

The COORDINATES and GRID UNIFORM statements, described in the IIMET
module manual, are applied in this module as well, having the same meaning and
syntax. The time coordinate is assumed to be designated by the identifier T. The
present module version requires all coordinates to have uniform grids, i.e. to be
declared in the GRID UNIFORM statement. The grid step in the input difference
schemes has to be designated by the identifier consisting of the character H and the
name of the coordinate, e.g. the step of the time coordinate T is HT.

Function declaration

The UNFUNC statement declares the names of the sought functions used in the
difference scheme:

UNFUNC <function>{,<function>}
<function> ::= "identifier" - name of sought function

The functions are used in the difference schemes as operators with one or more
arguments for designating the discrete function values. Each argument is the sum
of the index (from the COORDINATES statement) and a rational number. If some
index is omitted in the function arguments, this function value is supposed to lie in
the point specified only by this index, which means that, with the indices N and J
and the function U, it holds that U(N+1) = U(N+1,J) and U(J-1) = U(N,J-1). As
two-step (in time) difference schemes may be used only, the time index may occur
either completely alone in the arguments, or in the sum with a one.

Amplification matrix

The AMPMAT matrix operator computes the amplification matrix of a two-step
difference scheme. Its argument is an one column matrix of the dimension (1,k),
where k is the number of the equations of the difference scheme, that contains the
difference equations of this scheme as algebraic expressions equal to the difference
of the right and left sides of the difference equations. The value of the AMPMAT
matrix operator is the square amplification matrix of the dimension (k,k). During
the computation of the amplification matrix, two new identifiers are created for
each spatial coordinate. The identifier made up of the character K and the name
of the coordinate represents the wave number in this coordinate, and the identi-
fier made up of the character A and the name of the coordinate represents the
product of this wave number and the grid step in this coordinate divided by the
least common multiple of all denominators occurring in the scheme in the function
argument containing the index of this coordinate. On the output an equation is dis-
played defining the latter identifier. For example, if in the case of function U and



782 CHAPTER 20. USER CONTRIBUTED PACKAGES

index J in the coordinate X the expression U(J+1/2) has been used in the scheme
(and, simultaneously, no denominator higher than 2 has occurred in the arguments
with J), the following equation is displayed: AX: = (KX*HX)/2. The definition
of these quantities As allows to express every sum occurring in the argument of
the exponentials as the sum of these quantities multiplied by integers, so that after
a transformation, the amplification matrix will contain only sin(As) and cos(As)
(for all spatial coordinates s). The AMPMAT operator performs these transforma-
tions automatically. If the PRFOURMAT switch is ON (after the loading it is ON),
the matrices H0 and H1 (the amplification matrix is equal to -H1**(-1)*H0) are
displayed during the evaluation of the AMPMAT operator. These matrices can be
used for finding a suitable substitution for the goniometric functions in the next
run for a greater simplification. The TCON matrix operator transforms the square
matrix into a Hermit-conjugate matrix, i.e. a transposed and complex conjugate
one. Its argument is the square matrix and its value is Hermit-conjugate matrix of
the argument. The Hermit-conjugate matrix is used for testing the normality and
unitarity of the amplification matrix in the determining of the sufficient stability
condition.

Characteristic polynomial

The CHARPOL operator calculates the characteristic polynomial of the given
square matrix. The variable of the characteristic polynomial is designated by the
LAM identifier. The operator has one argument, the square matrix, and its value is
its characteristic polynomial in LAM.

Automatic denotation

Several statements and procedures are designed for automatic denotation of some
parts of algebraic expressions by identifiers. This denotation is namely useful when
we obtain very large expressions, which cannot fit into the available memory. We
can denote subparts of an expression from the previous step of calculation by iden-
tifiers, replace these subparts by these identifiers and continue the analytic calcu-
lation only with these identifiers. Every time we use this technique we have to
explicitly survive in processed expressions those algebraic quantities which will be
necessary in the following steps of calculation. The process of denotation and re-
placement is performed automatically and the algebraic values which are denoted
by these new identifiers can be written out at any time. We describe how this au-
tomatic denotation can be used. The statement DENOTID defines the beginning
letters of newly created identifiers. Its syntax is

DENOTID <id>;
<id> ::= "identifier"
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After this statement the new identifiers created by the operators DENOTEPOL and
DENOTEMAT will begin with the letters of the identifier <id> used in this state-
ment. Without using any DENOTID statement all new identifiers will begin with
one letter A. We suggest to use this statement every time before using operators
DENOTEPOL or DENOTEMAT with some new identifier and to choose identi-
fiers used in this statement in such a way that the newly created identifiers are not
equal to any identifiers used in the expressions you are working with. The operator
DENOTEPOL has one argument, a polynomial in LAM, and denotes the real and
imaginary part of its coefficients by new identifiers. The real part of the j-th LAM
power coefficient is denoted by the identifier <id>R0j and the imaginary part by
<id>I0j, where <id> is the identifier used in the last DENOTID statement. The
denotation is done only for non-numeric coefficients. The value of this operator
is the polynomial in LAM with coefficients constructed from the new identifiers.
The algebraic expressions which are denoted by these identifiers are stored as LISP
data structure standard quotient in the LISP variable DENOTATION!* (assoc. list).
The operator DENOTEMAT has one argument, a matrix, and denotes the real and
imaginary parts of its elements. The real part of the (j,k) matrix element is denoted
by the identifier <id>Rjk and the imaginary part by <id>Ijk. The returned value of
the operator is the original matrix with non-numeric elements replaced by <id>Rjk
+ I*<id>Ijk. Other matters are the same as for the DENOTEPOL operator. The
statement PRDENOT has the syntax

PRDENOT;

and writes from the variable DENOTATION!* the definitions of all new identifiers
introduced by the DENOTEPOL and DENOTEMAT operators since the last call of
CLEARDENOT statement (or program start) in the format defined by the present
setting of output control declarations and switches. The definitions are written in
the same order as they have been entered, so that the definitions of the first DE-
NOTEPOL or DENOTEMAT operators are written first. This order guarantees
that this statement can be utilized directly to generate a semantically correct nu-
merical program (the identifiers from the first denotation can appear in the second
one, etc.). The statement CLEARDENOT with the syntax

CLEARDENOT;

clears the variable DENOTATION!*, so that all denotations saved earlier by the
DENOTEPOL and DENOTEMAT operators in this variable are lost. The PRDE-
NOT statement succeeding this statement writes nothing.

20.22.6 HURWP

A Module for Polynomial Roots Locating



784 CHAPTER 20. USER CONTRIBUTED PACKAGES

This module is used for verifying the stability of a polynomial, i.e. for verifying
if all roots of a polynomial lie in a unit circle with its center in the origin. By
investigating the characteristic polynomial of the difference scheme, the user can
determine the conditions of the stability of this scheme.

Conformal mapping

The HURW operator transforms a polynomial using the conformal mapping
LAM=(z+1)/(z-1). Its argument is a polynomial in LAM and its value is a trans-
formed polynomial in LAM (LAM=z). If P is a polynomial in LAM, then it holds:
all roots LAM1i of the polynomial P are in their absolute values smaller than one,
i.e. |LAM1i|<1, iff the real parts of all roots LAM2i of the HURW(P) polynomial
are negative, i.e. Re (LAM2i)<0. The elimination of the unit polynomial roots
(LAM=1), which has to occur before the conformal transformation is performed,
is made by the TROOT1 operator. The argument of this operator is a polynomial
in LAM and its value is a polynomial in LAM not having its root equal to one any
more. Mostly, the investigated polynomial has some more parameters. For some
special values of those parameters, the polynomial may have a unit root. During
the evaluation of the TROOT1 operator, the condition concerning the polynomial
parameters is displayed, and if it is fulfilled, the resulting polynomial has a unit
root.

Investigation of polynomial roots

The HURWITZP operator checks whether a polynomial is the Hurwitz polynomial,
i.e. whether all its roots have negative real parts. The argument of the HURWITZP
operator is a polynomial in LAM with real or complex coefficients, and its value
is YES if the argument is the Hurwitz polynomial. It is NO if the argument is
not the Hurwitz polynomial, and COND if it is the Hurwitz polynomial when the
conditions displayed by the HURWITZP operator during its analysis are fulfilled.
These conditions have the form of inequalities and contain algebraic expressions
made up of the polynomial coefficients. The conditions have to be valid either si-
multaneously, or they are designated and a proposition is created from them by the
AND and OR logic operators that has to be fulfilled (it is the condition concerning
the parameters occurring in the polynomial coefficient) by a polynomial to be the
Hurwitz one. This proposition is the sufficient condition, the necessary condition
is the fulfillment of all the inequalities displayed. If the HURWITZP operator is
called interactively, the user is directly asked if the inequalities are or are not valid.
The user responds "Y" if the displayed inequality is valid, "N" if it is not, and "?"
if he does not know whether the inequality is true or not.
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20.22.7 LINBAND

A Module for Generating the Numeric Program for Solving a System of Linear
Algebraic Equations with Band Matrix

The LINBAND module generates the numeric program in the FORTRAN lan-
guage, which solves a system of linear algebraic equations with band matrix us-
ing the routine from the LINPACK, NAG ,IMSL or ESSL program library. As
input data only the system of equations is given to the program. Automatically, the
statements of the FORTRAN language are generated that fill the band matrix of
the system in the corresponding memory mode of chosen library, call the solving
routine, and assign the chosen variables to the solution of the system. The module
can be used for solving linear difference schemes often having the band matrix.

Program generation

The program in the FORTRAN language is generated by the GENLINBANDSOL
statement (the braces in this syntax definition occur directly in the program and do
not have the usual meaning of the possibility of repetition, they designate REDUCE
lists):

GENLINBANDSOL (<n-lower>,<n-upper>,{<system>});
<n-lower> ::= "natural number"
<n-upper> ::= "natural number"
<system> ::= <part of system> | <part of system>,<system>
<part of system>::= {<variable>,<equation>} | <loop>
<variable> ::= "kernel"
<equation> ::= <left side> = <right side>
<left side> ::= "algebraic expression"
<right side> ::= "algebraic expression"
<loop> ::= {DO,{<parameter>,<from>,<to>,<step>},<c-system>}
<parameter> ::= "identifier"
<from> ::= <i-expression>
<to> ::= <i-expression>
<step> ::= <i-expression>
<i-expression> ::= "algebraic expression" with natural value

(evaluated in FORTRAN)
<c-system> ::= <part of c-system> | <part of c-system>,<c-

system>
<part of c-system> ::= {<variable>,<equation>}

The first and second argument of the GENLINBANDSOL statement specifies the
number of the lower (below the main diagonal) and the upper diagonals of the
band matrix of the system. The system of linear algebraic equations is specified
by means of lists expressed by braces in the REDUCE system. The variables of
the equation system can be identifiers, but most probably they are operators with an
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argument or with arguments that are analogous to array in FORTRAN. The left side
of each equation has to be a linear combination of the system variables, the right
side, on the contrary, is not allowed to contain any variables of the system. The
sequence of the band matrix lines is given by the sequence of the equations, and
the sequence of the columns by the sequence of the variables in the list describing
the equation system. The meaning of the loop in the system list is similar to that of
the DO loop of the FORTRAN language. The individual variables and equations
described by the loop are obtained as follows:

1. <parameter> = <from>. 2. The <parameter> value is substituted into the vari-
ables and equations of the <c-system> loop, by which further variables and equat-
ions of the system are obtained. 3. <parameter> is increased by <step>. 4. If
<parameter> is less or equal <to>, then go to step 2, else all variables and equat-
ions described by the loop have already been obtained.

The variables and equations of the system included in the loop usually contain the
loop parameter, which mostly occur in the operator arguments in the REDUCE
language, or in the array indices in the FORTRAN language. If NL = <n-lower>,
NU = <n-upper>, and for some loop F = <from>, T = <to>, S = <step> and N is
the number of the equations in the loop <c-system>, it has to be true that

UP(NL/N) + UP(NU/N) < DOWN((T-F)/S)

where UP represents the rounding-off to a higher natural number, and DOWN the
rounding-off to a lower natural number. With regard to the fact that, for example,
the last variable before the loop is not required to equal the last variable from the
loop system, into which the loop parameter equal to F-S is substituted, when the
band matrix is being constructed, from the FORTRAN loop that corresponds to the
loop from the specification of the equation system, at least the first NL variables-
equations have to be moved to precede the FORTRAN loop, and at least the last
NU variables-equations have to be moved to follow this loop in order that the cor-
respondence of the system variables in this loop with the system variables before
and after this loop will be secured. And this move requires the above mentioned
condition to be fulfilled. As, in most cases, NL/N and NU/N are small with respect
to (T-F)/S, this condition does not represent any considerable constrain. The loop
parameters <from>, <to>, and <step> can be natural numbers or expressions that
must have natural values in the run of the FORTRAN program.

Choosing the numerical library

The user can choose the routines of which numerical library will be used in the
generated FORTRAN code. The supported numerical libraries are: LINPACK,
NAG, IMSL and ESSL (IBM Engineering and Scientific Subroutine Library) .
The routines DGBFA, DGBSL (band solver) and DGTSL (tridiagonal solver) are
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used from the LINPACK library, the routines F01LBF, F04LDF (band solver) and
F01LEF, F04LEF (tridiagonal solver) are used from the NAG library, the routine
LEQT1B is used from the IMSL library and the routines DGBF, DGBS (band
solver) and DGTF, DGTS (tridiagonal solver) are used from the ESSL library. By
default the LINPACK library routines are used. The using of other libraries is con-
trolled by the switches NAG,IMSL and ESSL. All these switches are by default
OFF. If the switch IMSL is ON then the IMSL library routine is used. If the switch
IMSL is OFF and the switch NAG is ON then NAG library routines are used. If
the switches IMSL and NAG are OFF and the switch ESSL is ON then the ESSL
library is used. During generating the code using LINPACK, NAG or ESSL li-
braries the special routines are use for systems with tridiagonal matrices, because
tridiagonal solvers are faster than the band matrix solvers.

Completion of the generated code

The GENLINBANDSOL statement generates a block of FORTRAN code ( a block
of statements of the FORTRAN language) that performs the solution of the given
system of linear algebraic equations. In order to be used, this block of code has to
be completed with some declarations and statements, thus getting a certain enve-
lope that enables it to be integrated into the main program. In order to be able to
work, the generated block of code has to be preceded by:

1. The declaration of arrays as described by the comments generated into the
FORTRAN code (near the calling of library routines)

2. The assigning the values to the integer variables describing the real dimen-
sions of used arrays (again as described in generated FORTRAN comments)

3. The filling of the variables that can occur in the loop parameters.

4. The filling or declaration of all variables and arrays occurring in the system
equations, except for the variables of the system of linear equations.

5. The definition of subroutine ERROUT the call to which is generated after
some routines found that the matrix is algorithmically singular

The mentioned envelope for the generated block can be created manually, or di-
rectly using the GENTRAN program package for generating numeric programs.
The LINBAND module itself uses the GENTRAN package, and the GENLIN-
BANDSOL statement can be applied directly in the input files of the GENTRAN
package (template processing). The GENTRAN package has to be loaded prior to
loading of the LINBAND module. The generated block of FORTRAN code has to
be linked with the routines from chosen numerical library.

For reference, see [Lis91].
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20.23 GCREF: A Graph Cross Referencer

This package reuses the code of the RCREF package to create a graph displaying
the interdependency of procedures in a Reduce source code file.

Authors: A. Dolzmann, T. Sturm

20.23.1 Basic Usage

Similarly to the Reduce cross referencer, it is used via switches as follows:

load_package gcref;
on gcref;
in "<filename>.red";
off gcref;

At off gcref; the graph is printed to the screen in TGF format. To redirect this
output to a file, use the following:

load_package gcref;
on gcref;
in "<filename>.red";
out "<filename>.tgf";
off gcref;
shut "<filename>.tgf";

20.23.2 Shell Script "gcref"

There is a shell script "gcref" in this directory automizing this like

./gcref filename.red

"gcref" is configured to use CSL Reduce. To use PSL Reduce instead, set $RE-
DUCE in the environment. To use PSL by default, define

REDUCE=redpsl

in line 3 of "gcref".

20.23.3 Rendering with yED

The obtained TGF file can be viewed with a graph editor. I recommend using the
free software yED, which is written in Java and available for many platforms.
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http://www.yworks.com/en/products_yed_about.html

Note that TGF is not suitable for storing rendering information. After opening the
TGF file with yED, the graph has to be rendered explicitly as follows:

* From menu "Layout" choose "Hierarchical Layout".

To resize the nodes to the procedure names

* from menu "Tools" choose "Fit Node to Label".

Feel free to experiment with yED and use other layout and layout options, which
might be suitable for your particular software.

For saving your particular layout at the end, use the GRAPHML format instead of
TGF.
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20.24 GENTRAN: A Code Generation Package

GENTRAN is an automatic code GENerator and TRANslator. It constructs com-
plete numerical programs based on sets of algorithmic specifications and symbolic
expressions. Formatted FORTRAN, RATFOR, PASCAL or C code can be gener-
ated through a series of interactive commands or under the control of a template
processing routine. Large expressions can be automatically segmented into subex-
pressions of manageable size, and a special file-handling mechanism maintains
stacks of open I/O channels to allow output to be sent to any number of files si-
multaneously and to facilitate recursive invocation of the whole code generation
process.

Author: Barbara L. Gates

Further documentation is available at https://reduce-algebra.
sourceforge.io/extra-docs/gentran.pdf.

https://reduce-algebra.sourceforge.io/extra-docs/gentran.pdf
https://reduce-algebra.sourceforge.io/extra-docs/gentran.pdf
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20.25 GRINDER: Calculation of three-loop diagrams in
Heavy Quark Effective Theory

Author: Andrey G. Grozin

A description of the algorithm can be found on the arXiv page.

https://arxiv.org/abs/hep-ph/0002266
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20.26 GROEBNER: A Gröbner Basis Package

GROEBNER is a package for the computation of Gröbner Bases using the Buch-
berger algorithm and related methods for polynomial ideals and modules. It can be
used over a variety of different coefficient domains, and for different variable and
term orderings.

Gröbner Bases can be used for various purposes in commutative algebra, e.g. for
elimination of variables, converting surd expressions to implicit polynomial form,
computation of dimensions, solution of polynomial equation systems etc. The
package is also used internally by the SOLVE operator.

Authors: Herbert Melenk, H.M. Möller and Winfried Neun

Gröbner bases are a valuable tool for solving problems in connection with multi-
variate polynomials, such as solving systems of algebraic equations and analyzing
polynomial ideals. For a definition of Gröbner bases, a survey of possible appli-
cations and further references, see [Buc85]. Examples are given in [BGK86], in
[Buc88] and also in the test file for this package.

The GROEBNER package calculates Gröbner bases using the Buchberger algo-
rithm. It can be used over a variety of different coefficient domains, and for differ-
ent variable and term orderings.

The current version of the package uses parts of a previous version, written by
R. Gebauer, A.C. Hearn, H. Kredel and H. M. Möller. The algorithms imple-
mented in the current version are documented in [FGLM93], [GM88], [KW88]
and [GMN+91]. The operator saturation has been implemented in July 2000
(Herbert Melenk).

20.26.1 Background

Variables, Domains and Polynomials

The various functions of the GROEBNER package manipulate equations and/or
polynomials; equations are internally transformed into polynomials by forming
the difference of left-hand side and right-hand side, if equations are given.

All manipulations take place in a ring of polynomials in some variables x1, . . . , xn
over a coefficient domain d:

d[x1, . . . , xn],

where d is a field or at least a ring without zero divisors. The set of variables
x1, . . . , xn can be given explicitly by the user or it is extracted automatically from
the input expressions.

All REDUCE kernels can play the role of “variables” in this context; examples are
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x y z22 sin(alpha) cos(alpha) c(1,2,3) c(1,3,2) farina4711

The domain d is the current REDUCE domain with those kernels adjoined that are
not members of the list of variables. So the elements of d may be complicated
polynomials themselves over kernels not in the list of variables; if, however, the
variables are extracted automatically from the input expressions, d is identical with
the current REDUCE domain. It is useful to regard kernels not being members of
the list of variables as “parameters”, e.g.

a * x + (a - b) * y**2
with “variables” {x, y}

and “parameters” a and b .

The exponents of GROEBNER variables must be positive integers.

A GROEBNER variable may not occur as a parameter (or part of a parameter) of a
coefficient function. This condition is tested in the beginning of the GROEBNER

calculation; if it is violated, an error message occurs (with the variable name), and
the calculation is aborted. When the GROEBNER package is called by solve, the
test is switched off internally.

The current version of the Buchberger algorithm has two internal modes, a field
mode and a ring mode. In the starting phase the algorithm analyzes the domain
type; if it recognizes d as being a ring it uses the ring mode, otherwise the field
mode is needed. Normally field calculations occur only if all coefficients are num-
bers and if the current REDUCE domain is a field (e.g. rational numbers, modular
numbers modulo a prime). In general, the ring mode is faster. When no specific
REDUCE domain is selected, the ring mode is used, even if the input formulas
contain fractional coefficients: they are multiplied by their common denominators
so that they become integer polynomials. Zeroes of the denominators are included
in the result list.

Term Ordering

In the theory of Gröbner bases, the terms of polynomials are considered as or-
dered. Several order modes are available in the current package, including the
basic modes:

lex, gradlex, revgradlex

All orderings are based on an ordering among the variables. For each pair of vari-
ables (a, b) an order relation must be defined, e.g. “a ≫ b”. The greater sign≫
does not represent a numerical relation among the variables; it can be interpreted
only in terms of formula representation: “a” will be placed in front of “b” or “a” is
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more complicated than “b”.

The sequence of variables constitutes this order base. So the notion of

{x1, x2, x3}

as a list of variables at the same time means

x1≫ x2≫ x3

with respect to the term order.

If terms (products of powers of variables) are compared with lex, that term is cho-
sen which has a greater variable or a higher degree if the greatest variable is the
first in both. With gradlex the sum of all exponents (the total degree) is compared
first, and if that does not lead to a decision, the lex method is taken for the final
decision. The revgradlex method also compares the total degree first, but afterward
it uses the lex method in the reverse direction; this is the method originally used by
Buchberger.

Example 1 with {x, y, z}:

lex:
x ∗ y ∗ ∗3 ≫ y ∗ ∗48 (heavier variable)

x ∗ ∗4 ∗ y ∗ ∗2 ≫ x ∗ ∗3 ∗ y ∗ ∗10 (higher degree in 1st variable)

gradlex:
y ∗ ∗3 ∗ z ∗ ∗4 ≫ x ∗ ∗3 ∗ y ∗ ∗3 (higher total degree)

x ∗ z ≫ y ∗ ∗2 (equal total degree)

revgradlex:
y ∗ ∗3 ∗ z ∗ ∗4 ≫ x ∗ ∗3 ∗ y ∗ ∗3 (higher total degree)

x ∗ z ≪ y ∗ ∗2 (equal total degree,
so reverse order of lex)

The formal description of the term order modes is similar to [Kre88]; this descrip-
tion regards only the exponents of a term, which are written as vectors of integers
with 0 for exponents of a variable which does not occur:

(e) = (e1, . . . , en) representing x1 ∗ ∗e1 x2 ∗ ∗e2 · · ·xn ∗ ∗en.
deg(e) is the sum over all elements of (e)
(e)≫ (l)⇐⇒ (e)− (l)≫ (0) = (0, . . . , 0)
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lex:
(e) > lex > (0) =⇒ ek > 0 and ej = 0 for j = 1, . . . , k − 1

gradlex:
(e) > gl > (0) =⇒ deg(e) > 0 or (e) > lex > (0)

revgradlex:
(e) > rgl > (0) =⇒ deg(e) > 0 or (e) < lex < (0)

Note that the lex ordering is identical to the standard REDUCE kernel ordering,
when korder is set explicitly to the sequence of variables.

lex is the default term order mode in the GROEBNER package.

It is beyond the scope of this manual to discuss the functionality of the term order
modes. See [Buc88].

The list of variables is declared as an optional parameter of the torder statement
(see below). If this declaration is missing or if the empty list has been used, the
variables are extracted from the expressions automatically and the REDUCE sys-
tem order defines their sequence; this can be influenced by setting an explicit order
via the korder statement.

The result of a Gröbner calculation is algebraically correct only with respect to the
term order mode and the variable sequence which was in effect during the calcu-
lation. This is important if several calls to the GROEBNER package are done with
the result of the first being the input of the second call. Therefore we recommend
that you declare the variable list and the order mode explicitly. Once declared it
remains valid until you enter a new torder statement. The operator gvars helps you
extract the variables from a given set of polynomials, if an automatic reordering
has been selected.

The Buchberger Algorithm

The Buchberger algorithm of the package is based on GEBAUER/MÖLLER [GM88].
Extensions are documented in [MMN88] and [GMN+91].

20.26.2 Loading of the Package

The following command loads the package into REDUCE (this syntax may vary
according to the implementation):

load_package groebner;

The package contains various operators, and switches for control over the reduction
process. These are discussed in the following.
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20.26.3 The Basic Operators

Term Ordering Mode

torder(vl,m, [p1, p2, . . .]);
where vl is a variable list (or the empty list if no variables are declared

explicitly), m is the name of a term ordering mode lex, gradlex, revgradlex
(or another implemented mode) and [p1, p2, . . .] are additional parameters
for the term ordering mode (not needed for the basic modes).

torder sets variable set and the term ordering mode. The default mode
is lex. The previous description is returned as a list with corresponding ele-
ments. Such a list can alternatively be passed as sole argument to torder.

If the variable list is empty or if the torder declaration is omitted, the
automatic variable extraction is activated.

gvars({exp1, exp2, . . ., expn});
where {exp1, exp2, . . . , expn} is a list of expressions or equations.

gvars extracts from the expressions {exp1, exp2, . . . , expn} the kernels,
which can play the role of variables for a Gröbner calculation. This can be
used e.g. in a torder declaration.

GROEBNER: Calculation of a Gröbner Basis

groebner {exp1, exp2, . . . , expm};
where {exp1, exp2, . . . , expm} is a list of expressions or equations.

GROEBNER calculates the Gröbner basis of the given set of expressions with
respect to the current torder setting.

The Gröbner basis {1}means that the ideal generated by the input polynom-
ials is the whole polynomial ring, or equivalently, that the input polynomials
have no zeroes in common.

As a side effect, the sequence of variables is stored as a REDUCE list in the
shared variable

gvarslast.

This is important if the variables are reordered because of optimization: you
must set them afterwards explicitly as the current variable sequence if you
want to use the Gröbner basis in the sequel, e.g. for a preduce call. A
basis has the property “Gröbner” only with respect to the variable sequences
which had been active during its computation.

Example 2
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torder({},lex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

2
{8*x - 2*y + 5*y + 3,

3 2
2*y - 3*y - 16*y + 21}

This example used the default system variable ordering, which was {x, y}. With
the other variable ordering, a different basis results:

torder({y,x},lex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

2
{2*y + 2*x - 3*x - 6,

3 2
2*x - 5*x - 5*x}

Another basis yet again results with a different term ordering:

torder({x,y},revgradlex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

2
{2*y - 5*y - 8*x - 3,

y*x - y + x + 3,

2
2*x + 2*y - 3*x - 6}

The operation of GROEBNER can be controlled by the following switches:

groebopt – If set on, the sequence of variables is optimized with respect to
execution speed; the algorithm involved is described in [BGK86]; note that
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the final list of variables is available in gvarslast.

An explicitly declared dependency supersedes the variable optimization. For
example

depend a, x, y;

guarantees that a will be placed in front of x and y. So groebopt can be
used even in cases where elimination of variables is desired.

By default groebopt is off, conserving the original variable sequence.

groebfullreduction – If set off, the reduction steps during the
GROEBNER operation are limited to the pure head term reduction; subse-
quent terms are reduced otherwise.

By default groebfullreduction is on.

gltbasis – If set on, the leading terms of the result basis are extracted. They are
collected in a basis of monomials, which is available as value of the global
variable with the name gltb.

glterms – If {exp1, . . . , expm} contain parameters (symbols which are not
member of the variable list), the shared variable glterms contains a list
of expression which during the calculation were assumed to be nonzero. A
Gröbner basis is valid only under the assumption that all these expressions
do not vanish.

The following switches control the print output of GROEBNER; by default all these
switches are set off and nothing is printed.

groebstat – A summary of the computation is printed including the computing
time, the number of intermediate h–polynomials and the counters for the hits
of the criteria.

trgroeb – Includes groebstat and the printing of the intermediate h-poly-
nomials.

trgroebs – Includes trgroeb and the printing of intermediate s–polynomials.

trgroeb1 – The internal pairlist is printed when modified.

Gzerodim!?: Test of dim = 0

gzerodim!? bas
where bas is a Gröbner basis in the current setting. The result is nil if bas

is the basis of an ideal of polynomials with more than finitely many common
zeros. If the ideal is zero dimensional, i. e. the polynomials of the ideal have
only finitely many zeros in common, the result is an integer k which is the
number of these common zeros (counted with multiplicities).
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gdimension, gindependent_sets: compute dimension and independent
variables

The following operators can be used to compute the dimension and the independent
variable sets of an ideal which has the Gröbner basis bas with arbitrary term order:

gdimension bas

gindependent_sets bas gindependent_sets computes the maximal
left independent variable sets of the ideal, that are the variable sets which
play the role of free parameters in the current ideal basis. Each set is a list
which is a subset of the variable list. The result is a list of these sets. For
an ideal with dimension zero the list is empty. gdimension computes the
dimension of the ideal, which is the maximum length of the independent
sets.

The switch groebopt plays no role in the algorithms gdimension and
gindependent_sets. It is set off during the processing even if it is set on
before. Its state is saved during the processing.

The “Kredel-Weispfenning” algorithm is used (see [KW88], extended to general
ordering in [BWK93].

Conversion of a Gröbner Basis

glexconvert: Conversion of an Arbitrary Gröbner Basis of a Zero Dimen-
sional Ideal into a Lexical One

glexconvert({exp, . . . , expm} [, {var1 . . . , varn}] [,maxdeg = mx]
[, newvars = {nv1, . . . , nvk}])

where {exp1, . . . , expm} is a Gröbner basis with {var1, . . . , varn} as vari-
ables in the current term order mode, mx is an integer, and {nv1, . . . , nvk}
is a subset of the basis variables. For this operator the source and target
variable sets must be specified explicitly.

glexconvert converts a basis of a zero-dimensional ideal (finite number of iso-
lated solutions) from arbitrary ordering into a basis under lex ordering. During the
call of glexconvert the original ordering of the input basis must be still active!

newvars defines the new variable sequence. If omitted, the original variable se-
quence is used. If only a subset of variables is specified here, the partial ideal basis
is evaluated. For the calculation of a univariate polynomial, new-vars should be a
list with one element.

maxdeg is an upper limit for the degrees. The algorithm stops with an error mes-
sage, if this limit is reached.
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A warning occurs if the ideal is not zero dimensional.

glexconvert is an implementation of the FLGM algorithm by
FAUGÈRE, GIANNI, LAZARD and MORA [FGLM93]. Often, the calculation of
a Gröbner basis with a graded ordering and subsequent conversion to lex is faster
than a direct lex calculation. Additionally, glexconvert can be used to trans-
form a lex basis into one with different variable sequence, and it supports the calcu-
lation of a univariate polynomial. If the latter exists, the algorithm is even applica-
ble in the non zero-dimensional case, if such a polynomial exists. If the polynomial
does not exist, the algorithm computes until maxdeg has been reached.

torder({{w,p,z,t,s,b},gradlex)

g := groebner { f1 := 45*p + 35*s -165*b -36,
35*p + 40*z + 25*t - 27*s, 15*w + 25*p*s +30*z
-18*t -165*b**2, -9*w + 15*p*t + 20*z*s,
w*p + 2*z*t - 11*b**3, 99*w - 11*s*b +3*b**2,
b**2 + 33/50*b + 2673/10000};

g := {60000*w + 9500*b + 3969,

1800*p - 3100*b - 1377,

18000*z + 24500*b + 10287,

750*t - 1850*b + 81,

200*s - 500*b - 9,
2

10000*b + 6600*b + 2673}

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={w});

2
100000000*w + 2780000*w + 416421

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={p});

2
6000*p - 2360*p + 3051
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groebner_walk: Conversion of a (General) Total Degree Basis into a Lex
One

The algorithm groebner_walk convertes from an arbitrary polynomial sys-
tem a graduated basis of the given variable sequence to a lex one of the same
sequence. The job is done by computing a sequence of Gröbner bases of corre-
spondig monomial ideals, lifting the original system each time. The algorithm has
been described (more generally) by [AGK96a],[AGK96b],[AG98] and [CKM97].
groebner_walk should be only called if the direct calculation of a lex Gröb-
ner base does not work. The computation of groebner_walk includes some
overhead (e. g. the computation divides polynomials). Normally torder must be
called before to define the variables and the variable sorting. The reordering of vari-
ables makes no sense with groebner_walk; so do not call groebner_walk
with groebopt on!

groebner_walk g
where g is a polynomial ideal basis computed under gradlex or under
weighted with a one-element, non zero weight vector with only one element,
repeated for each variable. The result is a corresponding lex basis (if that
is computable), independent of the degree of the ideal (even for non zero
degree ideals). The variabe gvarslast is not set.variable

groebnerf: Factorizing Gröbner Bases

Background

If Gröbner bases are computed in order to solve systems of equations or to find the
common roots of systems of polynomials, the factorizing version of the Buchberger
algorithm can be used. The theoretical background is simple: if a polynomial p can
be represented as a product of two (or more) polynomials, e.g. h = f ∗ g, then
h vanishes if and only if one of the factors vanishes. So if during the calculation
of a Gröbner basis h of the above form is detected, the whole problem can be
split into two (or more) disjoint branches. Each of the branches is simpler than
the complete problem; this saves computing time and space. The result of this
type of computation is a list of (partial) Gröbner bases; the solution set of the
original problem is the union of the solutions of the partial problems, ignoring the
multiplicity of an individual solution. If a branch results in a basis {1}, then there
is no common zero, i.e. no additional solution for the original problem, contributed
by this branch.
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groebnerf Call

The syntax of groebnerf is the same as for groebner.

groebnerf({exp1, exp2, . . . , expm}[, {}, {nz1, . . . nzk});

where {exp1, exp2, . . . , expm} is a given list of expressions or equations, and
{nz1, . . . nzk} is an optional list of polynomials known to be non-zero.

groebnerf tries to separate polynomials into individual factors and to branch
the computation in a recursive manner (factorization tree). The result is a list of
partial Gröbner bases. If no factorization can be found or if all branches but one
lead to the trivial basis {1}, the result has only one basis; nevertheless it is a list of
lists of polynomials. If no solution is found, the result will be {{1}}. Multiplicities
(one factor with a higher power, the same partial basis twice) are deleted as early
as possible in order to speed up the calculation. The factorizing is controlled by
some switches.

As a side effect, the sequence of variables is stored as a REDUCE list in the shared
variable

gvarslast .

If gltbasis is on, a corresponding list of leading term bases is also produced
and is available in the variable gltb.

The third parameter of groebnerf allows one to declare some polynomials
nonzero. If any of these is found in a branch of the calculation the branch is can-
celled. This can be used to save a substantial amount of computing time. The
second parameter must be included as an empty list if the third parameter is to be
used.

torder({x,y},lex)$
groebnerf { 3*x**2*y + 2*x*y + y + 9*x**2 + 5*x = 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2
- 3*x = -3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

{{y - 3,x},

2
{2*y + 2*x - 1,2*x - 5*x - 5}}

It is obvious here that the solutions of the equations can be read off immediately.

All switches from groebner are valid for groebnerf as well:
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groebopt
gltbasis
groebfullreduction
groebstat
trgroeb
trgroebs
rgroeb1

Additional switches for groebnerf:

trgroebr – All intermediate partial basis are printed when detected.

By default trgroebr is off.

groebmonfac groebresmax groebrestriction
These variables are described in the following paragraphs.

Suppression of Monomial Factors

The factorization in groebnerf is controlled by the following switches and vari-
ables. The variable groebmonfac is connected to the handling of “monomial
factors”. A monomial factor is a product of variable powers occurring as a factor,
e.g. x ∗ ∗2 ∗ y in x ∗ ∗3 ∗ y− 2 ∗x ∗ ∗2 ∗ y ∗ ∗2. A monomial factor represents a so-
lution of the type “x = 0 or y = 0” with a certain multiplicity. With groebnerf
the multiplicity of monomial factors is lowered to the value of the shared variable

groebmonfac

which by default is 1 (= monomial factors remain present, but their multiplicity is
brought down). With

groebmonfac := 0

the monomial factors are suppressed completely.

Limitation on the Number of Results

The shared variable

groebresmax

controls the number of partial results. Its default value is 300. If groebresmax
partial results are calculated, the calculation is terminated. groebresmax counts
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all branches, including those which are terminated (have been computed already),
give no contribution to the result (partial basis 1), or which are unified in the result
with other (partial) bases. So the resulting number may be much smaller. When
the limit of groeresmax is reached, a warning

warning: GROEBRESMAX limit reached

is issued; this warning in any case has to be taken as a serious one. For “normal”
calculations the groebresmax limit is not reached. var is a shared variable (with
an integer value); it can be set in the algebraic mode to a different (positive integer)
value.

Restriction of the Solution Space

In some applications only a subset of the complete solution set of a given set of
equations is relevant, e.g. only nonnegative values or positive definite values for
the variables. A significant amount of computing time can be saved if nonrelevant
computation branches can be terminated early.

Positivity: If a polynomial has no (strictly) positive zero, then every system con-
taining it has no nonnegative or strictly positive solution. Therefore, the Buch-
berger algorithm tests the coefficients of the polynomials for equal sign if re-
quested. For example, in 13 ∗ x + 15 ∗ y ∗ z can be zero with real nonnegative
values for x, y and z only if x = 0 and y = 0 or z = 0; this is a sort of “factoriza-
tion by restriction”. A polynomial 13 ∗ x+ 15 ∗ y ∗ z + 20 never can vanish with
nonnegative real variable values.

Zero point: If any polynomial in an ideal has an absolute term, the ideal cannot
have the origin point as a common solution.

By setting the shared variable

groebrestriction

groebnerf is informed of the type of restriction the user wants to impose on the
solutions:

groebrestiction:=nonnegative;
only nonnegative real solutions are of interest

groebrestriction:=positive;
only nonnegative and nonzero solutions are of interest

groebrestriction:=zeropoint;
only solution sets which contain the point {0, 0, . . . , 0} are or interest.

If groebnerf detects a polynomial which formally conflicts with the restriction,
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it either splits the calculation into separate branches, or, if a violation of the restric-
tion is determined, it cancels the actual calculation branch.

greduce, preduce: Reduction of Polynomials

Background

Reduction of a polynomial “p” modulo a given sets of polynomials “b” is done by
the reduction algorithm incorporated in the Buchberger algorithm. Informally it
can be described for polynomials over a field as follows:

loop1: % head term elimination
if there is one polynomial b in B such that the leading

term of p is a multiple of the leading term of P do
p := p− lt(p)/lt(b) ∗ b (the leading term vanishes)

do this loop as long as possible;
loop2: % elimination of subsequent terms

for each term s in p do
if there is one polynomial b in B such that s is a
multiple of the leading term of p do
p := p− s/lt(b) ∗ b (the term s vanishes)

do this loop as long as possible;

If the coefficients are taken from a ring without zero divisors we cannot divide by
each possible number like in the field case. But using that in the field case, c ∗ p is
reduced to c ∗ q, if p is reduced to q, for arbitrary numbers c, the reduction for the
ring case uses the least c which makes the (field) reduction for c ∗ p integer. The
result of this reduction is returned as (ring) reduction of p eventually after removing
the content, i.e. the greatest common divisor of the coefficients. The result of this
type of reduction is also called a pseudo reduction of p.

Reduction via Gröbner Basis Calculation

greduce(exp, {exp1, exp2, . . . , expm}]);

where exp is an expression, and {exp1, exp2, . . . , expm} is a list of any number
of expressions or equations.

greduce first converts the list of expressions {exp1, . . . , expn} to a Gröbner ba-
sis, and then reduces the given expression modulo that basis. An error results if the
list of expressions is inconsistent. The returned value is an expression representing
the reduced polynomial. As a side effect, greduce sets the variable gvarslast
in the same manner as groebner does.
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Reduction with Respect to Arbitrary Polynomials

preduce(exp, {exp1, exp2, . . . , expm});
where expm is an expression, and {exp1, exp2, . . . , expm} is a list of any number
of expressions or equations.

preduce reduces the given expression modulo the set {exp1, . . . , expm}. If this
set is a Gröbner basis, the obtained reduced expression is uniquely determined.
If not, then it depends on the subsequence of the single reduction steps (see 2).
preduce does not check whether {exp1, exp2, . . . , expm} is a Gröbner basis in
the actual order. Therefore, if the expressions are a Gröbner basis calculated earlier
with a variable sequence given explicitly or modified by optimization, the proper
variable sequence and term order must be activated first.

Example 3(preduce called with a Gröbner basis):

torder({x,y},lex);
gb:=groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2
- 3*x + 3,

x**3*y + x**2*y + 3*x**3 + 2*x**2}$
preduce (5*y**2 + 2*x**2*y + 5/2*x*y + 3/2*y

+ 8*x**2 + 3/2*x - 9/2, gb);

2
y

greduce_orders: Reduction with several term orders

The shortest polynomial with different polynomial term orders is computed with
the operator greduce_orders:

greduce_orders(exp, {exp1, exp2, . . . , expm} [,{v1, v2, . . . , vn}]);
where exp is an expression and {exp1, exp2, . . . , expm} is a list of any

number of expressions or equations. The list of variables v1, v2 . . . vn may
be omitted; if set, the variables must be a list.

The expression exp is reduced by greduce with the orders in the shared variable
gorders, which must be a list of term orders (if set). By default it is set to

{revgradlex, gradlex, lex}

The shortest polynomial is the result. The order with the shortest polynomial is set
to the shared variable gorder. A Gröbner basis of the system {exp1, exp2, . . . ,
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expm} is computed for each element of orders. With the default setting gorders
in most cases will be set to revgradlex. If the variable set is given, these vari-
ables are taken; otherwise all variables of the system {exp1, exp2, . . . , expm} are
extracted.

The Gröbner basis computations can take some time; if interrupted, the intermedi-
ate result of the reduction is set to the shared variable greduce_result, if one
is done already. However, this is not nesessarily the minimal form.

If the variable gorders should be set to orders with a parameter, the term oder
has to be replaced by a list; the first element is the term oder selected, followed by
its parameter(s), e.g.

orders := {{gradlexgradlex, 2}, {lexgradlex, 2}}

Reduction Tree

In some case not only are the results produced by greduce and preduce of
interest, but the reduction process is of some value too. If the switch

groebprot

is set on, groebner, greduce and preduce produce as a side effect a trace of
their work as a REDUCE list of equations in the shared variable

groebprotfile.

Its value is a list of equations with a variable “candidate” playing the role of the
object to be reduced. The polynomials are cited as “poly1”, “poly2”, . . . . If read as
assignments, these equations form a program which leads from the reduction input
to its result. Note that, due to the pseudo reduction with a ring as the coefficient
domain, the input coefficients may be changed by global factors.

Example 4

on groebprot$

preduce(5*y**2 + 2*x**2*y + 5/2*x*y + 3/2*y + 8*x**2

+ 3/2*x - 9/2, gb);

2
y
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groebprotfile;

candidate
2 2 2

=4*x *y + 16*x + 5*x*y + 3*x + 10*y + 3*y - 9,

2
poly1=8*x - 2*y + 5*y + 3,

3 2
poly2=2*y - 3*y - 16*y + 21,
candidate=2*candidate,
candidate= - x*y*poly1 + candidate,
candidate= - 4*x*poly1 + candidate,
candidate=4*candidate,

3
candidate= - y *poly1 + candidate,
candidate=2*candidate,

2
candidate= - 3*y *poly1 + candidate,
candidate=13*y*poly1 + candidate,
candidate=candidate + 6*poly1,

2
candidate= - 2*y *poly2 + candidate,
candidate= - y*poly2 + candidate,
candidate=candidate + 6*poly2

This means

16(5y2 + 2x2y +
5

2
xy +

3

2
y + 8x2 +

3

2
x− 9

2
) =

(−8xy − 32x− 2y3 − 3y2 + 13y + 6) poly1

+ (−2y2 − 2y + 6) poly2 + y2.
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Tracing with groebnert and preducet

Given a set of polynomials {f1, . . . , fk} and their Gröbner basis {g1, . . . , gl}, it is
well known that there are matrices of polynomials Cij and Dji such that

fi =
∑
j

Cijgj and gj =
∑
i

Djifi

and these relations are needed explicitly sometimes. In BUCHBERGER [Buc85],
such cases are described in the context of linear polynomial equations. The stand-
ard technique for computing the above formulae is to perform Gröbner reductions,
keeping track of the computation in terms of the input data. In the current package
such calculations are performed with (an internally hidden) cofactor technique: the
user has to assign unique names to the input expressions and the arithmetic combi-
nations are done with the expressions and with their names simultaneously. So the
result is accompanied by an expression which relates it algebraically to the input
values.

There are two complementary operators with this feature: groebnert and
preducet; functionally they correspond to groebner and preduce. How-
ever, the sets of expressions here must be equations with unique single identifiers
on their left side and the lhs are interpreted as names of the expressions. Their re-
sults are sets of equations (groebnert) or equations (preducet), where a lhs
is the computed value, while the rhs is its equivalent in terms of the input names.

Example 5

We calculate the Gröbner basis for an ellipse (named “p1” ) and a line (named
“p2” ); p2 is member of the basis immediately and so the corresponding first result
element is of a very simple form; the second member is a combination of p1 and
p2 as shown on the rhs of this equation:

gb1:=groebnert {p1=2*x**2+4*y**2-100,p2=2*x-y+1};

gb1 := {2*x - y + 1=p2,
2

9*y - 2*y - 199= - 2*x*p2 - y*p2 + 2*p1 + p2}

Example 6

We want to reduce the polynomial x**2 wrt the above Gröbner basis and need
knowledge about the reduction formula. We therefore extract the basis polynomials
from gb1, assign unique names to them (here g1, g2) and call preducet. The
polynomial to be reduced here is introduced with the name Q, which then appears
on the rhs of the result. If the name for the polynomial is omitted, its formal value
is used on the right side too.
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gb2 := for k := 1:length gb1 collect
mkid(g,k) = lhs part(gb1,k)$

preducet (q=x**2,gb2);

- 16*y + 208= - 18*x*g1 - 9*y*g1 + 36*q + 9*g1 - g2

This output means

x2 = (
1

2
x+

1

4
y − 1

4
)g1 +

1

36
g2 + (−4

9
y +

52

9
).

Example 7

If we reduce a polynomial which is member of the ideal, we consequently get a
result with lhs zero:

preducet(q=2*x**2+4*y**2-100,gb2);

0= - 2*x*g1 - y*g1 + 2*q + g1 - g2

This means
q = (x+

1

2
y − 1

2
)g1 +

1

2
g2.

With these operators the matrices Cij and Dji are available implicitly, Dji as side
effect of groebnert, cij by calls of preducet of fi wrt {gj}. The latter by
definition will have the lhs zero and a rhs with linear fi.

If {1} is the Gröbner basis, the groebnert calculation gives a “proof”, showing,
how 1 can be computed as combination of the input polynomials.

Remark: Compared to the non-tracing algorithms, these operators are much
more time consuming. So they are applicable only on small sized problems.

Gröbner Bases for Modules

Given a polynomial ring, e.g. r = z[x1 · · ·xk] and an integer n > 1: the vectors
with n elements of r form a module under vector addition (= componentwise addi-
tion) and multiplication with elements of r. For a submodule given by a finite basis
a Gröbner basis can be computed, and the facilities of the GROEBNER package can
be used except the operators groebnerf and groesolve.

The vectors are encoded using auxiliary variables which represent the unit vectors
in the module. E.g. using v1, v2, v3 the module element [x21, 0, x1 − x2] is repre-
sented as x21v1 + x1v3 − x2v3. The use of v1, v2, v3 as unit vectors is set up by
assigning the set of auxiliary variables to the shared variable gmodule, e.g.
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gmodule := {v1,v2,v3};

After this declaration all monomials built from these variables are considered as an
algebraically independent basis of a vector space. However, you had best use them
only linearly. Once gmodule has been set, the auxiliary variables automatically
will be added to the end of each variable list (if they are not yet member there).
Example:

torder({x,y,v1,v2,v3},lex)$
gmodule := {v1,v2,v3}$
g:=groebner{x^2*v1 + y*v2,x*y*v1 - v3,2y*v1 + y*v3};

2
g := {x *v1 + y*v2,

2
x*v3 + y *v2,

3
y *v2 - 2*v3,

2*y*v1 + y*v3}

preduce((x+y)^3*v1,g);

1 3 2
- x*y*v2 - ---*y *v3 - 3*y *v2 + 3*y*v3

2

In many cases a total degree oriented term order will be adequate for computations
in modules, e.g. for all cases where the submodule membership is investigated.
However, arranging the auxiliary variables in an elimination oriented term order
can give interesting results. E.g.

p1:=(x-1)*(x^2-x+3)$ p2:=(x-1)*(x^2+x-5)$
gmodule := {v1,v2,v3};
torder({v1,x,v2,v3},lex)$
gb:=groebner {p1*v1+v2,p2*v1+v3};

gb := {30*v1*x - 30*v1 + x*v2 - x*v3 + 5*v2 - 3*v3,

2 2
x *v2 - x *v3 + x*v2 + x*v3 - 5*v2 - 3*v3}
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g:=coeffn(first gb,v1,1);

g := 30*(x - 1)

c1:=coeffn(first gb,v2,1);

c1 := x + 5

c2:=coeffn(first gb,v3,1);

c2 := - x - 3

c1*p1 + c2*p2;

30*(x - 1)

Here two polynomials are entered as vectors [p1, 1, 0] and [p2, 0, 1]. Using a term
ordering such that the first dimension ranges highest and the other components low-
est, a classical cofactor computation is executed just as in the extended Euclidean
algorithm. Consequently the leading polynomial in the resulting basis shows the
greatest common divisor of p1 and p2, found as a coefficient of v1 while the coef-
ficients of v2 and v3 are the cofactors c1 and c2 of the polynomials p1 and p2 with
the relation gcd(p1, p2) = c1p1 + c2p2.

Additional Orderings

Besides the basic orderings, there are ordering options that are used for special
purposes.

Separating the Variables into Groups

It is often desirable to separate variables and formal parameters in a system of poly-
nomials. This can be done with a lex Gröbner basis. That however may be hard
to compute as it does more separation than necessary. The following orderings
group the variables into two (or more) sets, where inside each set a classical order-
ing acts, while the sets are handled via their total degrees, which are compared in
elimination style. So the Gröbner basis will eliminate the members of the first set,
if algebraically possible. torder here gets an additional parameter which describe
the grouping
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torder (vl, gradlexgradlex, n)
torder (vl, gradlexrevgradlex,n)
torder (vl, lexgradlex, n)
torder (vl, lexrevgradlex, n)

Here the integer n is the number of variables in the first group and the names
combine the local ordering for the first and second group, e.g.

lexgradlex, 3 for {x1, x2, x3, x4, x5}:
xi11 . . . x

i5
5 ≫ xj11 . . . xj55

if (i1, i2, i3)≫lex (j1, j2, j3)
or (i1, i2, i3) = (j1, j2, j3)

and (i4, i5)≫gradlex (j4, j5)

Note that in the second place there is no lex ordering available; that would not make
sense.

Weighted Ordering

The statement

torder(vl, weighted, {n1, n2, n3 . . .});

establishes a graduated ordering, where the exponents are first multiplied by the
given weights. If there are less weight values than variables, the weight 1 is added
automatically. If the weighted degree calculation is not decidable, a lex comparison
follows.

Graded Ordering

The statement

torder(vl, graded, {n1, n2, n3 . . .}, order2);

establishes a graduated ordering, where the exponents are first multiplied by the
given weights. If there are less weight values than variables, the weight 1 is added
automatically. If the weighted degree calculation is not decidable, the term order
order2 specified in the following argument(s) is used. The ordering graded is
designed primarily for use with the operator dd_groebner.
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Matrix Ordering

The statement

torder(vl, matrix, m);

wherem is a matrix with integer elements and row length which corresponds to the
variable number. The exponents of each monomial form a vector; two monomials
are compared by multiplying their exponent vectors first with m and comparing
the resulting vector lexicographically. E.g. the unit matrix establishes the classical
lex term order mode, a matrix with a first row of ones followed by the rows of a
unit matrix corresponds to the gradlex ordering.

The matrix m must have at least as many rows as columns; a non–square matrix
contains redundant rows. The matrix must have full rank, and the top non–zero
element of each column must be positive.

The generality of the matrix based term order has its price: the computing time
spent in the term sorting is significantly higher than with the specialized term or-
ders. To overcome this problem, you can compile a matrix term order ; the com-
pilation reduces the computing time overhead significantly. If you set the switch
comp on, any new order matrix is compiled when any operator of the GROEB-
NER package accesses it for the first time. Alternatively you can compile a matrix
explicitly

torder_compile(<n>,<m>);

where < n > is a name (an identifier) and < m > is a term order matrix.
torder_compile transforms the matrix into a LISP program, which is com-
piled by the LISP compiler when comp is on or when you generate a fast loadable
module. Later you can activate the new term order by using the name < n > in a
torder statement as term ordering mode.

Gröbner Bases for Graded Homogeneous Systems

For a homogeneous system of polynomials under a term order graded, gradlex,
revgradlex or weighted a Gröbner Base can be computed with limiting the grade of
the intermediate s–polynomials:

dd_groebner(d1, d2, {p1, p2, . . .});

where d1 is a non-negative integer and d2 is an integer > d1 or “infinity”. A pair
of polynomials is considered only if the grade of the lcm of their head terms is
between d1 and d2. See [BWK93] for the mathematical background. For the term
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orders graded or weighted the (first) weight vector is used for the grade computa-
tion. Otherwise the total degree of a term is used.

20.26.4 Ideal Decomposition & Equation System Solving

Based on the elementary Gröbner operations, the GROEBNER package offers ad-
ditional operators, which allow the decomposition of an ideal or of a system of
equations down to the individual solutions.

Solutions Based on Lex Type Gröbner Bases

groesolve: Solution of a Set of Polynomial Equations

The groesolve operator incorporates a macro algorithm; lexical Gröbner bases
are computed by groebnerf and decomposed into simpler ones by ideal decom-
position techniques; if algebraically possible, the problem is reduced to univariate
polynomials which are solved by solve; if rounded is on, numerical approxi-
mations are computed for the roots of the univariate polynomials.

groesolve({exp1, exp2, . . . , expm}[, {var1, var2, . . . , varn}]);

where {exp1, exp2, . . . , expm} is a list of any number of expressions or equations,
{var1, var2, . . . , varn} is an optional list of variables.

The result is a set of subsets. The subsets contain the solutions of the polynomial
equations. If there are only finitely many solutions, then each subset is a set of
expressions of triangular type {exp1, exp2, . . . , expn}, where exp1 depends only
on var1, exp2 depends only on var1 and var2 etc. until expn which depends
on var1, . . . , varn. This allows a successive determination of the solution com-
ponents. If there are infinitely many solutions, some subsets consist in less than
n expressions. By considering some of the variables as “free parameters”, these
subsets are usually again of triangular type.

Example 8(Intersubsections of a line with a circle):

groesolve({x ∗ ∗2− y ∗ ∗2− a, p ∗ x+ q ∗ y + s}, {x, y});

2 2 2 2 2
{{x=(sqrt( - a*p + a*q + s )*q - p*s)/(p - q ),

2 2 2 2 2
y= - (sqrt( - a*p + a*q + s )*p - q*s)/(p - q )},

2 2 2 2 2
{x= - (sqrt( - a*p + a*q + s )*q + p*s)/(p - q ),

2 2 2 2 2
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y=(sqrt( - a*p + a*q + s )*p + q*s)/(p - q )}}

If the system is zero–dimensional (has a number of isolated solutions), the algo-
rithm described in [Hil99] is used, if the decomposition leaves a polynomial with
mixed leading term. Hillebrand has written the article and Möller was the tutor of
this job.

The reordering of the groesolve variables is controlled by the REDUCE switch
varopt. If varopt is on (which is the default of varopt), the variable se-
quence is optimized (the variables are reordered). If varopt is off, the given
variable sequence is taken (if no variables are given, the order of the REDUCE
system is taken instead). In general, the reordering of the variables makes the
Gröbner basis computation significantly faster. A variable dependency, declare by
one (or several) depend statements, is regarded (if varopt is on). The switch
groebopt has no meaning for groesolve; it is stored during its processing.

groepostproc: Postprocessing of a Gröbner Basis

In many cases, it is difficult to do the general Gröbner processing. If a Gröbner
basis with a lex ordering is calculated already (e.g., by very individual parame-
ter settings), the solutions can be derived from it by a call to groepostproc.
groesolve is functionally equivalent to a call to groebnerf and subsequent
calls to groepostproc for each partial basis.

groepostproc({exp1, exp2, . . . , expm}[, {var1, var2, . . . , varn}]);

where {exp1, exp2, . . . , expm} is a list of any number of expressions,
{var1, var2, . . . , varn} is an optional list of variables. The expressions must be a
lex Gröbner basis with the given variables; the ordering must be still active.

The result is the same as with groesolve.

groepostproc({x3**2 + x3 + x2 - 1,
x2*x3 + x1*x3 + x3 + x1*x2 + x1 + 2,
x2**2 + 2*x2 - 1,
x1**2 - 2},{x3,x2,x1});

{{x3= - sqrt(2),

x2=sqrt(2) - 1,

x1=sqrt(2)},

{x3=sqrt(2),
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x2= - (sqrt(2) + 1),

x1= - sqrt(2)},

sqrt(4*sqrt(2) + 9) - 1
{x3=-------------------------,

2

x2= - (sqrt(2) + 1),

x1=sqrt(2)},

- (sqrt(4*sqrt(2) + 9) + 1)
{x3=------------------------------,

2

x2= - (sqrt(2) + 1),

x1=sqrt(2)},

sqrt( - 4*sqrt(2) + 9) - 1
{x3=----------------------------,

2

x2=sqrt(2) - 1,

x1= - sqrt(2)},

- (sqrt( - 4*sqrt(2) + 9) + 1)
{x3=---------------------------------,

2

x2=sqrt(2) - 1,

x1= - sqrt(2)}}

Idealquotient: Quotient of an Ideal and an Expression

Let i be an ideal and f be a polynomial in the same variables. Then the algebraic
quotient is defined by

i : f = {p | p ∗ f member of i} .
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The ideal quotient i : f contains i and is obviously part of the whole polynomial
ring, i.e. contained in {1}. The case i : f = {1} is equivalent to f being a
member of i. The other extremal case, i : f = i, occurs, when f does not vanish
at any general zero of i. The explanation of the notion “general zero” introduced
by van der Waerden, however, is beyond the aim of this manual. The operation of
groesolve/groepostproc is based on nested ideal quotient calculations.

If i is given by a basis and f is given as an expression, the quotient can be calculated
by

idealquotient ({〈exp1〉, 〈exp2〉,. . . , 〈expm〉}, 〈exp〉);

where {〈exp1〉, 〈exp2〉, . . . , 〈expm〉} is a list of any number of expressions or equat-
ions, 〈exp〉 is a single expression or equation.

idealquotient calculates the algebraic quotient of the ideal i with the basis
{exp1, exp2, . . . , expm} and exp with respect to the variables given or extracted.
{exp1, exp2, . . . , expm} is not necessarily a Gröbner basis. The result is the Gröb-
ner basis of the quotient.

Saturation: Saturation of an Ideal and an Expression

The saturation operator computes the quotient on an ideal and an arbitrary
power of an expression exp ∗ ∗n with arbitrary n. The call is

saturation({exp1, . . . , expm}, exp);

where {exp1, exp2, . . . , expm} is a list of any number of expressions or equations,
exp is a single expression or equation.

saturation calls idealquotient several times, until the result is stable, and returns it.

Operators for Gröbner Bases in all Term Orderings

In some cases where no Gröbner basis with lexical ordering can be calculated, a
calculation with a total degree ordering is still possible. Then the Hilbert polyno-
mial gives information about the dimension of the solutions space and for finite sets
of solutions univariate polynomials can be calculated. The solutions of the equat-
ion system then is contained in the cross product of all solutions of all univariate
polynomials.
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Hilbertpolynomial: Hilbert Polynomial of an Ideal

This algorithm was contributed by JOACHIM HOLLMAN, Royal Institute of Tech-
nology, Stockholm (private communication).

hilbertpolynomial (〈exp1:expression〉,. . .,〈expm:expression〉)

where {exp1, . . . , expm} is a list of any number of expressions or equations.

hilertpolynomial calculates the Hilbert polynomial of the ideal with ba-
sis {exp1, . . . , expm} with respect to the variables given or extracted provided
the given term ordering is compatible with the degree, such as the gradlex-
or revgradlex-ordering. The term ordering of the basis must be active and
{exp1, . . . , expm} should be a Gröbner basis with respect to this ordering. The
Hilbert polynomial gives information about the cardinality of solutions of the sys-
tem {exp1, . . . , expm}: if the Hilbert polynomial is an integer, the system has
only a discrete set of solutions and the polynomial is identical with the number
of solutions counted with their multiplicities. Otherwise the degree of the Hilbert
polynomial is the dimension of the solution space.

If the Hilbert polynomial is not a constant, it is constructed with the variable “x”
regardless of whether x is member of {var1, . . . , varn} or not. The value of this
polynomial at sufficiently large numbers “x” is the difference of the dimension of
the linear vector space of all polynomials of degree ≤ x minus the dimension of
the subspace of all polynomials of degree ≤ x which belong also to the ideal.

x must be an undefined variable or the value of x must be an undefined variable;
otherwise a warning is given and a new (generated) variable is taken instead.

Remark: The number of zeros in an ideal and the Hilbert polynomial depend
only on the leading terms of the Gröbner basis. So if a subsequent Hilbert calcula-
tion is planned, the Gröbner calculation should be performed with on gltbasis
and the value of gltb (or its elements in a groebnerf context) should be given
to hilbertpolynomial. In this manner, a lot of computing time can be saved
in the case of long calculations.

20.26.5 Calculations “by Hand”

The following operators support explicit calculations with polynomials in a dis-
tributive representation at the REDUCE top level. So they allow one to do Gröbner
type evaluations stepwise by separate calls. Note that the normal REDUCE arith-
metic can be used for arithmetic combinations of monomials and polynomials.
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Representing Polynomials in Distributive Form

gsort 〈p〉

where 〈p〉 is a polynomial or a list of polynomials.

If 〈p〉 is a single polynomial, the result is a reordered version of 〈p〉 in the distribu-
tive representation according to the variables and the current term order mode; if
〈p〉 is a list, its members are converted into distributive representation and the result
is the list sorted by the term ordering of the leading terms; zero polynomials are
eliminated from the result.

torder({alpha,beta,gamma},lex);

dip := gsort(gamma*(alpha-1)**2*(beta+1)**2);

2 2 2
dip := alpha *beta *gamma + 2*alpha *beta*gamma

2 2
+ alpha *gamma - 2*alpha*beta *gamma

- 4*alpha*beta*gamma - 2*alpha*gamma

2
+ beta *gamma + 2*beta*gamma + gamma

Splitting of a Polynomial into Leading Term and Reductum

gsplit 〈p〉

where 〈p〉 is a polynomial.

gsplit converts the polynomial 〈p〉 into distributive representation and splits it
into leading monomial and reductum. The result is a list with two elements, the
leading monomial and the reductum.

gsplit dip;

2 2
{alpha *beta *gamma,

2 2
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2*alpha *beta*gamma + alpha *gamma

2 2
- 2*alpha*beta *gamma - 4*alpha*beta*gamma

- 2*alpha*gamma + beta *gamma + 2*beta*gamma

+ gamma}

Calculation of Buchberger’s S-polynomial

gspoly (〈p1〉,〈p2〉)

where 〈p1〉 and 〈p2〉 are polynomials.

gspoly calculates the s-polynomial from 〈p1〉 and 〈p2〉.

Example for a complete calculation (taken from DAVENPORT ET AL. [DST93]):

torder({x,y,z},lex)$
g1 := x**3*y*z - x*z**2;
g2 := x*y**2*z - x*y*z;
g3 := x**2*y**2 - z;$

% first S-polynomial

g4 := gspoly(g2,g3);$

2 2
g4 := x *y*z - z

% next S-polynomial

p := gspoly(g2,g4); $

2 2
p := x *y*z - y*z

% and reducing, here only by g4

g5 := preduce(p,{g4});

2 2
g5 := - y*z + z
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% last S-polynomial}

g6 := gspoly(g4,g5);

2 2 3
g6 := x *z - z

% and the final basis sorted descending

gsort{g2,g3,g4,g5,g6};

2 2
{x *y - z,

2 2
x *y*z - z ,

2 2 3
x *z - z ,

2
x*y *z - x*y*z,

2 2
- y*z + z }
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20.27 GUARDIAN: Guarded Expressions in Practice

Computer algebra systems typically drop some degenerate cases when evaluating
expressions, e.g., x/x becomes 1 dropping the case x = 0. We claim that it is feasi-
ble in practice to compute also the degenerate cases yielding guarded expressions.
We work over real closed fields but our ideas about handling guarded expression
can be easily transferred to other situations. Using formulas as guards provides
a powerful tool for heuristically reducing the combinatorial explosion of cases:
equivalent, redundant, tautological, and contradictive cases can be detected by sim-
plification and quantifier elimination. Our approach allows to simplify the expres-
sions on the basis of simplification knowledge on the logical side. The method
described in this paper is implemented in the REDUCE package GUARDIAN.

Authors: Andreas Dolzmann and Thomas Sturm

20.27.1 Introduction

It is meanwhile a well-known fact that evaluations obtained with the interactive use
of computer algebra systems (CAS) are not entirely correct in general. Typically,
some degenerate cases are dropped. Consider for instance the evaluation

x2

x
= x,

which is correct only if x ̸= 0. The problem here is that CAS consider variables
to be transcendental elements. The user, in contrast, has in mind variables in the
sense of logic. In other words: The user does not think of rational functions but of
terms.

Next consider the valid expression
√
x+
√
−x

x
.

It is meaningless over the reals. CAS often offer no choice than to interprete surds
over the complex numbers even if they distinguish between a real and a complex
mode.

Corless and Jeffrey [CJ92] have examined the behavior of a number of CAS with
such input data. They come to the conclusion that simultaneous computation of
all cases is exemplary but not feasible due to the combinatorial explosion of cases
to be considered. Therefore, they suggest to ignore the degenerate cases but to
provide the assumptions to the user on request. We claim, in contrast, that it is in
fact feasible to compute all possible cases.

Our setting is as follows: Expressions are evaluated to guarded expressions con-
sisting of possibly several conventional expressions guarded by quantifier-free for-
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mulas. For the above examples, we would obtain[
x ̸= 0 x

]
,
[

F
√

x+
√

−x
x

]
.

As the second example illustrates, we are working in ordered fields, more precisely
in real closed fields. The handling of guarded expressions as described in this paper
can, however, be easily transferred to other situations.

Our approach can also deal with redundant guarded expressions, such as T |x| − x
x ≥ 0 0
x < 0 −2x


which leads to algebraic simplification techniques based on logical simplification
as proposed by Davenport and Faure [DF94].

We use formulas over the language of ordered rings as guards. This provides pow-
erful tools for heuristically reducing the combinatorial explosion of cases: equiv-
alent, redundant, tautological, and contradictive cases can be detected by simplifi-
cation [DS97b] and quantifier elimination [Tar48, Col75, Wei88, RLW93, Wei97,
Wei94]. In certain situations, we will allow the formulas also to contain extra func-
tions such as

√
· or | · |. Then we take care that there is no quantifier elimination

applied.

Simultaneous computation of several cases concerning certain expressions be-
ing zero or not has been extensively investigated as dynamic evaluation [GD96,
DR94a, DR94b, BGDW95]. It has also been extended to real closed fields [DGV96].
The idea behind the development of these methods is of a more theoretical na-
ture than to overcome the problems with the interactive usage of CAS sketched
above: one wishes to compute in algebraic (or real) extension fields of the ratio-
nals. Guarded expressions occur naturally when solving problems parametrically.
Consider, e.g., the Gröbner systems used during the computation of comprehensive
Gröbner bases [Wei92].

The algorithms described in this paper are implemented in the REDUCE pack-
age GUARDIAN. It is based on the REDUCE [Hea95, Mel95] package RED-
LOG [DS97a, DS96] implementing a formula data type with corresponding algo-
rithms, in particular including simplification and quantifier elimination.
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20.27.2 An outline of our method

Guarded expressions

A guarded expression is a scheme 
γ0 t0
γ1 t1
...

...
γn tn


where each γi is a quantifier-free formula, the guard, and each ti is an associated
conventional expression. The idea is that some ti is a valid interpretation iff γi
holds. Each pair (γi, ti) is called a case.

The first case (γ0, t0) is the generic case: t0 is the expression the system would
compute without our package, and γ0 is the corresponding guard.

The guards γi need neither exclude one another, nor do we require that they form
a complete case distinction. We shall, however, assume that all cases covered by a
guarded expression are already covered by the generic case; in other words:

n∧
i=1

(γi −→ γ0). (20.79)

Consider the following evaluation of |x| to a guarded expression: T |x|
x ≥ 0 x
x < 0 −x

 .
Here the non-generic cases already cover the whole domain. The generic case is
in some way redundant. It is just present for keeping track of the system’s default
behavior. Formally we have

( n∨
i=1

γi

)
←→ γ0. (20.80)

As an example for a non-redundant, i.e., necessary generic case we have the eval-
uation of the reciprocal 1

x : [
x ̸= 0 1

x

]
.

In every guarded expression, the generic case is explicitly marked as either neces-
sary or redundant. The corresponding tag is inherited during the evaluation process.
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Unfortunately it can happen that guarded expressions satisfy (20.80) without being
tagged redundant, e.g., specialization of[

T sinx
x = 0 0

]
to x = 0 if the system cannot evaluate sin(0). This does not happen if one claims
for necessary generic cases to have, as the reciprocal above, no alternative cases at
all. Else, in the sequel “redundant generic case” has to be read as “tagged redun-
dant.”

With guarded expressions, the evaluation splits into two independent parts: Al-
gebraic evaluation and a subsequent simplification of the guarded expression ob-
tained.

Guarding schemes

In the introduction we have seen that certain operators introduce case distinctions.
For this, with each operator f there is a guarding scheme associated providing
information on how to map f(t1, . . . , tm) to a guarded expression provided that
one does not have to care for the argument expressions t1, . . . , tm. In the easiest
case, this is a rewrite rule

f(a1, . . . , am)→ G(a1, . . . , am).

The actual terms t1, . . . , tm are simply substituted for the formal symbols a1,
. . . , am into the generic guarded expression G(a1, . . . , am). We give some ex-
amples:

a1
a2
→
[
a2 ̸= 0 a1

a2

]
√
a1 →

[
a1 ≥ 0

√
a1

]
sign(a1)→


T sign(a1)

a1 > 0 1
a1 = 0 0
a1 < 0 −1


|a1| →

 T |a1|
a1 ≥ 0 a1
a1 < 0 −a1

 (20.81)

For functions of arbitrary arity, e.g., min or max, we formally assume infinitely
many operators of the same name. Technically, we associate a procedure parame-
terized with the number of arguments m that generates the corresponding rewrite
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rule. As min_scheme(2) we obtain, e.g.,

min(a1, a2)→

 T min(a1, a2)
a1 ≤ a2 a1
a2 ≤ a1 a2

 ,
while for higher arities there are more case distinctions necessary.

For later complexity analysis, we state the concept of a guarding scheme formally:
a guarding scheme for an m-ary operator f is a map

gschemef : Em → GE

where E is the set of expressions, and GE is the set of guarded expressions. This al-
lows to split f(t1, . . . , tm) in dependence on the form of the parameter expressions
t1, . . . , tm.

Algebraic evaluation

Evaluating conventional expressions

The evaluation of conventional expressions into guarded expressions is performed
recursively: Constants c evaluate to [

T c
]
.

For the evaluation of f(e1, . . . , em) the argument expressions e1, . . . , em are re-
cursively evaluated to guarded expressions

e′i =


γi0 ti0
γi1 ti1
...

...
γini tini

 for 1 ≤ i ≤ m. (20.82)

Then the operator f is “moved inside” the e′i by combining all cases, technically a
simultaneous Cartesian product computation of both the sets of guards and the sets
of terms:

Γ =

m∏
i=1

{γi0, . . . , γini}, T =

m∏
i=1

{ti0, . . . , tini}. (20.83)

This leads to the intermediate result
γ10 ∧ · · · ∧ γm0 f(t10, . . . , tm0)

...
...

γ1n1 ∧ · · · ∧ γm0 f(t1n1 , . . . , tm0)
...

...
γ1n1 ∧ · · · ∧ γmnm f(t1n1 , . . . , tmnm)

 . (20.84)
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The new generic case is exactly the combination of the generic cases of the e′i. It
is redundant if at least one of these combined cases is redundant.

Next, all non-generic cases containing at least one redundant generic constituent
γi0 in their guard are deleted. The reason for this is that generic cases are only
used to keep track of the system default behavior. All other cases get the status of a
non-generic case even if they contain necessary generic constituents in their guard.

At this point, we apply the guarding scheme of f to all remaining expressions
f(t1i1 , . . . , tmim) in the form (20.84) yielding a nested guarded expression

Γ0

 δ00 u00
...

...
δ0k0 u0k0


...

...

ΓN

 δN0 uN0
...

...
δNkN uNkN




, (20.85)

which can be straightforwardly resolved to a guarded expression

Γ0 ∧ δ00 u00
...

...
Γ0 ∧ δ0k0 u0k0

...
...

ΓN ∧ δN0 uN0
...

...
ΓN ∧ δNkN uNkN


.

This form is treated analogously to the form (20.84): The new generic case
(Γ0 ∧ δ00, u00) is redundant if at least one of

(
Γ0, f(t10, . . . , tm0)

)
and (δ00, u00)

is redundant. Among the non-generic cases all those containing redundant generic
constituents in their guard are deleted, and all those containing necessary generic
constituents in their guard get the status of an ordinary non-generic case.

Finally the standard evaluator of the system—reval in the case of REDUCE—
is applied to all contained expressions, which completes the algebraic part of the
evaluation.

Evaluating guarded expressions

The previous section was concerned with the evaluation of pure conventional ex-
pressions into guarded expressions. Our system currently combines both conven-
tional and guarded expressions. We are thus faced with the problem of treating
guarded subexpressions during evaluation.
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When there is a guarded subexpression ei detected during evaluation, all contained
expressions are recursively evaluated to guarded expressions yielding a nested
guarded expression of the form (20.85). This is resolved as described above yield-
ing the evaluation subresult e′i.

As a special case, this explains how guarded expressions are (re)evaluated to
guarded expressions.

Example

We describe the evaluation of the expression min(x, |x|). The first argument e1 =
x evaluates recursively to

e′1 =
[

T x
]

(20.86)

with a necessary generic case. The nested x inside e2 = |x| evaluates to the same
form (20.86). For obtaining e′2, we apply the guarding scheme (20.81) of the abso-
lute value to the only term of (20.86) yielding T

 T |x|
x ≥ 0 x
x < 0 −x

  ,
where the inner generic case is redundant. This form is resolved to

e′2 =

 T ∧ T |x|
T ∧ x ≥ 0 x
T ∧ x < 0 −x


with a redundant generic case. The next step is the combination of cases by Carte-
sian product computation. We obtain T ∧ (T ∧ T) min(x, |x|)

T ∧ (T ∧ x ≥ 0) min(x, x)
T ∧ (T ∧ x < 0) min(x,−x)

 ,
which corresponds to (20.84) above. For the outer min, we apply the guarding
scheme (20.27.2) to all terms yielding the nested guarded expression

T ∧ (T ∧ T)

 T min(x, |x|)
x ≤ |x| x
|x| ≤ x |x|


T ∧ (T ∧ x ≥ 0)

 T min(x, x)
x ≤ x x
x ≤ x x


T ∧ (T ∧ x < 0)

 T min(x,−x)
x ≤ −x x
−x ≤ x −x




,
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which is in turn resolved to

(T ∧ (T ∧ T)) ∧ T min(x, |x|)
(T ∧ (T ∧ T)) ∧ x ≤ |x| x
(T ∧ (T ∧ T)) ∧ |x| ≤ x |x|
(T ∧ (T ∧ x ≥ 0)) ∧ T min(x, x)

(T ∧ (T ∧ x ≥ 0)) ∧ x ≤ x x
(T ∧ (T ∧ x ≥ 0)) ∧ x ≤ x x
(T ∧ (T ∧ x < 0)) ∧ T min(x,−x)

(T ∧ (T ∧ x < 0)) ∧ x ≤ −x x
(T ∧ (T ∧ x < 0)) ∧ −x ≤ x −x


.

From this, we delete the two non-generic cases obtained by combination with the
redundant generic case of the min. The final result of the algebraic evaluation step
is the following:

(T ∧ (T ∧ T)) ∧ T min(x, |x|)
(T ∧ (T ∧ T)) ∧ x ≤ |x| x
(T ∧ (T ∧ T)) ∧ |x| ≤ x |x|

(T ∧ (T ∧ x ≥ 0)) ∧ x ≤ x x
(T ∧ (T ∧ x ≥ 0)) ∧ x ≤ x x
(T ∧ (T ∧ x < 0)) ∧ x ≤ −x x
(T ∧ (T ∧ x < 0)) ∧ −x ≤ x −x


. (20.87)

Worst-case complexity

Our measure of complexity |G| for guarded expressions G is the number of con-
tained cases: ∣∣∣∣∣∣∣∣∣


γ0 t0
γ1 t1
...

...
γn tn


∣∣∣∣∣∣∣∣∣ = n+ 1.

As in Section 20.27.2, consider an m-ary operator f , guarded expression argu-
ments e′1, . . . , e′m as in equation (20.82), and the Cartesian product T as in equat-
ion (20.83). Then

|f(e′1, . . . , e′m)| ≤
∑

(t1,...,tm)∈T

|gschemef (t1, . . . , tm)|

≤ max
(t1,...,tm)∈T

|gschemef (t1, . . . , tm)| ·#T

= max
(t1,...,tm)∈T

|gschemef (t1, . . . , tm)| ·
m∏
j=1

|e′j |

≤ max
(t1,...,tm)∈T

|gschemef (t1, . . . , tm)| ·
(
max

1≤j≤m
|e′j |
)m
.
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In the important special case that the guarding scheme of f is a rewrite rule
f(a1, . . . , am)→ G, the above complexity estimation simplifies to

|f(e′1, . . . , e′m)| ≤ |G| ·
m∏
j=1

|e′j | ≤ |G| ·
(
max

1≤j≤m
|e′j |
)m
.

In other words: |G| plays the role of a factor, which, however, depends on f , and
|f(e′1, . . . , e′m)| is polynomial in the size of the ei but exponential in the arity of f .

Simplification

In view of the increasing size of the guarded expressions coming into existence
with subsequent computations, it is indispensable to apply simplification strate-
gies. There are two different algorithms involved in the simplification of guarded
expressions:

1. A formula simplifier mapping quantifier-free formulas to equivalent simpler
ones.

2. Effective quantifier elimination for real closed fields over the language of
ordered rings.

It is not relevant, which simplifier and which quantifier elimination procedure is
actually used. We use the formula simplifier described in [DS97b]. Our quantifier
elimination uses test point methods developed by Weispfenning [Wei88, RLW93,
Wei97]. It is restricted to formulas obeying certain degree restrictions wrt. the
quantified variables. As an alternative, REDLOG provides an interface to Hong’s
QEPCAD quantifier elimination package [HCJE93]. Compared to the simplifica-
tion, the quantifier elimination is more time consuming. It can be turned off by a
switch.

The following simplification steps are applied in the given order:

Contraction of cases This is restricted to the non-generic cases of the considered
guarded expression. We contract different cases containing the same terms:

γ0 t0
...

...
γi ti
...

...
γj ti
...

...


becomes


γ0 t0
...

...
γi ∨ γj ti

...
...

 .
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Simplification of the guards The simplifier is applied to all guards replacing
them by simplified equivalents. Since our simplifier maps γ ∨ γ to γ, this together
with the contraction of cases takes care for the deletion of duplicate cases.

Keep one tautological case If the guard of some non-generic case becomes “T,”
we delete all other non-generic cases. Else, if quantifier elimination is turned on,
we try to detect a tautology by eliminating the universal closures ∀γ of the guards
γ. This quantifier elimination is also applied to the guards of generic cases. These
are, in case of success, simply replaced by “T” without deleting the case.

Remove contradictive cases A non-generic case is deleted if its guard has be-
come “F.” If quantifier elimination is turned on, we try to detect further contradic-
tive cases by eliminating the existential closure ∃γ for each guard γ. This quantifier
elimination is also applied to generic cases. In case of success they are not deleted
but their guards are replaced by “F.” Our assumption (20.79) allows then to delete
all non-generic cases.

Example revisited

We turn back to the form (20.87) of our example min(x, |x|). Contraction of cases
with subsequent simplification automatically yields

T min(x, |x|)
T x

|x| − x ≤ 0 |x|
F −x

 ,
of which only the tautological non-generic case survives:[

T min(x, |x|)
T x

]
. (20.88)

Output modes

An output mode determines which part of the information contained in the guarded
expressions is provided to the user. GUARDIAN knows the following output modes:

Matrix Output matrices in the style used throughout this paper. We have already
seen that these can become very large in general.

Generic case Output only the generic case.
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Generic term Output only the generic term. Thus the output is exactly the same
as without the guardian package. If the condition of the generic case becomes “F,”
a warning “contradictive situation” is given. The computation can,
however, be continued.

Note that output modes are restrictions concerning only the output; internally the
system still computes with the complete guarded expressions.

A smart mode

Consider the evaluation result (20.88) of min(x, |x|). The generic term output
mode would output min(x, |x|), although more precise information could be given,
namely x. The problem is caused by the fact that generic cases are used to keep
track of the system’s default behavior. In this section we will describe an optional
smart mode with a different notion of generic case. To begin with, we show why
the problem can not be overcome by a “smart output mode.”

Assume that there is an output mode which outputs x for (20.88). As the next
computation involving (20.88) consider division by y. This would result in[

y ̸= 0 min(x,|x|)
y

y ̸= 0 x
y

]
.

Again, there are identic conditions for the generic case and some non-generic case,
and, again, the term belonging to the latter is simpler. Our mode would output x

y .
Next, we apply the absolute value once more yielding y ̸= 0 |min(x,|x|)|

|y|
xy ≥ 0 ∧ y ̸= 0 x

y

xy < 0 ∧ y ̸= 0 −x
y

 .
Here, the condition of the generic case differs from all other conditions. We thus
have to output the generic term. For the user, the evaluation of |xy | results in
|min(x,|x|)|

|y| .

The smart mode can turn a non-generic case into a necessary generic one dropping
the original generic case and all other non-generic cases. Consider, e.g., (20.88),
where the conditions are equal, and the non-generic term is “simpler.”

In fact, the relevant relationship between the conditions is that the generic condition
implies the non-generic one. In other words: Some non-generic condition is not
more restrictive than the generic condition, and thus covers the whole domain of the
guarded expression. Note that from the implication and (20.79) we may conclude
that the cases are even equivalent.
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Implication is heuristically checked by simplification. If this fails, quantifier elim-
ination provides a decision procedure. Note that our test point methods are in-
complete in this regard due to the degree restrictions. Also it cannot be applied
straightforwardly to guards containing operators that do not belong to the language
of ordered rings.

Whenever we happen to detect a relevant implication, we actually turn the cor-
responding non-generic case into the generic one. From our motivation of non-
generic cases, we may expect that non-generic expressions are generally more con-
venient than generic ones.

20.27.3 Examples

We give the results for the following computations as they are printed in the output
mode matrix providing the full information on the computation result. The reader
can derive himself what the output in the mode generic case or generic term would
be.

• Smart mode or not:

1

x2 + 2x+ 1
=
[
x + 1 ̸= 0 1

x2+2x+1

]
.

The simplifier recognizes that the denominator is a square.

• Smart mode or not:

1

x2 + 2x+ 2
=
[

T 1
x2+2x+2

]
.

Quantifier elimination recognizes the positive definiteness of the denomina-
tor.

• Smart mode:
|x| −

√
x =

[
x ≥ 0 −

√
x + x

]
.

The square root allows to forget about the negative branch of the absolute
value.

• Smart mode:

|x2 + 2x+ 1| =
[

T x2 + 2x + 1
]
.

The simplifier recognizes the positive semidefiniteness of the argument. RE-
DUCE itself recognizes squares within absolute values only in very special
cases such as |x2|.
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• Smart mode:
min

(
x,max(x, y)

)
=
[

T x
]
.

Note that REDUCE does not know any rules about nested minima and max-
ima.

• Smart mode:
min

(
sign(x),−1

)
=
[

T −1
]
.

• Smart mode or not:

|x| − x =

 T |x| − x
x ≥ 0 0
x < 0 −2x

 .
This example is taken from [DF94].

• Smart mode or not:√
1 + x2y2(x2 + y2 − 3) =

[
T
√
x4y2 + x2y4 − 3x2y2 + 1

]
The Motzkin polynomial is recognized to be positive semidefinite by quanti-
fier elimination.

The evaluation time for the last example is 119 ms on a SUN SPARC-4. This illus-
trates that efficiency is no problem with such interactive examples.

20.27.4 Outlook

This section describes possible extensions of the GUARDIAN. The extensions pro-
posed in Section 20.27.4 on simplification of terms and Section 20.27.4 on a back-
ground theory are clear from a theoretical point of view but not yet implemented.
Section 20.27.4 collects some ideas on the application of our ideas to the REDUCE

integrator. In this field, there is some more theoretical work necessary.

Simplification of terms

Consider the expression sign(x)x − |x|. It evaluates to the following guarded ex-
pression:  T −|x| + sign(x)x

x ̸= 0 0
x = 0 −x

 .
This suggests to substitute −x by 0 in the third case, which would in turn allow to
contract the two non-generic cases yielding[

T −|x| + sign(x)x
T 0

]
.



836 CHAPTER 20. USER CONTRIBUTED PACKAGES

In smart mode second case would then become the only generic case.

Generally, one would proceed as follows: If the guard is a conjunction containing
as toplevel equations

t1 = 0, . . . , tk = 0,

reduce the corresponding expression modulo the set of univariate linear polynom-
ials among t1, . . . , tk.

A more general approach would reduce the expression modulo a Gröbner basis of
all the t1, . . . , tk. This leads, however, to larger expressions in general.

One can also imagine to make use of non-conjunctive guards in the following way:

1. Compute a DNF of the guard.

2. Split the case into several cases corresponding to the conjunctions in the
DNF.

3. Simplify the terms.

4. Apply the standard simplification procedure to the resulting guarded expres-
sion. Note that it includes contraction of cases.

According to experiences with similar ideas in the “Gröbner simplifier” described
in [DS97b], this should work well.

Background theory

In practice one often computes with quantities guaranteed to lie in a certain range.
For instance, when computing an electrical resistance, one knows in advance that it
will not be negative. For such cases one would like to have some facility to provide
external information to the system. This can then be used to reduce the complexity
of the guarded expressions.

One would provide a function assert(φ), which asserts the formula φ to hold.
Successive applications of assert establish a background theory, which is a set of
formulas considered conjunctively. The information contained in the background
theory can be used with the guarded expression computation. The user must, how-
ever, not rely on all the background information to be actually used.

Technically, denote by Φ the (conjunctive) background theory. For the simplifica-
tion of the guards, we can make use of the fact that our simplifier is designed to
simplify wrt. a theory, cf. [DS97b]. For proving that some guard γ is tautological,
we try to prove

∀(Φ −→ γ)
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instead of ∀γ. Similarly, for proving that γ is contradictive, we try to disprove

∃(Φ ∧ γ).

Instead of proving ∀(γ1 −→ γ2) in smart mode, we try to prove

∀
(
(Φ ∧ γ1) −→ γ2

)
.

Independently, one can imagine to use a background theory for reducing the output
with the matrix output mode. For this, one simplifies each guard wrt. the theory
at the output stage treating contradictions and tautologies appropriately. Using the
theory for replacing all cases by one at output stage in a smart mode manner leads
once more to the problem of expressions or even guarded expressions “mysteri-
ously” getting more complicated. Applying the theory only at the output stage
makes it possible to implement a procedure unassert(φ) in a reasonable way.

Integration

CAS integrators make “mistakes” similar to those we have examined. Consider,
e.g., the typical result ∫

xa dx =
1

a+ 1
xa+1.

It does not cover the case a = −1, for which one wishes to obtain∫
x−1 dx = lnx.

This problem can also be solved by using guarded expressions for integration re-
sults.

Within the framework of this paper, we would have to associate a guarding scheme
to the integrator int. It is not hard to see that this cannot be done in a reasonable
way without putting as much knowledge into the scheme as into the integrator
itself. Thus for treating integration, one has to modify the integrator to provide
guarded expressions.

Next, we have to clarify what the guarded expression for the above integral would
look like. Since we know that the integral is defined for all interpretations of the
variables, our assumption (20.79) implies that the generic condition be “T.” We
obtain the guarded expression T

∫
xa dx

a ̸= −1 1
a+1x

a+1

a = −1 lnx

 .
Note that the redundant generic case does not model the system’s current behavior.



838 CHAPTER 20. USER CONTRIBUTED PACKAGES

Combining algebra with logic

Our method, in the described form, uses an already implemented algebraic evalu-
ator. In the previous section, we have seen that this point of view is not sufficient
for treating integration appropriately.

Also our approach runs into trouble with built-in knowledge such as
√
x2 = |x|, (20.89)

sign(|x|) = 1. (20.90)

Equation (20.89) introduces an absolute value operator within a non-generic term
without making a case distinction. Equation (20.90) is wrong when not considering
x transcendental. In contrast to the situation with reciprocals, our technique cannot
be used to avoid this “mistake.” We obtain

sign(|x|) =

 T 1
x ̸= 0 1
x = 0 0


yielding two different answers for x = 0.

We have already seen in the example Section 20.27.3 that the implementation of
knowledge such as (20.89) and (20.90) is usually quite ad hoc, and can be mostly
covered by using guarded expressions. This observation gives rise to the following
question: When designing a new CAS based on guarded expressions, how should
the knowledge be distributed between the algebraic side and the logic side?

20.27.5 Conclusions

Guarded expressions can be used to overcome well-known problems with interpret-
ing expressions as terms. We have explained in detail how to compute with guarded
expressions including several simplification techniques. Moreover we gain alge-
braic simplification power from the logical simplifications. Numerous examples
illustrate the power of our simplification methods. The largest part of our ideas
is efficiently implemented, and the software is published. The outlook on back-
ground theories and on the treatment of integration by guarded expressions points
on interesting future extensions.
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20.28 IDEALS: Arithmetic for Polynomial Ideals

This package implements the basic arithmetic for polynomial ideals by exploiting
the Gröbner bases package of REDUCE. In order to save computing time all inter-
mediate Gröbner bases are stored internally such that time consuming repetitions
are inhibited.

Author: Herbert Melenk

20.28.1 Introduction

This package implements the basic arithmetic for polynomial ideals by exploiting
the Gröbner bases package of REDUCE. In order to save computing time all inter-
mediate Gröbner bases are stored internally such that time consuming repetitions
are inhibited. A uniform setting facilitates the access.

20.28.2 Initialization

Prior to any computation the set of variables has to be declared by calling the
operator I_setting . E.g. in order to initiate computations in the polynomial
ring Q[x, y, z] call

I_setting(x,y,z);

A subsequent call to I_setting allows one to select another set of variables;
at the same time the internal data structures are cleared in order to free memory
resources.

20.28.3 Bases

An ideal is represented by a basis (set of polynomials) tagged with the symbol I,
e.g.,

u := I(x*z-y**2, x**3-y*z);

Alternatively a list of polynomials can be used as input basis; however, all arith-
metic results will be presented in the above form. The operator ideal2list
allows one to convert an ideal basis into a conventional REDUCE list.
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Operators

Because of syntactical restrictions in REDUCE, special operators have to be used
for ideal arithmetic:

.* ideal product (infix)

.: ideal quotient (infix)

./ ideal quotient (infix)

.= ideal equality test (infix)
subset ideal inclusion test (infix)
intersection ideal intersection (prefix,binary)
member test for membership in an ideal

(infix: polynomial and ideal)
gb Groebner basis of an ideal (prefix, unary)
ideal2list convert ideal basis to polynomial list

(prefix,unary)

Example:

I(x+y,x^2) .* I(x-z);

2 2 2
i(x + x*y - x*z - y*z,x*y - y *z)

The test operators return the values 1 (=true) or 0 (=false) such that they can be
used in REDUCE if-then-else statements directly.

The results of .+, .*, .:/./, and intersection are ideals represented by
their Gröbner basis in the current setting and term order. The term order can be
modified using the operator torder from the Gröbner package. Note that ideal
equality cannot be tested with the REDUCE equal sign:

I(x,y) = I(y,x) is false
I(x,y) .= I(y,x) is true

20.28.4 Algorithms

The operators groebner, preduce, and idealquotient of the REDUCE
Gröbner package support the basic algorithms:

gb(Iu1, u2...)→ groebner({u1, u2...}, {x, ...})

p ∈ I1 → p = 0mod I1
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I1 : I(p)→ (I1
⋂
I(p))/p elementwise

On top of these the IDEALS package implements the following operations:

I(u1, u2...) + I(v1, v2...)→ GB(I(u1, u2..., v1, v2...))

I(u1, u2...) ∗ I(v1, v2...)→ GB(I(u1 ∗ v1, u1 ∗ v2, ..., u2 ∗ v1, u2 ∗ v2...))

I1
⋂
I2 → Q[x, ...]

⋂
GBlex(t ∗ I1 + (1− t) ∗ I2, {t, x, ..})

I1 : I(p1, p2, ...)→ I1 : I(p1)
⋂
I1 : I(p2)

⋂
...

I1 = I2 → GB(I1) = GB(I2)

I1 ⊆ I2 → ui ∈ I2 ∀ ui ∈ I1 = I(u1, u2...)

20.28.5 Examples

Please consult the file ideals.tst.
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20.29 INVBASE: A Package for Computing Involutive
Bases

Involutive bases are a new tool for solving problems in connection with multivari-
ate polynomials, such as solving systems of polynomial equations and analyzing
polynomial ideals. An involutive basis of polynomial ideal is nothing but a special
form of a redundant Gröbner basis. The construction of involutive bases reduces
the problem of solving polynomial systems to simple linear algebra.

Authors: A.Yu. Zharkov and Yu.A. Blinkov

20.29.1 Introduction

Involutive bases are a new tool for solving problems in connection with multivari-
ate polynomials, such as solving systems of polynomial equations and analyzing
polynomial ideals, see [ZB96]. An involutive basis of polynomial ideal is nothing
but a special form of a redundant Gröbner basis. The construction of involutive
bases reduces the problem of solving polynomial systems to simple linear algebra.
The INVBASE package 26 calculates involutive bases of polynomial ideals using an
algorithm described in [ZB96] which may be considered as an alternative to the
well-known Buchberger algorithm [Buc85]. The package can be used over a vari-
ety of different coefficient domains, and for different variable and term orderings.
The algorithm implemented in the INVBASE package is proved to be valid for
any zero-dimensional ideal (finite number of solutions) as well as for positive-
dimensional ideals in generic form. However, the algorithm does not terminate
for “sparse” positive-dimensional systems. In order to stop the process we use
the maximum degree bound for the Gröbner bases of generic ideals in the total-
degree term ordering established in [Laz83]. In this case, it is reasonable to call the
GROEBNER package with the answer of INVBASE as input information in order to
compute the reduced Gröbner basis under the same variable and term ordering.
Though the INVBASE package supports computing involutive bases in any admis-
sible term ordering, it is reasonable to compute them only for the total-degree term
orderings. The package includes a special algorithm for conversion of total-degree
involutive bases into the triangular bases in the lexicographical term ordering that is
desirable for finding solutions. Normally the sum of timings for these two compu-
tations is much less than the timing for direct computation of the lexicographical
involutive bases. As a rule, the result of the conversion algorithm is a reduced
Gröbner basis in the lexicographical term ordering. However, because of some
gaps in the current version of the algorithm, there may be rare situations when
the resulting triangular set does not possess the formal property of Gröbner bases.
Anyway, we recommend using the GROEBNER package with the result of the con-

26The REDUCE implementation has been supported by the Konrad-Zuse-Zentrum Berlin



843

version algorithm as input in order either to check the Gröbner bases property or
to transform the result into a lexicographical Gröbner basis.

20.29.2 The Basic Operators

Term Ordering

The following term order modes are available:

revgradlex; gradlex; lex .

These modes have the same meaning as for the GROEBNER package.
All orderings are based on an ordering among the variables. For each pair of vari-
ables an order relation > must be defined, e.g. x > y. The term ordering mode as
well as the order of variables are set by the operator

invtorder 〈mode〉,{x1,. . . ,xn}

where 〈mode〉 is one of the term order modes listed above. The notion of
{x1,. . . ,xn} as a list of variables at the same time means x1 > ... > xn.
Example 1.

invtorder revgradlex,{x,y,z}

sets the reverse graduated term ordering based on the variable order x > y > z.
The operator invtorder may be omitted. The default term order mode is
revgradlex and the default decreasing variable order is alphabetical (or, more
generally, the default REDUCE kernel order). Furthermore, the list of variables in
the invtorder may be omitted. In this case the default variable order is used.

Computing Involutive Bases

To compute the involutive basis of ideal generated by the set of polynomials
{p1, ..., pm} one should type the command

invbase {p1,. . . ,pn}

where pi are polynomials in variables listed in the invtorder operator. If some
kernels in pi were not listed previously in the invtorder operator they are con-
sidered as parameters, i.e. they are considered part of the coefficients of polynom-
ials. If invtorder was omitted, all the kernels in pi are considered as variables
with the default REDUCE kernel order.
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The coefficients of polynomials pi may be integers as well as rational numbers (or,
accordingly, polynomials and rational functions in the parametric case). The com-
putations modulo prime numbers are also available. For this purpose one should
type the REDUCE commands

on modular; setmod p;

where p is a prime number.
The value of the invbase function is a list of integer polynomials {g1, ..., gn}
representing an involutive basis of a given ideal.
Example 2.

invtorder revgradlex,{x,y,z};
g:= invbase {4*x**2 + x*y**2 - z + 1/4,

2*x + y**2*z + 1/2,
x**2*z - 1/2*x - y**2 };

The resulting involutive basis in the reverse graduate ordering is

3 2 3 2
g := {8*x*y*z - 2*x*y*z + 4*y - 4*y*z + 16*x*y

+ 17*y*z - 4*y,

4 2 2 2
8*y - 8*x*z - 256*y + 2*x*z + 64*z

- 96*x + 20*z - 9,

3
2*y *z + 4*x*y + y,

3 2 2 2
8*x*z - 2*x*z + 4*y - 4*z + 16*x + 17*z

- 4,

3 3 2
- 4*y*z - 8*y + 6*x*y*z + y*z - 36*x*y

- 8*y,

2 2 2
4*x*y + 32*y - 8*z + 12*x - 2*z + 1,
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2
2*y *z + 4*x + 1,

3 2 2
- 4*z - 8*y + 6*x*z + z - 36*x - 8,

2 2 2
8*x - 16*y + 4*z - 6*x - z}

To convert it into a lexicographical Gröbner basis one should type

h:=invlex g;

The result is

6 5 4
h := {3976*x + 37104*z - 600*z + 2111*z

3 2
+ 122062*z + 232833*z - 680336*z + 288814

,

2 6 5 4
1988*y - 76752*z + 1272*z - 4197*z

3 2
- 251555*z - 481837*z + 1407741*z

- 595666,

7 6 5 4 3 2
16*z - 8*z + z + 52*z + 75*z - 342*z

+ 266*z - 60}

In the case of “sparse” positive-dimensioned system when the involutive basis in
the sense of [ZB96] does not exist, you get the error message

***** Maximum degree bound exceeded.

The resulting list of polynomials which is not an involutive basis is stored in the
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share variable invtempbasis. In this case it is reasonable to call the GROEB-
NER package with the value of invtempbasis as input under the same variable
and term ordering.
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20.30 LALR: A Parser Generator

Author: Arthur Norman

This package provides a parser-generator, somewhat styled after yacc or the many
programs available for use with other languages. You present it with a phrase
structure grammar and it generates a set of tables that can then be used by the
function yyparse to read in material in the syntax that you specified. Internally
it uses a very well established technique known “LALR” which takes the grammar
are derives the description of a stack automaton that can accept it. Details of the
procedure can be found in standard books on compiler construction, such as the
one by Aho, Ullman, Lam and Sethi [ALSU06].

At the time of writing this explanation the code is not in its final form, so this will
describe the current state and include a few notes on what might chaneg in the
future.

Building a parser is done in Reduce symbolic mode, so say "symbolic;" or
"lisp;" before starting your work.

To use the code here you use a function lalr_create_parser, giving it two
arguments. The first indicates precedence information and will be described later:
for now just pass the value nil. The second argument is a list of productions, and
the first one of these is taken to be the top-level target for the whole grammar.

Each production is in the form

(LHS ((rhs1.1 rhs1.2 ...) a1.1 a1.2 ...)
((rhs2.1 rhs2.1 ...) a2.1 a2.2 ...)
...)

which in regular publication style for grammars might be interpreted as meaning

LHS⇒ rhs1,1 rhs1,2 . . . {a1,1 a1,2 . . .}
| rhs2,1 rhs2,2 . . . {a2,1 a2,2 . . .}
. . .

;

The various lines specify different options for what the left hand side (non-terminal
symbol) might correspond to, while the items within the braces are sematic actions
that get obeyed or evaluated when the production ruls is used.

Each LHS is treated as a non-terminal symbol and is specified as a simple name.
Note that by default the Reduce parser will be folding characters within names
to lower case and so it will be best to choose names for non-terminals that are
unambiguous even when case-folded, but I would like to establish a convention
that in source code they are written in capitals.
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The RHS items may be either non-terminals (identified because they are present
in the left hand side of some production) or terminals. Terminal symbols can be
specified in two different ways.

The lexer has built-in recipes that decode certain sequences of characters and return
the special markers for !:symbol, !:number, !:string, !:list for commonly used cases.
In these cases the variable yylval gets left set to associated data, so for instance in
the case of !:symbol it gets set to the particular symbol concerned. The token type
:list is used for Lisp or rlisp-like notation where the input contains ’expression or
‘expression so for instance the input ‘(a b c) leads to the lexer returning !:list and
yylvel being set to (backquote (a b c)). This treatment is specialised for handling
rlisp-like syntax.

Other terminals are indicated by writing a string. That may either consist of char-
acters that would otherwise form a symbol (ie a letter followed by letters, digits
and underscores) or a sequence of non-alphanumeric characters. In the latter case
if a sequence of three or more punctuation marks make up a terminal then all the
shorter prefixes of it will also be grouped to form single entities. So if "<–>" is a
terminal then ’<’, ’<-’ and ’<–’ will each by parsed as single tokens, and any of
them that are not used as terminals will be classified as !:symbol.

As well as terminals and non-terminals (which are writtent as symbols or strings)
it is possible to write one of

(OPT s1 s2 . . . ) 0 or 1 instances of the sequence s1, . . .
(STAR s1 s2 . . . ) 0, 1, 2, . . . instances.
(PLUS s1 s2 . . . ) 1, 2, 3, . . . instances.
(LIST sep s1 s2 . . . ) like (STAR s1 s2 . . . ) but with the single item

sep between each instance.
(LISTPLUS sep s1 . . . ) like (PLUS s2 . . . ) but with sep interleaved.
(OR s1 s2 . . . ) one or other of the tokens shown.

When the lexer processes input it will return a numeric code that identifies the type
of the item seen, so in a production one might write (!:symbol ":=" EXPRESSION)
and as it recognises the first two tokens the lexer will return a numeric code for
!:symbol (and set yylval to the actual symbol as seen) and then a numeric code
that it allocates for ":=". In the latter case it will also set yylval to the symbol
!:!= in case that is useful. Precedence can be set using lalr_precedence. See
examples below.

20.30.1 Limitations

1. Grammar rules and semantic actions are specified in fairly raw Lisp.

2. The lexer is hand-written and can not readily be reconfigured for use with
languages other than rlisp. For instance it has use of "!" as a character escape
built into it.
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20.30.2 An example

% Here I set up a sample grammar
% S’ -> S
% S -> C C { }
% C -> "c" C { }
% | "d" { }
% This is example 4.42 from Aho, Sethi and Ullman’s
% Red Dragon book.
% It is example 4.54 in the more recent Purple book.
%
%
grammar := ’(
(s ((cc cc) ) % Use default semantic action here
)
(cc (("c" cc) (list ’c !$2)) % First production for C

(("d") ’d ) % Second production for C
))$

parsertables := lalr_create_parser(nil, grammar)$

<< lex_init();
yyparse() >>;

c c c d c d ;
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20.31 LAPLACE: Laplace Transforms

This package can calculate ordinary and inverse Laplace transforms of expressions.
Documentation is in plain text.

Authors: C. Kazasov, M. Spiridonova, V. Tomov

Reference: [Kaz87].

Some hints on how to use to use this package:

Syntax:

laplace(〈exp〉,〈var-s〉,〈var-t〉)

invlap(〈exp〉,〈var-s〉,〈var-t〉)

where 〈exp〉 is the expression to be transformed, 〈var-s〉 is the source variable
(in most cases 〈exp〉 depends explicitly of this variable) and 〈var-t〉 is the target
variable. If 〈var-t〉 is omitted, the above operators use an internal variable lp!&
or il!&, respectively.

The following switches can be used to control the transformations:

lmon: If on, sin, cos, sinh and cosh are converted by laplace into exponentials,

lhyp: If on, expressions e x̃ are converted by invlap into hyperbolic functions
sinh and cosh,

ltrig: If on, expressions e x̃ are converted by invlap into trigonometric func-
tions sin and cos.

The system can be extended by adding Laplace transformation rules for single
functions by rules or rule sets. In such a rule the source variable must be free, the
target variable must be il!& for laplace and lp!& for invlap and the third
parameter should be omitted. Also rules for transforming derivatives are entered
in such a form.
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Examples:

let {laplace(log(~x),x)
=> -log(Euler_Gamma * il!&)/il!&,

invlap(log(Euler_Gamma * ~x)/x,x)
=> -log(lp!&)};

operator f;

let{

laplace(df(f(~x),x),x)
=> il!&*laplace(f(x),x) - sub(x=0,f(x)),

laplace(df(f(~x),x,~n),x)
=> il!&**n*laplace(f(x),x) -

for i:=n-1 step -1 until 0 sum

sub(x=0, df(f(x),x,n-1-i)) * il!&**i

when fixp n,

laplace(f(~x),x) = f(il!&)

};

Remarks about some functions:

The delta and gamma functions are known.
ONE is the name of the unit step function.
INTL is a parametrized integral function

intl(〈expr〉,〈var〉,0,〈obj.var〉)

which means “Integral of 〈expr〉 w.r.t. 〈var〉 taken from 0 to 〈obj.var〉”, e.g.
intl(2∗y2, y, 0, x) which is formally a function in x.
We recommend reading the file laplace.tst for a further introduction.
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20.32 LIE: Functions for the Classification of Real n-
Dimensional Lie Algebras

LIE is a package of functions for the classification of real n-dimensional Lie al-
gebras. It consists of two modules: liendmc1 and lie1234. With the help of the
functions in the liendmcl module, real n-dimensional Lie algebrasLwith a derived
algebra L(1) of dimension 1 can be classified.

Authors: Carsten and Franziska Schöbel

20.32.1 liendmc1

With the help of the functions in this module real n-dimensional Lie algebras L
with a derived algebra L(1) of dimension 1 can be classified. L has to be defined
by its structure constants ckij in the basis {X1, . . . , Xn} with [Xi, Xj ] = ckijXk.
The user must define an array lienstrucin(n,n,n) with n being the di-
mension of the Lie algebra L. The structure constants lienstrucin(i, j, k):=ckij for
i < j should be given. Then the procedure liendimcom1 can be called. Its
syntax is:

liendimcom1(〈number〉) .

〈number〉 corresponds to the dimension n. The procedure simplifies the structure
of L performing real linear transformations. The returned value is a list of the form

(i) {LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or

(ii) {HEISENBERG(k),COMMUTATIVE(n-k)}

with 3 ≤ k ≤ n, k odd.

The concepts correspond to the following theorem (LIE_ALGEBRA(2) → L2,
HEISENBERG(k)→ Hk and COMMUTATIVE(n-k)→ Cn−k):

Theorem. Every real n-dimensional Lie algebra L with a 1-dimensional derived
algebra can be decomposed into one of the following forms:

(1) C(L) ∩ L(1) = {0} : L2 ⊕ Cn−2 or

(2) C(L) ∩ L(1) = L(1) : Hk ⊕ Cn−k (k = 2r − 1, r ≥ 2),

with

1. C(L) = Cj ⊕ (L(1) ∩ C(L)) and dimCj = j ,
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2. L2 is generated by Y1, Y2 with [Y1, Y2] = Y1 ,

3. Hk is generated by {Y1, . . . , Yk} with
[Y2, Y3] = · · · = [Yk−1, Yk] = Y1.

(cf. [Sch93])

The returned list is also stored as lie_list. The matrix lientrans gives
the transformation from the given basis {X1, . . . , Xn} into the standard basis
{Y1, . . . , Yn}: Yj = (LIENTRANS)kjXk.

A more detailed output can be obtained by turning on the switch tr_lie: before
the procedure liendimcom1 is called.

The returned list could be an input for a data bank in which mathematical relevant
properties of the obtained Lie algebras are stored.

20.32.2 lie1234

This part of the package classifies real low-dimensional Lie algebras L of the di-
mension n :=dimL = 1, 2, 3, 4. L is also given by its structure constants ckij in
the basis {X1, . . . , Xn} with [Xi, Xj ] = ckijXk. An ARRAY LIESTRIN(n, n, n)
has to be defined and LIESTRIN(i, j, k):=ckij for i < j should be given. Then the
procedure lieclass can be called whose syntax is:

lieclass(〈number〉) .

〈number〉 should be the dimension of the Lie algebra L. The procedure stepwise
simplifies the commutator relations of L using properties of invariance like the
dimension of the centre, of the derived algebra, unimodularity etc. The returned
value has the form:

{LIEALG(n),COMTAB(m)},

where m corresponds to the number of the standard form (basis: {Y1, . . . , Yn}) in
an enumeration scheme. The corresponding enumeration schemes are listed below
(cf. [Sch92],[Mac99]). In case that the standard form in the enumeration scheme
depends on one (or two) parameter(s) p1 (and p2) the list is expanded to:

{LIEALG(n),COMTAB(m),p1,p2}.

This returned value is also stored as lie_class. The linear transformation from
the basis {X1, . . . , Xn} into the basis of the standard form {Y1, . . . , Yn} is given
by the matrix liemat: Yj = (LIEMAT)kjXk.
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By turning on the switch tr_lie before the procedure lieclass is called the
output contains not only the list lie_class but also the non-vanishing commu-
tator relations in the standard form.

By the value m and the parameters further examinations of the Lie algebra are
possible, especially if in a data bank mathematical relevant properties of the enu-
merated standard forms are stored.

20.32.3 Enumeration schemes for lie1234

returned list lie_class the corresponding commutator relations

LIEALG(1),COMTAB(0) commutative case

LIEALG(2),COMTAB(0) commutative case

LIEALG(2),COMTAB(1) [Y1, Y2] = Y2

LIEALG(3),COMTAB(0) commutative case

LIEALG(3),COMTAB(1) [Y1, Y2] = Y3

LIEALG(3),COMTAB(2) [Y1, Y3] = Y3

LIEALG(3),COMTAB(3) [Y1, Y3] = Y1, [Y2, Y3] = Y2

LIEALG(3),COMTAB(4) [Y1, Y3] = Y2, [Y2, Y3] = Y1

LIEALG(3),COMTAB(5) [Y1, Y3] = −Y2, [Y2, Y3] = Y1

LIEALG(3),COMTAB(6) [Y1, Y3] = −Y1 + p1Y2, [Y2, Y3] = Y1, p1 ̸= 0

LIEALG(3),COMTAB(7) [Y1, Y2] = Y3, [Y1, Y3] = −Y2, [Y2, Y3] = Y1

LIEALG(3),COMTAB(8) [Y1, Y2] = Y3, [Y1, Y3] = Y2, [Y2, Y3] = Y1

LIEALG(4),COMTAB(0) commutative case

LIEALG(4),COMTAB(1) [Y1, Y4] = Y1

LIEALG(4),COMTAB(2) [Y2, Y4] = Y1

LIEALG(4),COMTAB(3) [Y1, Y3] = Y1, [Y2, Y4] = Y2

LIEALG(4),COMTAB(4) [Y1, Y3] = −Y2, [Y2, Y4] = Y2,

[Y1, Y4] = [Y2, Y3] = Y1

LIEALG(4),COMTAB(5) [Y2, Y4] = Y2, [Y1, Y4] = [Y2, Y3] = Y1

LIEALG(4),COMTAB(6) [Y2, Y4] = Y1, [Y3, Y4] = Y2

LIEALG(4),COMTAB(7) [Y2, Y4] = Y2, [Y3, Y4] = Y1

LIEALG(4),COMTAB(8) [Y1, Y4] = −Y2, [Y2, Y4] = Y1

LIEALG(4),COMTAB(9) [Y1, Y4] = −Y1 + p1Y2, [Y2, Y4] = Y1, p1 ̸= 0

LIEALG(4),COMTAB(10) [Y1, Y4] = Y1, [Y2, Y4] = Y2
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returned list lie_class the corresponding commutator relations

LIEALG(4),COMTAB(11) [Y1, Y4] = Y2, [Y2, Y4] = Y1

LIEALG(4),COMTAB(12) [Y1, Y4] = Y1 + Y2, [Y2, Y4] = Y2 + Y3,

[Y3, Y4] = Y3

LIEALG(4),COMTAB(13) [Y1, Y4] = Y1, [Y2, Y4] = p1Y2, [Y3, Y4] = p2Y3,

p1, p2 ̸= 0

LIEALG(4),COMTAB(14) [Y1, Y4] = p1Y1 + Y2, [Y2, Y4] = −Y1 + p1Y2,

[Y3, Y4] = p2Y3, p2 ̸= 0

LIEALG(4),COMTAB(15) [Y1, Y4] = p1Y1 + Y2, [Y2, Y4] = p1Y2,

[Y3, Y4] = Y3, p1 ̸= 0

LIEALG(4),COMTAB(16) [Y1, Y4] = 2Y1, [Y2, Y3] = Y1,

[Y2, Y4] = (1 + p1)Y2, [Y3, Y4] = (1− p1)Y3,
p1 ≥ 0

LIEALG(4),COMTAB(17) [Y1, Y4] = 2Y1, [Y2, Y3] = Y1,

[Y2, Y4] = Y2 − p1Y3, [Y3, Y4] = p1Y2 + Y3,

p1 ̸= 0

LIEALG(4),COMTAB(18) [Y1, Y4] = 2Y1, [Y2, Y3] = Y1,

[Y2, Y4] = Y2 + Y3, [Y3, Y4] = Y3

LIEALG(4),COMTAB(19) [Y2, Y3] = Y1, [Y2, Y4] = Y3, [Y3, Y4] = Y2

LIEALG(4),COMTAB(20) [Y2, Y3] = Y1, [Y2, Y4] = −Y3, [Y3, Y4] = Y2

LIEALG(4),COMTAB(21) [Y1, Y2] = Y3, [Y1, Y3] = −Y2, [Y2, Y3] = Y1

LIEALG(4),COMTAB(22) [Y1, Y2] = Y3, [Y1, Y3] = Y2, [Y2, Y3] = Y1
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20.33 LINALG: Linear Algebra Package

This package provides a selection of functions that are useful in the world of linear
algebra.

Author: Matt Rebbeck

20.33.1 Introduction

This package provides a selection of functions that are useful in the world of linear
algebra. These functions are described alphabetically in subsection 20.33.3 and are
labelled 20.33.3.1 to 20.33.3.53. They can be classified into four sections(n.b: the
numbers after the dots signify the function label in section 20.33.3).

Contributions to this package have been made by Walter Tietze (ZIB).

20.33.1.1 Basic matrix handling

add_columns . . . 20.33.3.1 add_rows . . . 20.33.3.2
add_to_columns . . . 20.33.3.3 add_to_rows . . . 20.33.3.4
augment_columns . . . 20.33.3.5 char_poly . . . 20.33.3.9
column_dim . . . 20.33.3.12 copy_into . . . 20.33.3.14
diagonal . . . 20.33.3.15 extend . . . 20.33.3.16
find_companion . . . 20.33.3.17 get_columns . . . 20.33.3.18
get_rows . . . 20.33.3.19 hermitian_tp . . . 20.33.3.21
matrix_augment . . . 20.33.3.28 matrix_stack . . . 20.33.3.30
minor . . . 20.33.3.31 mult_columns . . . 20.33.3.32
mult_rows . . . 20.33.3.33 pivot . . . 20.33.3.34
remove_columns . . . 20.33.3.37 remove_rows . . . 20.33.3.38
row_dim . . . 20.33.3.39 rows_pivot . . . 20.33.3.40
stack_rows . . . 20.33.3.43 sub_matrix . . . 20.33.3.44
swap_columns . . . 20.33.3.46 swap_entries . . . 20.33.3.47
swap_rows . . . 20.33.3.48

20.33.1.2 Constructors

Functions that create matrices.
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band_matrix . . . 20.33.3.6 block_matrix . . . 20.33.3.7
char_matrix . . . 20.33.3.8 coeff_matrix . . . 20.33.3.11
companion . . . 20.33.3.13 hessian . . . 20.33.3.22
hilbert . . . 20.33.3.23 mat_jacobian . . . 20.33.3.24
jordan_block . . . 20.33.3.25 make_identity . . . 20.33.3.27
random_matrix . . . 20.33.3.36 toeplitz . . . 20.33.3.50
Vandermonde . . . 20.33.3.52 Kronecker_Product . . . 20.33.3.53

20.33.1.3 High level algorithms

char_poly . . . 20.33.3.9 cholesky . . . 20.33.3.10
gram_schmidt . . . 20.33.3.20 lu_decom . . . 20.33.3.26
pseudo_inverse . . . 20.33.3.35 simplex . . . 20.33.3.41
svd . . . 20.33.3.45 triang_adjoint . . . 20.33.3.51

There is a separate NORMFORM package described in section 20.40 for computing
the following matrix normal forms in REDUCE:

smithex, smithex_int, frobenius, ratjordan, jordansymbolic, jordan.

20.33.1.4 Predicates

matrixp . . . 20.33.3.29 squarep . . . 20.33.3.42
symmetricp . . . 20.33.3.49

Note on examples:

In the examples the matrix A will be

A =

1 2 3
4 5 6
7 8 9


Notation

Throughout I is used to indicate the identity matrix and AT to indicate the trans-
pose of the matrix A.

20.33.2 Getting started

If you have not used matrices within REDUCE before then the following may be
helpful.
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Creating matrices

Initialisation of matrices takes the following syntax:

mat1 := mat((a,b,c),(d,e,f),(g,h,i));

will produce

mat1 :=

a b c
d e f
g h i


Getting at the entries

The (i, j)th entry can be accessed by:

mat1(i,j);

Loading the linear_algebra package

The package is loaded by:

load_package linalg;

20.33.3 What’s available

20.33.3.1 add_columns, add_rows

Syntax:
add_columns(A,c1,c2,expr);
A :- a matrix.
c1, c2 :- positive integers.
expr :- a scalar expression.

Synopsis:
add_columns replaces column c2 of A by
expr ∗ column(A,c1)+ column(A,c2).
add_rows performs the equivalent task on the rows of A.

Examples:

add_columns(A, 1, 2, x) =

1 x+ 2 3
4 4 ∗ x+ 5 6
7 7 ∗ x+ 8 9
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add_rows(A, 2, 3, 5) =

 1 2 3
4 5 6
27 33 39


Related functions:

add_to_columns, add_to_rows, mult_columns, mult_rows.

20.33.3.2 add_rows

See: add_columns.

20.33.3.3 add_to_columns, add_to_rows

Syntax:
add_to_columns(A,column_list,expr);
A :- a matrix.
column_list :- a positive integer or a list of positive integers.
expr :- a scalar expression.

Synopsis:
add_to_columns adds expr to each column specified in column_list of
A.

add_to_rows performs the equivalent task on the rows of A.

Examples:

add_to_columns(A, {1, 2}, 10) =

11 12 3
14 15 6
17 18 9


add_to_rows(A, 2,−x) =

 1 2 3
−x+ 4 −x+ 5 −x+ 6

7 8 9


Related functions:

add_columns, add_rows, mult_rows, mult_columns.

20.33.3.4 add_to_rows

See: add_to_columns.

20.33.3.5 augment_columns, stack_rows

Syntax:
augment_columns(A,column_list);



860 CHAPTER 20. USER CONTRIBUTED PACKAGES

A :- a matrix.
column_list :- either a positive integer or a list of positive integers.

Synopsis:
augment_columns gets hold of the columns of A specified in col-
umn_list and sticks them together.
stack_rows performs the same task on rows of A.

Examples:

augment_columns(A, {1, 2}) =

cc1 2
4 5
7 8


stack_rows(A, {1, 3}) =

(
1 2 3
7 8 9

)
Related functions:

get_columns, get_rows, sub_matrix.

20.33.3.6 band_matrix

Syntax:
band_matrix(expr_list,square_size);

expr_list :- either a single scalar expression or a list of an odd num-
ber of scalar expressions.

square_size :- a positive integer.

Synopsis:
band_matrix creates a square matrix of dimension square_size. The
diagonal consists of the middle expr of the expr_list. The expressions to
the left of this fill the required number of sub-diagonals and the expressions
to the right the super-diagonals.

Examples: band_matrix({x, y, z}, 6) =



y z 0 0 0 0
x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z
0 0 0 0 x y


Related functions:

diagonal.
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20.33.3.7 block_matrix

Syntax:
block_matrix(r,c,matrix_list);

r, c :- positive integers.
matrix_list :- a list of matrices.

Synopsis:
block_matrix creates a matrix that consists of r× c matrices filled from
the matrix_list row-wise.

Examples:

B =

(
1 0
0 1

)
, C =

(
5
5

)
, D =

(
22 33
44 55

)

block_matrix(2, 3, {B, C,D,D, C,B}) =


1 0 5 22 33
0 1 5 44 55
22 33 5 1 0
44 55 5 0 1


20.33.3.8 char_matrix

Syntax:
char_matrix(A, λ);
A :- a square matrix.
λ :- a symbol or algebraic expression.

Synopsis:
char_matrix creates the characteristic matrix C of A. This is C = λI −
A.

Examples: char_matrix(A, x) =

x− 1 −2 −3
−4 x− 5 −6
−7 −8 x− 9


Related functions:

char_poly.

20.33.3.9 char_poly

Syntax:
char_poly(A, λ);
A :- a square matrix.
λ :- a symbol or algebraic expression.
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Synopsis:
char_poly finds the characteristic polynomial of A.

This is the determinant of λI − A.

Examples:
char_poly(A, x) = x3 − 15 ∗ x2 − 18 ∗ x

Related functions:
char_matrix.

20.33.3.10 cholesky

Syntax:
cholesky(A);

A :- a positive definite matrix containing numeric entries.

Synopsis:
cholesky computes the cholesky decomposition of A.

It returns {L,U} where L is a lower matrix, U is an upper matrix,
A = LU , and U = LT .

Examples:

F =

1 1 0
1 3 1
0 1 1



cholesky(F) =


1 0 0

1
√
2 0

0 1√
2

1√
2

 ,

1 1 0

0
√
2 1√

2

0 0 1√
2




Related functions:
lu_decom.

20.33.3.11 coeff_matrix

Syntax:
coeff_matrix({lin_eqn1,lin_eqn2, ...,lin_eqnn}); 27

lin_eqn1,lin_eqn2, . . . ,lin_eqnn :- linear equations. Can be of the
form equation = number or just
equation which is equivalent to
equation = 0.

27If you’re feeling lazy then the {}’s can be omitted.
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Synopsis:
coeff_matrix creates the coefficient matrix C of the linear equations. It
returns {C,X ,B} such that CX = B.

Examples:
coeff_matrix({x+ y + 4 ∗ z = 10, y + x− z = 20, x+ y + 4}) =
 4 1 1
−1 1 1
0 1 1

 ,

zy
x

 ,

10
20
−4


20.33.3.12 column_dim, row_dim

Syntax:
column_dim(A);

A :- a matrix.

Synopsis:
column_dim finds the column dimension of A.
row_dim finds the row dimension of A.

Examples:
column_dim(A) = 3

20.33.3.13 companion

Syntax:
companion(poly,x);

poly :- a monic univariate polynomial in x.
x :- the variable.

Synopsis:
companion creates the companion matrix C of poly.

This is the square matrix of dimension n, where n is the degree of poly
w.r.t. x. The entries of C are: C(i, n) = −coeffn(poly, x, i − 1) for
i = 1, . . . , n, C(i, i− 1) = 1 for i = 2, . . . , n and the rest are 0.

Examples: companion(x4 + 17 ∗ x3 − 9 ∗ x2 + 11, x) =


0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17


Related functions:

find_companion.
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20.33.3.14 copy_into

Syntax:
copy_into(A,B,r,c);
A,B :- matrices.
r, c :- positive integers.

Synopsis:
copy_into copies matrix A into B with A(1, 1) at B(r, c).

Examples:

G =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



copy_into(A,G, 1, 2) =


0 1 2 3
0 4 5 6
0 7 8 9
0 0 0 0


Related functions:

augment_columns, extend, matrix_augment, matrix_stack,
stack_rows, sub_matrix.

20.33.3.15 diagonal

Syntax:
diagonal({mat1,mat2, ...,matn});28

mat1,mat2, . . . ,matn :- each can be either a scalar expr or a square
matrix.

Synopsis:
diagonal creates a matrix that contains the input on the diagonal.

Examples:

H =

(
66 77
88 99

)

diagonal({A, x,H}) =



1 2 3 0 0 0
4 5 6 0 0 0
7 8 9 0 0 0
0 0 0 x 0 0
0 0 0 0 66 77
0 0 0 0 88 99


28If you’re feeling lazy then the {}’s can be omitted.
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Related functions:
jordan_block.

20.33.3.16 extend

Syntax:
extend(A,r,c,expr);
A :- a matrix.
r, c :- positive integers.
expr :- algebraic expression or symbol.

Synopsis:
extend returns a copy of A that has been extended by r rows and c
columns. The new entries are made equal to expr.

Examples: extend(A, 1, 2, x) =


1 2 3 x x
4 5 6 x x
7 8 9 x x
x x x x x


Related functions:

copy_into, matrix_augment, matrix_stack, remove_columns,
remove_rows.

20.33.3.17 find_companion

Syntax:
find_companion(A,x);
A :- a matrix.
x :- the variable.

Synopsis:
Given a companion matrix, find_companion finds the polynomial from
which it was made.

Examples:

C =


0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17


find_companion(C, x) = x4 + 17 ∗ x3 − 9 ∗ x2 + 11

Related functions:
companion.
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20.33.3.18 get_columns, get_rows

Syntax:
get_columns(A,column_list);
A :- a matrix.
c :- either a positive integer or a list of positive integers.

Synopsis:
get_columns removes the columns ofA specified in column_list and
returns them as a list of column matrices.

get_rows performs the same task on the rows of A.

Examples:

get_columns(A, {1, 3}) =


1
4
7

 ,

3
6
9


get_rows(A, 2) =

{(
4 5 6

)}
Related functions:

augment_columns, stack_rows, sub_matrix.

20.33.3.19 get_rows

See: get_columns.

20.33.3.20 gram_schmidt

Syntax:
gram_schmidt({vec1,vec2, ...,vecn}); 29

vec1,vec2, . . . ,vecn :- linearly-independent vectors. Each vector must
be written as a list, eg:{1,0,0}.

Synopsis:
gram_schmidt performs the Gram-Schmidt orthonormalisation on the in-
put vectors. It returns a list of orthogonal normalised vectors.

Examples:
gram_schmidt({{1,0,0},{1,1,0},{1,1,1}}) =

{{1,0,0},{0,1,0},{0,0,1}}

gram_schmidt({{1,2},{3,4}}) = {{ 1√
5
,
2√
5
}, {2 ∗

√
5

5
,
−
√
5

5
}}

29If you’re feeling lazy then the {}’s can be omitted.
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20.33.3.21 hermitian_tp

Syntax:
hermitian_tp(A);

A :- a matrix.

Synopsis:
hermitian_tp computes the hermitian transpose of A.

This is a matrix in which the (i, j)th entry is the conjugate of the (j, i)th
entry of A.

Examples:

J =

i+ 1 i+ 2 i+ 3
4 5 2
1 i 0


hermitian_tp(J ) =

−i+ 1 4 1
−i+ 2 5 −i
−i+ 3 2 0


Related functions:

tp30.

20.33.3.22 hessian

Syntax:
hessian(expr,variable_list);

expr :- a scalar expression.
variable_list :- either a single variable or a list of variables.

Synopsis:
hessian computes the hessian matrix of expr w.r.t. the varibles in
variable_list.

This is an n × n matrix where n is the number of variables and the (i, j)th
entry is df(expr,variable_list(i),variable_list(j)).

Examples: hessian(x ∗ y ∗ z + x2, {w, x, y, z}) =


0 0 0 0
0 2 z y
0 z 0 x
0 y x 0


Related functions:

df31.
30standard reduce call for the transpose of a matrix - see section 14.4.
31standard reduce call for differentiation - see section 7.7.
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20.33.3.23 hilbert

Syntax:
hilbert(square_size,expr);

square_size :- a positive integer.
expr :- an algebraic expression.

Synopsis:
hilbert computes the square hilbert matrix of dimension square_size.

This is the symmetric matrix in which the (i, j)th entry is 1/(i+ j−expr).

Examples: hilbert(3, y + x) =


−1

x+y−2
−1

x+y−3
−1

x+y−4
−1

x+y−3
−1

x+y−4
−1

x+y−5
−1

x+y−4
−1

x+y−5
−1

x+y−6


20.33.3.24 jacobian

Syntax:
mat_jacobian(expr_list,variable_list);

expr_list :- either a single algebraic expression or a list of algebraic
expressions.

variable_list :- either a single variable or a list of variables.

Synopsis:
mat_jacobian computes the jacobian matrix of expr_list w.r.t.
variable_list. This is a matrix whose entry at position (i, j) is
df(expr_list(i),variable_list(j)). The matrix is n × m
where n is the number of variables and m the number of expressions.

Examples:
mat_jacobian({x4, x ∗ y2, x ∗ y ∗ z3}, {w, x, y, z}) =0 4 ∗ x3 0 0
0 y2 2 ∗ x ∗ y 0
0 y ∗ z3 x ∗ z3 3 ∗ x ∗ y ∗ z2


Related functions:

hessian, df32.

NOTE: The function mat_jacobian used to be called just "jacobian"
however us of that name was in conflict with another Reduce package.

32standard reduce call for differentiation - see section 7.7.
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20.33.3.25 jordan_block

Syntax:
jordan_block(expr,square_size);

expr :- an algebraic expression or symbol.
square_size :- a positive integer.

Synopsis:
jordan_block computes the square jordan block matrix J of dimension
square_size.

The entries of J are: J (i, i) = expr for i = 1, . . . , n, J (i, i+ 1) = 1 for
i = 1, . . . , n− 1, and all other entries are 0.

Examples: jordan_block(x,5) =


x 1 0 0 0
0 x 1 0 0
0 0 x 1 0
0 0 0 x 1
0 0 0 0 x


Related functions:

diagonal, companion.

20.33.3.26 lu_decom

Syntax:
lu_decom(A);
A :- a matrix containing either numeric entries or imaginary entries

with numeric coefficients.
Synopsis:

lu_decom performs LU decomposition on A, ie: it returns {L,U} where
L is a lower diagonal matrix, U an upper diagonal matrix and A = LU .

Caution: The algorithm used can swap the rows ofA during the calculation.
This means that LU does not equal A but a row equivalent of it. Due to this,
lu_decom returns {L,U ,vec}. The call convert(A,vec) will return
the matrix that has been decomposed, ie: LU = convert(A,vec).

Examples: K =

 1 3 5
−4 3 7
8 6 4


lu := lu_decom(K) =

 8 0 0
−4 6 0
1 2.25 1.1251

 ,

1 0.75 0.5
0 1 1.5
0 0 1

 , [ 3 2 3 ]
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first lu * second lu =

 8 6 4
−4 3 7
1 3 5


convert(K,third lu) =

 8 6 4
−4 3 7
1 3 5


P =

i+ 1 i+ 2 i+ 3
4 5 2
1 i 0



lu := lu_decom(P) =


 1 0 0

4 −4 ∗ i+ 5 0
i+ 1 3 0.41463 ∗ i+ 2.26829

 ,

1 i 0
0 1 0.19512 ∗ i+ 0.24390
0 0 1

 , [ 3 2 3 ]


first lu * second lu =

 1 i 0
4 5 2

i+ 1 i+ 2 i+ 3


convert(P, thirdlu) =

 1 i 0
4 5 2

i+ 1 i+ 2 i+ 3


Related functions:

cholesky.

20.33.3.27 make_identity

Syntax:
make_identity(square_size);

square_size :- a positive integer.

Synopsis:
make_identity creates the identity matrix of dimension square_size.

Examples: make_identity(4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Related functions:

diagonal.
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20.33.3.28 matrix_augment, matrix_stack

Syntax:
matrix_augment({mat1,mat2, ...,matn});33

mat1,mat2, . . . ,matn :- matrices.

Synopsis:
matrix_augment sticks the matrices in matrix_list together hori-
zontally.

matrix_stack sticks the matrices in matrix_list together vertically.

Examples:

matrix_augment({A,A}) =

1 2 3 1 2 3
4 4 6 4 5 6
7 8 9 7 8 9



matrix_stack({A,A}) =



1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 8 9


Related functions:

augment_columns, stack_rows, sub_matrix.

20.33.3.29 matrixp

Syntax:
matrixp(test_input);

test_input :- anything you like.

Synopsis:
matrixp is a boolean function that returns t if the input is a matrix and nil
otherwise.

Examples:
matrixp(A) = t

matrixp(doodlesackbanana) = nil

Related functions:
squarep, symmetricp.

33If you’re feeling lazy then the {}’s can be omitted.
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20.33.3.30 matrix_stack

See: matrix_augment.

20.33.3.31 minor

Syntax:
minor(A,r,c);
A :- a matrix.
r, c :- positive integers.

Synopsis:
minor computes the (r, c)th minor of A.

This is created by removing the rth row and the cth column from A.

Examples: minor(A, 1, 3) =
(
4 5
7 8

)
Related functions:

remove_columns, remove_rows.

20.33.3.32 mult_columns, mult_rows

Syntax:
mult_columns(A,column_list,expr);
A :- a matrix.
column_list :- a positive integer or a list of positive integers.
expr :- an algebraic expression.

Synopsis:
mult_columns returns a copy of A in which the columns specified in
column_list have been multiplied by expr.

mult_rows performs the same task on the rows of A.

Examples:

mult_columns(A, {1, 3}, x) =

 x 2 3 ∗ x
4 ∗ x 5 6 ∗ x
7 ∗ x 8 9 ∗ x


mult_rows(A, 2, 10) =

 1 2 3
40 50 60
7 8 9


Related functions:

add_to_columns, add_to_rows.
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20.33.3.33 mult_rows

See: mult_columns.

20.33.3.34 pivot

Syntax:
pivot(A,r,c);
A :- a matrix.
r, c :- positive integers such that A(r, c) ̸= 0.

Synopsis:
pivot pivots A about its (r, c)th entry.

To do this, multiples of the r’th row are added to every other row in the
matrix.

This means that the c’th column will be 0 except for the (r,c)’th entry.

Examples: pivot(A, 2, 3) =

−1 −0.5 0
4 5 6
1 0.5 0


Related functions:

rows_pivot.

20.33.3.35 pseudo_inverse

Syntax:
pseudo_inverse(A);

A :- a matrix containing only real numeric entries.

Synopsis:
pseudo_inverse, also known as the Moore-Penrose inverse, computes
the pseudo inverse of A.

Given the singular value decomposition of A, i.e: A = UΣVT , then the
pseudo inverse A† is defined by A† = VΣ†UT . For the diagonal matrix
Σ, the pseudoinverse Σ† is computed by taking the reciprocal of only the
nonzero diagonal elements.

If A is square and non-singular, then A† = A. In general, however,
AA†A = A, and A†AA† = A†.

Perhaps more importantly, A† solves the following least-squares problem:
given a rectangular matrixA and a vector b, find the xminimizing ∥Ax−b∥2,
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and which, in addition, has minimum ℓ2 (euclidean) Norm, ∥x∥2. This x is
A†b.

Examples:

R =

(
1 2 3 4
9 8 7 6

)
, pseudo_inverse(R) =


−0.2 0.1
−0.05 0.05
0.1 0
0.25 −0.05


Related functions:

svd.

20.33.3.36 random_matrix

Syntax:
random_matrix(r,c,limit);

r, c, limit :- positive integers.

Synopsis:
random_matrix creates an r× c matrix with random entries in the range
−limit < entry < limit.

Switches:
imaginary :- if on, then matrix entries are x + iy where

−limit < x, y < limit.
not_negative :- if on then 0 < entry < limit. In the imaginary

case we have 0 < x, y < limit.
only_integer :- if on then each entry is an integer. In the imagi-

nary case x, y are integers.
symmetric :- if on then the matrix is symmetric.
upper_matrix :- if on then the matrix is upper triangular.
lower_matrix :- if on then the matrix is lower triangular.

Examples:

random_matrix(3, 3, 10) =

−4.729721 6.987047 7.521383
−5.224177 5.797709 −4.321952
−9.418455 −9.94318 −0.730980


on only_integer, not_negative, upper_matrix, imaginary;
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random_matrix(4, 4, 10) =
2 ∗ i+ 5 3 ∗ i+ 7 7 ∗ i+ 3 6

0 2 ∗ i+ 5 5 ∗ i+ 1 2 ∗ i+ 1
0 0 8 i
0 0 0 5 ∗ i+ 9


20.33.3.37 remove_columns, remove_rows

Syntax:
remove_columns(A,column_list);
A :- a matrix.
column_list :- either a positive integer or a list of positive integers.

Synopsis:
remove_columns removes the columns specified in column_list from A.

remove_rows performs the same task on the rows of A.

Examples:

remove_columns(A, 2) =

1 3
4 6
7 9


remove_rows(A, {1, 3}) =

(
4 5 6

)
Related functions:

minor.

20.33.3.38 remove_rows

See: remove_columns.

20.33.3.39 row_dim

See: column_dim.

20.33.3.40 rows_pivot

Syntax:
rows_pivot(A,r,c,{row_list});
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A :- a matrix.
r,c :- positive integers such that A(r,c) neq 0.
row_list :- positive integer or a list of positive integers.

Synopsis:
rows_pivot performs the same task as pivot but applies the pivot only
to the rows specified in row_list.

Examples:

N =


1 2 3
4 5 6
7 8 9
1 2 3
4 5 6



rows_pivot(N , 2, 3, {4, 5}) =


1 2 3
4 5 6
7 8 9

−0.75 0 0.75
−0.375 0 0.375


Related functions:

pivot.

20.33.3.41 simplex

Syntax: simplex(〈max/min〉,〈objective function〉,{〈linear inequalities〉},
[{〈bounds〉}] )

〈max/min〉 :- either max or min (signifying maximise and
minimise).

〈objective function〉 :- the function you are maximising or minimising.
〈linear inequalities〉 :- the constraint inequalities. Each one must be

of the form 〈linear combination of variables〉
〈compop〉 〈number〉 where 〈compop〉 is one of
<=, =, >=.

〈bounds〉 :- bounds on the variables as specified for the LP
file format. Each bound has one of the forms
l ≤ v, v ≤ u, or l ≤ v ≤ u, where v is a
variable and l, u are numbers or infinity or
-infinity.

Synopsis:
simplex applies the revised simplex algorithm to find the optimal (either
maximum or minimum) value of the objective function under the linear in-
equality constraints.
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It returns {optimal value, {values of variables at this optimum}}.

The {bounds} argument is optional and admissible only when the switch
fastsimplex is on, which is the default. Without a {bounds} argument,
the algorithm assumes that all the variables are non-negative.

By default, simplex throws an error if a problem has no feasible solution.
However, if the switch noerrsimplex is turned on (it is off by default)
then simplex returns the empty list {}, which facilitates use of simplex
as a subroutine within other code.

Examples: (assuming on rounded)

simplex(max, 10x+5y+5.5z,
{5x+3z<=200,0.2x+0.1y+0.5z<=12,
0.1x+0.2y+0.3z<=9,30x+10y+50z<=1500});

{525.0,{x = 40.0,y = 25.0,z = 0}}

simplex(max, x+y, {x>=10,y>=20,x+y<=25});

***** Error in simplex: Problem has no feasible
solution.

on noerrsimplex;

simplex(max, x+y, {x>=10,y>=20,x+y<=25});

{}

20.33.3.42 squarep

Syntax:
squarep(A);

A :- a matrix.

Synopsis:
squarep is a boolean function that returns t if the matrix is square and nil
otherwise.

Examples:
L =

(
1 3 5

)
squarep(A) = t

squarep(L) = nil
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Related functions:
matrixp, symmetricp.

20.33.3.43 stack_rows

See: augment_columns.

20.33.3.44 sub_matrix

Syntax:
sub_matrix(A,row_list,column_list);
A :- a matrix.
row_list, column_list :- either a positive integer or a list of positive in-

tegers.

Synopsis:
sub_matrix produces the matrix consisting of the intersection of the rows
specified in row_list and the columns specified in column_list.

Examples: sub_matrix(A, {1, 3}, {2, 3}) =
(
2 3
8 9

)
Related functions:

augment_columns, stack_rows.

20.33.3.45 svd (singular value decomposition)

Syntax:
svd(A);

A :- a matrix containing only real numeric entries.

Synopsis:
svd computes the singular value decomposition of A. If A is an m× n real
matrix of (column) rank r, svd returns the 3-element list {U ,Σ,V} where
A = UΣVT .

Let k = min(m,n). Then U is m × k, V is n × k, and and Σ =
diag(σ1, . . . , σk), where σi ≥ 0 are the singular values of A; only r of
these are non-zero. The singular values are the non-negative square roots of
the eigenvalues of ATA.

U and V are such that UUT = VVT = VTV = Ik.

Note: there are a number of different definitions of SVD in the literature, in
some of which Σ is square and U and V rectangular, as here, but in others U
and V are square, and Σ is rectangular.
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Examples:

Q =

 1 3
−4 3
3 6


svd(Q) =


0.0236042 0.419897
−0.969049 0.232684
0.245739 0.877237

 ,

(
4.83288 0

0 7.52618

)
,

(
0.959473 0.281799
−0.281799 0.959473

)}

svd(TP(Q)) =
{(

0.959473 0.281799
−0.281799 0.959473

)
,

(
4.83288 0

0 7.52618

)
,0.0236042 0.419897

−0.969049 0.232684
0.245739 0.877237


20.33.3.46 swap_columns, swap_rows

Syntax:
swap_columns(A,c1,c2);
A :- a matrix.
c1,c1 :- positive integers.

Synopsis:
swap_columns swaps column c1 of A with column c2.

swap_rows performs the same task on 2 rows of A.

Examples: swap_columns(A, 2, 3) =

1 3 2
4 6 5
7 9 8


Related functions:

swap_entries.

20.33.3.47 swap_entries

Syntax:
swap_entries(A,{r1,c1},{r2,c2});
A :- a matrix.
r1,c1,r2,c2 :- positive integers.

Synopsis:
swap_entries swaps A(r1,c1) with A(r2,c2).
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Examples: swap_entries(A, {1, 1}, {3, 3}) =

9 2 3
4 5 6
7 8 1


Related functions:

swap_columns, swap_rows.

20.33.3.48 swap_rows

See: swap_columns.

20.33.3.49 symmetricp

Syntax:
symmetricp(A);

A :- a matrix.

Synopsis:
symmetricp is a boolean function that returns t if the matrix is symmetric
and nil otherwise.

Examples:

M =

(
1 2
2 1

)
symmetricp(A) = nil symmetricp(M) = t

Related functions:
matrixp, squarep.

20.33.3.50 toeplitz

Syntax:
toeplitz({expr1,expr2, ...,exprn}); 34

expr1,expr2, . . . ,exprn :- algebraic expressions.

Synopsis:
toeplitz creates the toeplitz matrix from the expression list.

This is a square symmetric matrix in which the first expression is placed on
the diagonal and the i’th expression is placed on the (i-1)’th sub and super
diagonals.

It has dimension n where n is the number of expressions.
34If you’re feeling lazy then the {}’s can be omitted.
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Examples: toeplitz({w, x, y, z}) =


w x y z
x w x y
y x w x
z y x w


20.33.3.51 triang_adjoint

Syntax:
triang_adjoint(A);

A :- a matrix.

Synopsis: triang_adjoint computes the triangularizing adjoint F of matrix
A due to the algorithm of Arne Storjohann. F is lower triangular matrix and
the resulting matrix T of F ∗ A = T is upper triangular with the property
that the i-th entry in the diagonal of T is the determinant of the principal i-th
submatrix of the matrix A.

Examples:

triang_adjoint(A) =

 1 0 0
−4 1 0
−3 6 −3


F ∗ A =

1 2 3
0 −3 −6
0 0 0


20.33.3.52 Vandermonde

Syntax:
vandermonde({expr1,expr2, . . . ,exprn}); 35

expr1,expr2, . . . ,exprn :- algebraic expressions.

Synopsis:
Vandermonde creates the Vandermonde matrix from the expression list.
This is the square matrix in which the (i, j)th entry is expr(j−1)

i . It has
dimension n, where n is the number of expressions.

Examples: vandermonde({x, 2 ∗ y, 3 ∗ z}) =

1 x x2

1 2 ∗ y 4 ∗ y2
1 3 ∗ z 9 ∗ z2


35If you’re feeling lazy then the {}’s can be omitted.
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20.33.3.53 kronecker_product

Syntax:
kronecker_product(M1,M2)

M1,M2 :- Matrices

Synopsis:
kronecker_product creates a matrix containing the Kronecker product
(also called direct product or tensor product) of its arguments.

Examples: a1 := mat((1,2),(3,4),(5,6))$
a2 := mat((1,1,1),(2,z,2),(3,3,3))$
kronecker_product(a1,a2);



1 1 1 2 2 2
2 z 2 4 2 ∗ z 4
3 3 3 6 6 6
3 3 3 4 4 4
6 3 ∗ z 6 8 4 ∗ z 8
9 9 9 12 12 12
5 5 5 6 6 6
10 5 ∗ z 10 12 6 ∗ z 12
15 15 15 18 18 18
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20.34 LISTVECOPS: Vector Operations on Lists

Author: Eberhard Schrüfer

This package implements vector operations on lists. Addition, multiplication, di-
vision, and exponentiation work elementwise. For example, after

A := {a1,a2,a3,a4};
B := {b1,b2,b3,b4};

c*A will simplify to {c*a1,..,c*a4}, A + B to {a1+b1,...,a4+b4},
and A*B to {a1*b1,...,a4*b4}. Linear operations work as expected:

c1*A + c2*B;

{a1*c1 + b1*c2,

a2*c1 + b2*c2,

a3*c1 + b3*c2,

a4*c1 + b4*c2}

A division and an exponentation example:

{a,b,c}/{3,g,5};

a b c
{---,---,---}

3 g 5

ws^3;

3 3 3
a b c

{----,----,-----}
27 3 125

g

The new operator *. (ldot) implements the dot product:

{a,b,c,d} *. {5,7,9,11/d};

5*a + 7*b + 9*c + 11
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For accessing list elements, the new operator _ (lnth) can be used instead of the
PART operator. Note that the infix operator _ must be separated from the name of
the list variable to which it is applied, otherwise REDUCE will treat the list name
and operator as parts of a single identifier.

l := {1,{2,3},4}$

lnth(l,3);

4

l _2*3;

{6,9}

l _2 _2;

3

It can also be used to modify a list (unlike PART, which returns a modified list):

part(l,2,2):=three;

{1,{2,three},4}

l;

{1,{2,3},4}

l _ 2 _2 :=three;

three

l;

{1,{2,three},4}

Operators are distributed over lists:

a *. log b;

log(b1)*a1 + log(b2)*a2 + log(b3)*a3 + log(b4)*a4

df({sin x*y,x^3*cos y},x,2,y);
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{ - sin(x), - 6*sin(y)*x}

int({sin x,cos x},x);

{ - cos(x),sin(x)}

Finally, here are two examples of using vector operations on lists within procedures
that return lists:

listproc normalize v;
v / sqrt(v *. v);

listproc spat3(u,v,w);
begin scalar x,y;
x := u *. w;
y := u *. v;
return v*x - w*y

end;
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20.35 LPDO: Linear Partial Differential Operators

Author: Thomas Sturm

20.35.1 Introduction

Consider the field F = Q(x1, . . . , xn) of rational functions and a set ∆ =
{∂x1 ,. . . , ∂xn} of commuting derivations acting on F . That is, for all ∂xi , ∂xj ∈ ∆
and all f , g ∈ F the following properties are satisfied:

∂xi(f + g) = ∂xi(f) + ∂xi(g),

∂xi(f · g) = f · ∂xi(g) + ∂xi(f) · g, (20.91)

∂xi(∂xj (f)) = ∂xj (∂xi(f)). (20.92)

Consider now the set F [∂x1 , . . . , ∂xn ], where the derivations are used as variables.
This set forms a non-commutative linear partial differential operator ring with
pointwise addition, and multiplication defined as follows: For f ∈ F and ∂xi ,
∂xj ∈ ∆ we have for any g ∈ F that

(f∂xi)(g) = f · ∂xi(g),

(∂xif)(g) = ∂xi(f · g), (20.93)

(∂xi∂xj )(g) = ∂xi(∂xj (g)). (20.94)

Here “ · ” denotes the multiplication in F . From (20.94) and (20.92) it follows that
∂xi∂xj = ∂xj∂xi , and using (20.93) and (20.91) the following commutator can be
proved:

∂xif = f∂xi + ∂xi(f).

A linear partial differential operator (LPDO) of order k is an element

D =
∑
|j|≤k

aj∂
j ∈ F [∂x1 , . . . , ∂xn ]

in canonical form. Here the expression |j| ≤ k specifies the set of all tuples of the
form j = (j1, . . . , jn) ∈ Nn with

∑n
i=1 ji ≤ k, and we define ∂j = ∂j1x1 · · · ∂

jn
xn .

A factorization of D is a non-trivial decomposition

D = D1 · · ·Dr ∈ F [∂x1 , . . . , ∂xn ]

into multiplicative factors, each of which is an LPDODi of order greater than 0 and
less than k. If such a factorization exists, then D is called reducible or factorable,
else irreducible.
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For the purpose of factorization it is helpful to temporarily consider as regular
commutative polynomials certain summands of the LPDO under consideration.
Consider a commutative polynomial ring over F in new indeterminates y1, . . . , yn.
Adopting the notational conventions above, for m ≤ k the symbol of D of order m
is defined as

Symm(D) =
∑
|j|=m

ajy
j ∈ F [y1, . . . , yn].

For m = k we obtain as a special case the symbol Sym(D) of D.

20.35.2 Operators

20.35.2.1 partial

There is a unary operator partial(·) denoting ∂.

⟨partial-term⟩ → partial ( ⟨id⟩ )

20.35.2.2 ***

There is a binary operator *** for the non-commutative multiplication involving
partials ∂x. All expressions involving *** are implicitly transformed into LPDOs,
i.e., into the following normal form:

⟨normalized-lpdo⟩ → ⟨normalized-mon⟩ [ + ⟨normalized-lpdo⟩ ]
⟨normalized-mon⟩ → ⟨F-element⟩ [ *** ⟨partial-termprod⟩ ]
⟨partial-termprod⟩ → ⟨partial-term⟩ [ *** ⟨partial-termprod⟩ ]

The summands of the normalized-lpdo are ordered in some canonical way. As an
example consider

input: a()***partial(y)***b()***partial(x);

(a()*b()) *** partial(x) *** partial(y)
+ (a()*diff(b(),y,1)) *** partial(x)

Here the F-elements are polynomials, where the unknowns are of the type constant-
operator denoting functions from F :

⟨constant-operator⟩ → ⟨id⟩ ( )

We do not admit division of such constant operators since we cannot exclude that
such a constant operator denotes 0.
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The operator notation on the one hand emphasizes the fact that the denoted el-
ements are functions. On the other hand it distinguishes a() from the variable
a of a rational function, which specifically denotes the corresponding projection.
Consider e.g.

input: (x+y)***partial(y)***(x-y)***partial(x);

2 2
(x - y ) *** partial(x) *** partial(y) + ( - x - y) *** partial(x)

Here we use as F-elements specific elements from F = Q(x, y).

20.35.2.3 diff

In our example with constant operators, the transformation into normal form in-
troduces a formal derivative operation diff(·,·,·), which cannot be evaluated.
Notice that we do not use the Reduce operator df(·,·,·) here, which for technical
reasons cannot smoothly handle our constant operators.

In our second example with rational functions as F-elements, derivative occurring
with commutation can be computed such that diff does not occur in the output.

20.35.3 Shapes of F-elements

Besides the generic computations with constant operators, we provide a mechanism
to globally fix a certain shape for F-elements and to expand constant operators
according to that shape.

20.35.3.1 lpdoset

We give an example for a shape that fixes all constant operators to denote generic
bivariate affine linear functions:

input: d := (a()+b())***partial(x1)***partial(x2)**2;

2
d := (a() + b()) *** partial(x1) *** partial(x2)

input: lpdoset {!#10*x1+!#01*x2+!#00,x1,x2};

{-1}

input: d;

(a00 + a01*x2 + a10*x1 + b00 + b01*x2 + b10*x1)
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2

*** partial(x1) *** partial(x2)

Notice that the placeholder # must be escaped with !, which is a general conven-
tion for Rlisp/Reduce. Notice that lpdoset returns the old shape and that {-1}
denotes the default state that there is no shape selected.

20.35.3.2 lpdoweyl

The command lpdoweyl {n,x1,x2,...} creates a shape for generic poly-
nomials of total degree n in variables x1, x2, . . . .

input: lpdoweyl(2,x1,x2);

2
{#_00_ + #_01_*x2 + #_02_*x2 + #_10_*x1

2
+ #_11_*x1*x2 + #_20_*x1 ,x1,x2}

input: lpdoset ws;

{#10*x1 + #01*x2 + #00,x1,x2}

input: d;

2
(a_00_ + a_01_*x2 + a_02_*x2 + a_10_*x1

2
+ a_11_*x1*x2 + a_20_*x1 + b_00_ + b_01_*x2

2 2
+ b_02_*x2 + b_10_*x1 + b_11_*x1*x2 + b_20_*x1

2
) *** partial(x1) *** partial(x2)

20.35.4 Commands

20.35.4.1 General

lpdoord

The order of an lpdo:

input: lpdoord((a()+b())***partial(x1)



890 CHAPTER 20. USER CONTRIBUTED PACKAGES

***partial(x2)**2+3***partial(x1));

3

lpdoptl

Returns the list of derivations (partials) occurring in its argument LPDO d.

input: lpdoptl(a()***partial(x1)***partial(x2)
+partial(x4)+diff(a(),x3,1));

{partial(x1),partial(x2),partial(x4)}

That is the smallest set {. . . , ∂xi , . . . } such that d is defined in F [. . . , ∂xi , . . . ].
Notice that formal derivatives are not derivations in that sense.

lpdogp

Given a starting symbol a, a list of variables l, and a degree n, lpdogp(a,l,n)
generates a generic (commutative) polynomial of degree n in variables l with co-
efficients generated from the starting symbol a:

input: lpdogp(a,{x1,x2},2);

2 2
a_00_ + a_01_*x2 + a_02_*x2 + a_10_*x1 + a_11_*x1*x2 + a_20_*x1

lpdogdp

Given a starting symbol a, a list of variables l, and a degree n, lpdogp(a,l,n)
generates a generic differential polynomial of degree n in variables l with coeffi-
cients generated from the starting symbol a:

input: lpdogdp(a,{x1,x2},2);

2 2
a_20_ *** partial(x1) + a_02_ *** partial(x2)

+ a_11_ *** partial(x1) *** partial(x2) + a_10_ *** partial(x1)

+ a_01_ *** partial(x2) + a_00_
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20.35.4.2 Symbols

lpdosym

The symbol of an lpdo. That is the differential monomial of highest order with the
partials replaced by corresponding commutative variables:

input: lpdosym((a()+b())***partial(x1)***partial(x2)**2
+3***partial(x1));

2
y_x1_*y_x2_ *(a() + b())

More generally, one can use a second optional arguments to specify a the order of
a different differential monomial to form the symbol of:

input: lpdosym((a()+b())***partial(x1)***partial(x2)**2
+3***partial(x1),1);

3*y_x1_

Finally, a third optional argument can be used to specify an alternative starting sym-
bol for the commutative variable, which is y by default. Altogether, the optional
arguments default like lpdosym(·)=lpdosym(·,lpdoord(·),y).

lpdosym2dp

This converts a symbol obtained via lpdosym back into an LPDO resulting in the
corresponding differential monomial of the original LPDO.

input: d := a()***partial(x1)***partial(x2)+partial(x3)$

input: s := lpdosym d;

s := a()*y_x1_*y_x2_

input: lpdosym2dp s;

a() *** partial(x1) *** partial(x2)

In analogy to lpdosym there is an optional argument for specifying an alternative
starting symbol for the commutative variable, which is y by default.
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lpdos

Given LPDOs p, q and m ∈ N the function lpdos(p,q,m) computes the com-
mutative polynomial

Sm =
∑
|j|=m
|j|<k

(
n∑

i=1

pi∂i(qj) + p0qj

)
yj .

This is useful for the factorization of LPDOs.

input: p := a()***partial(x1)+b()$

input: q := c()***partial(x1)+d()***partial(x2)$

input: lpdos(p,q,1);

a()*diff(c(),x1,1)*y_x1_ + a()*diff(d(),x1,1)*y_x2_ + b()*c()*y_x1_

+ b()*d()*y_x2_

20.35.4.3 Factorization

lpdofactorize

Factorize the argument LPDO d. The ground field F must be fixed via lpdoset.
The result is a list of lists {. . . , (Ai, Li), . . . }. Ai is is genrally the identifiers
true, which indicates reducibility. The respective Li is a list of two differential
polynomial factors, the first of which has order 1.

input: bk := (partial(x)+partial(y)+(a10-a01)/2) ***
(partial(x)-partial(y)+(a10+a01)/2);

2 2
bk := partial(x) - partial(y) + a10*partial(x)

2 2
- a01 + a10

+ a01*partial(y) + ----------------
4

input: lpdoset lpdoweyl(1,x,y);

{#_00_ + #_01_*y + #_10_*x,x,y}

input: lpdofactorize bk;

{{true,
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a01 - a10
{ - partial(x) - partial(y) + -----------,

2

- a01 - a10
- partial(x) + partial(y) + --------------}}}

2

If the result is the empty list, then this guarantees that there is no approximate fac-
torization possible. In general it is possible to obtain several sample factorizations.
Note, however, that the result does not provide a complete list of possible factor-
izations with a left factor of order 1 but only at least one such sample factorization
in case of reducibility.

Furthermore, the procedure might fail due to polynomial degrees exceeding cer-
tain bounds for the extended quantifier elimination by virtual substitution used in-
ternally. In this case there is the identifier failed returned. This must not be
confused with the empty list indicating irreducibility as described above.

Besides

1. the LPDO d,

lpdofactorize accepts several optional arguments:

2. An LPDO of order 1, which serves as a template for the left (linear) factor.
The default is a generic linear LPDO with generic coefficient functions ac-
cording from the ground field specified via lpdoset. The principle idea is
to support the factorization by guessing that certain differential monomials
are not present.

3. An LPDO of order ord(d)−1, which serves as a template for the right factor.
Similarly to the previous argument the default is fully generic.

lpdofac

This is a low-level entry point to the factorization lpdofactorize. It accepts
the same arguments as lpdofactorize. It generates factorization conditions
as a quite large first-order formula over the reals. This can be passed to ex-
tended quantifier elimination. For example, consider bk as in the example for
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lpdofactorize above:

input: faccond := lpdofac bk$

input: rlqea faccond;

{{true,

a01 - a10
{p_00_00_ = -----------,

2

p_00_01_ = 0,

p_00_10_ = 0,

p_01_00_ = -1,

p_01_01_ = 0,

p_01_10_ = 0,

p_10_00_ = -1,

p_10_01_ = 0,

p_10_10_ = 0,

- a01 - a10
q_00_00_ = --------------,

2

q_00_01_ = 0,

q_00_10_ = 0,

q_01_00_ = 1,

q_01_01_ = 0,

q_01_10_ = 0,

q_10_00_ = -1,

q_10_01_ = 0,

q_10_10_ = 0}}}

The result of the extended quantifier elimination provides coefficient values for
generic factor polynomials p and q. These are automatically interpreted and con-
verted into differential polynomials by lpdofactorize.
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20.35.4.4 Approximate Factorization

lpdofactorizex

Approximately factorize the argument LPDO d. The ground field F must be fixed
via lpdoset. The result is a list of lists {. . . , (Ai, Li), . . . }. EachAi is quantifier-
free formula possibly containing a variable epsilon, which describes the preci-
sion of corresponding factorization Li. Li is a list containing two factors, the first
of which is linear.

input: off lpdocoeffnorm$

input: lpdoset lpdoweyl(0,x1,x2)$

input: f2 := partial(x1)***partial(x2) + 1$

input: lpdofactorizex f2;

{{epsilon - 1 >= 0,{partial(x1),partial(x2)}},

{epsilon - 1 >= 0,{partial(x2),partial(x1)}}}

If the result is the empty list, then this guarantees that there is no approximate
factorization possible. In our example we happen to obtain two possible factor-
izations. Note, however, that the result in general does not provide a complete
list of factorizations with a left factor of order 1 but only at least one such sample
factorization.

Furthermore, the procedure might fail due to polynomial degrees exceeding certain
bounds for the extended quantifier elimination by virtual substitution used inter-
nally. If this happens, the corresponding Ai will contain existential quantifiers ex,
and Li will be meaningless.
Da sollte besser ein failed kommen ...

The first of the two subresults above has the semantics that ∂x1∂x2 is an approxi-
mate factorization of f2 for all ε ≥ 1. Formally, ||f2 − ∂x1∂x2 || ≤ ε for all ε ≥ 1,
which is equivalent to ||f2 − ∂x1∂x2 || ≤ 1. That is, 1 is an upper bound for the ap-
proximation error over R2. Where there are two possible choices for the seminorm
|| · ||:

1. ...

2. ...

explain switch lpdocoeffnorm ...

Besides
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1. the LPDO d,

lpdofactorizex accepts several optional arguments:

2. A Boolean combination ψ of equations, negated equations, and (possibly
strict) ordering constraints. This ψ describes a (semialgebraic) region over
which to factorize approximately. The default is true specifying the entire
Rn. It is possible to choose ψ parametrically. Then the parameters will in
general occur in the conditions Ai in the result.

3., 4. An LPDO of order 1, which serves as a template for the left (linear) factor,
and an LPDO of order ord(d) − 1, which serves as a template for the right
factor. See the documentation of lpdofactorize for defaults and details.

5. A bound ε for describing the desired precision for approximate factoriza-
tion. The default is the symbol epsilon, i.e., a symbolic choice such that
the optimal choice (with respect to parameters in ψ) is obtained during fac-
torization. It is possible to fix ε ∈ Q. This does, however, not considerably
simplify the factorization process in most cases.

input: f3 := partial(x1) *** partial(x2) + x1$

input: psi1 := 0<=x1<=1 and 0<=x2<=1$

input: lpdofactorizex(f3,psi1,a()***partial(x1),b()***partial(x2));

{{epsilon - 1 >= 0,{partial(x1),partial(x2)}}}

lpdofacx

This is a low-level entry point to the factorization lpdofactorizex. It is analo-
gous to lpdofac for lpdofactorize; see the documentation there for details.

lpdohrect

lpdohcirc
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20.36 MATHML: REDUCE-MathML Interface

Mathematical Markup Language (MathML) is an application of XML for describ-
ing mathematics. It has two flavours: Presentation MathML, like TEX, is intended
for displaying mathematics, primarily within web pages, but its meaning can be
ambiguous. Content MathML, like OpenMath, is intended for conveying meaning,
but how it is displayed is determined by the display software. This package allows
REDUCE to input and output Content MathML.

Author: Luis Alvarez-Sobreviela36

20.36.1 Introduction

The MathML interface for REDUCE provides commands to evaluate and output
MathML. The principal features of this package are as follows.

• Evaluation of MathML code. This allows REDUCE to parse MathML ex-
pressions and evaluate them.

• Generation of MathML compliant code. This provides output of REDUCE
expressions in MathML code.

20.36.2 Loading

To use the MathML-REDUCE Interface, the package must first be loaded explicitly
by executing the command

load_package mathml;

20.36.3 Switches

There are two switches that can be used together and are off by default.

mathml: When on, all output will be displayed as MathML.

both: When on, all output will be displayed as both MathML and normal RE-
DUCE output (which is much easier to read than MathML).

20.36.4 Entering MathML

The MathML-REDUCE Interface allows the user to provide MathML input via a
file containing MathML or by entering MathML interactively.

36This package was written when the author was a placement student at ZIB Berlin.

https://www.w3.org/Math/
https://www.w3.org/XML/
https://openmath.org/
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20.36.4.1 Reading MathML from a File: MML

When reading from a file the operator mml is used, which takes as argument the
name of the file containing the MathML.

mml(FILE:string):expression

Example: As long as the file given contains valid MathML, no errors should be
produced.

mml "ex.mml";

20.36.4.2 Reading MathML interactively: PARSEML

The operator parseml takes no arguments and expects you to enter MathML
markup starting with <mathml> and ending with </mathml>. It then outputs
an expression resulting from evaluating the input.

Example: Here is an extract of a REDUCE session where parseml() is used:

parseml();
<math>

<apply><plus/>
<cn>3</cn>
<cn>5</cn>

</apply>
</math>

8

20.36.5 The Evaluation of MathML

MathML is always evaluated by REDUCE in algebraicmode before outputting
any results. Hence, undefined variables remain undefined, and it is possible to use
all normal REDUCE switches and packages.

Example: The following MathML input

parseml();
<math>

<reln><gt/>
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<ci>x</ci>
<ci>y</ci>

</reln>
</math>

will evaluate to x>y. (Note that this expression cannot be entered directly on its
own as REDUCE input!)

Now suppose we execute the following:

x:=3; y:=2;

If we once again enter and evaluate the above MathML input we will have as result
3>2. This can be evaluated to true or false as follows:

if ws then true else false;
true

Of course, it is possible to set only one of the two variables x or y used above,
say y:=4. If we once again enter and evaluate the above MathML we will get the
result x>4.

When one of the switches mathml or both is on, the MathML output will be:

<math>
<reln><gt/>

<ci>x</ci>
<cn type="integer">4</cn>

</reln>
</math>

Example: Let the file ex.mml contain the following MathML:

<math>
<apply><int/>

<bvar>
<ci>x</ci>

</bvar>
<apply><fn><ci>F</ci><fn>

<ci>x</ci>
</apply>

</apply>
</math>

If we execute the command
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mml "ex.mml";

we get int(f(x),x) or ∫
f(x)dx

It is clear that this has remained unevaluated. We can now define the function
f(x) as follows:

for all x let f(x) = 2*x^2;

If we then enter mml "ex.mml"; once again, we will have the following result:

2x3

3

This shows that the MathML-REDUCE Interface allows normal REDUCE inter-
actions to manipulate the evaluation of MathML input without needing to edit the
MathML itself.

20.36.6 Interpretation of Error Messages

The MathML-REDUCE Interface has a set of error messages which aim to help the
user understand and correct any invalid MathML. Because there can exist many
different causes of errors, such error messages should be considered merely as
advice. Here are the most important error messages.

Missing Tag: Many MathML tags are used in pairs, e.g. <apply> </apply>,
<reln> </reln>, <ci> </ci>. In the case where the ending tag is missed
out, or misspelled, it is very probable that an error of this type will be thrown.

Ambiguous or Erroneous Use of <apply>: This error message is non-specific.
When it appears, it is not very clear to the interface where exactly the error lies.
Probable causes are misuse of the <apply> </apply> tags, or misspelling of
the tag preceding the <apply> tag. However, other types of error may cause this
error message to appear.

Tags following an <apply> tag may be misspelled without causing an error mes-
sage, but they will be considered as operators by REDUCE and therefore generate
some unexpected expression.

Syntax Errors: It is possible that the input MathML is not syntactically correct.
In such a situation, the error will be spotted, and in some cases a resolution might
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be presented. There are a variety of syntax error messages, but relying on their
advice might not always be helpful.

Despite the verbose nature of the error messages and their recommended resolu-
tions, in most situations reference to the MathML specification is recommended.

20.36.7 Limitations of the Interface

Not all aspects of MathML have been perfectly fitted into the interface. There are
still some unsolved problems in the present version of the interface:

• MathML Presentation Markup is not supported. The interface will treat ev-
ery presentation tag as either an unknown tag or a REDUCE operator.

• Certain MathML tags do not play an important role in the REDUCE envi-
ronment. Such tags will be parsed correctly, although their action will be
ignored. These tags are:

– <interval> </interval>

– <inverse> </inverse>

– <condition> </condition>

– <compose> </compose>

– <ident> </ident>

– <forall/>

– <exists/>

However, the tags <condition> </condition> and <interval>
</interval> are supported when used within the following tags:

– <int/>

– <limit/>

– <sum/>

– <product/>

• The <declare> construct takes one or two arguments. It sets the first
argument to the value of the second. In the case where the second argument
is a vector or a matrix, an obscure error message is produced.

20.36.8 Examples

Example 1: Enter the following input interactively:

on mathml;
solve({z=x*a+1},{z,x});
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Example 2: Have a file ex2.mml containing the following MathML:

<mathml>
<apply><sum/>

<bvar>
<ci>x</ci>

</bvar>
<apply><fn><ci>F</ci><fn>

<ci>x</ci>
</apply>

</apply>
</mathml>

and execute the following command:

mml "ex2.mml";

Example 3: This example illustrates how practical the switch both can be for
interpreting verbose MathML. Introduce the following MathML into a file, say
ex3.mml:

<mathml>
<apply><int/>

<bvar>
<ci>x</ci>

</bvar>
<apply><sin/>

<apply><log/>
<ci>x</ci>

</apply>
</apply>

</apply>
</mathml>

then execute the following:

on both;
mml "ml";

20.36.9 An Overview of How the Interface Works

The interface is primarily built in two parts. A first one which parses and evaluates
MathML, and a second one which parses REDUCE’s algebraic expressions and



903

outputs them in MathML format. Both parts use Top-Down Recursive Descent
parsing with one token look ahead.

The EBNF description of the MathML grammar is defined informally in AP-
PENDIX E of the original MathML specification, which was used to develop the
MathML parser. The MathML parser evaluates all that is possible and returns a
valid REDUCE algebraic expression. When either of the switches mathml or
both is on, this algebraic expression is fed into the second part of the program,
which parses these expressions and transforms them back into MathML.

The MathML generator parses the algebraic expression produced by either RE-
DUCE itself or the MathML parser. It works in a very similar way to the MathML
parser. It is simpler, since no evaluation is involved. All the generated code is
MathML compliant. It is important to note that the MathML code generator some-
times introduces Presentation Markup tags, and other tags which are not under-
stood by the MathML parser of the interface.37

37The set of tags not understood by the MathML parser is detailed in Limitations of the Interface.

https://www.w3.org/TR/REC-MathML/appendixE.html
https://www.w3.org/TR/REC-MathML/appendixE.html
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20.37 MATHMLOM: REDUCE OpenMath/MathML
Interface

OpenMath provides extensible standards for representing the semantics of mathe-
matical objects and communicating them between software systems. This package
provides commands to translate OpenMath into content MathML and vice versa.

Author: Luis Alvarez-Sobreviela

To use the OpenMath/MathML Interface, the package must first be loaded explic-
itly by executing the command

load_package mathmlom;

The following commands translate subsequent input from one standard to the other:

om2mml(); translates OpenMath into MathML;

mml2om(); translates MathML into OpenMath.

Execute one of the above commands, then input one complete expression using
the appropriate standard. REDUCE will outputs its intermediate Lisp representa-
tion followed by the expression translated to the other standard, and then revert to
normal REDUCE input syntax.

Here is a simple example of translating OpenMath into MathML taken from the
end of the file mathmlom.rlg. The following input

om2mml();
<OMOBJ>

<OMA>
<OMS name="rational" cd="nums1"/>
<OMI>4</OMI>
<OMI>2</OMI>

</OMA>
</OMOBJ>

produces the following output:

Intermediate representation:
(rational nil 4 2)

<math>
<cn type="rational">4<sep/>2</cn>

</math>

https://openmath.org/
https://www.w3.org/Math/
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20.38 MRVLIMIT: A New Exp-Log Limits Package

Author: Neil Langmead

This package was written when the author was a placement student at ZIB Berlin.

20.38.1 The Exp-Log Limits package

This package arises from the PhD thesis of Dominik Gruntz[Gru96], of the ETH
Zürich. He developed a new algorithm to compute limits of "exp-log" functions.
Many of the examples he gave were unable to be computed by the present LIMITS

package in REDUCE, the simplest example being the following, whose limit is
obviously 0:

load limits;

limit(x^7/e^x,x,infinity);

7
x

limit(----,x,infinity)
x
e

This particular problem arises, because L’Hôpital’s rule for the computation of
indefinite forms (such as 0/0, or ∞

∞ ) can only be applied in a CAS a finite number
of times, and in REDUCE, this number is 3. Appling L’Hôpital’s rule 7 times to
the above problem would have yielded the correct answer 0.

The new algorithm solves this particular problem, and enables the computation of
many more limit calculations in REDUCE. We first define the domain in which we
work, and then give a statement of the main algorithm that is used in this package.

Definition:
Let ℜ[x] be the ring of polynomials in x with real coefficients, and let f be an
element in this ring. The field which is obtained from ℜ[x] by closing it under the
operations f → exp(f) and f → log |f | is called the L-field (or logarithmico-
exponential field, or field of exp-log functions for short).

Hardy proved [Har12] that every L function is ultimately continuous, of constant
sign, monotonic, and tends to ±∞ or to a finite real constant as x→ +∞.

Here are some examples of exp-log functions, which the package is able to deal
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with:

f(x) = ex ∗ log(log(x))

f(x) =
log(log(x+ e−x))

ex2 + log(log(x))

f(x) = log(x)log(x)

f(x) = ex∗log(x)

20.38.2 The Algorithm

A complete statement of the algorithm now follows: Let f be a log-exp function in
x, whose limit we wish to compute as x→ x0. The main steps of the algorithm to
do this are as follows:

• Determine the set Ω of the most rapidly varying subexpressions of f(x).
Limits may have to be computed recursively at this stage.

• Choose an expression ω such that ω > 0, limx→∞ ω = 0 and ω is in the same
comparability class as any element of Ω. Rewrite the other expressions in Ω
asA(x)ωc, whereA(x) only contains subexpressions in lower comparability
classes than Ω.

• Let f(ω) be the function obtained from f(x) by replacing all elements of Ω
by their representation in terms of ω. Consider all expressions independent
of ω as constants and compute the leading term of the power series of f(ω)
around ω = 0+ as c0ωe0 .

• If the leading exponent e0 > 0, then the limit is 0, and we stop. If the leading
exponent e0 < 0 then the limit is ±∞. The sign is defined by the sign of the
leading coefficient c0. If the leading exponent e0 = 0 then the limit is the
limit of the leading coeficient c0. If c0 ̸∈ C, where C = Const(L), the set of
exp-log constants, we apply the same algorithm recursively on c0.

The algorithm to compute the most rapidly varying subset (the mrv set) of a func-
tion f is given below:

procedure mrv(f)
% f an exp log function in x
if (not (depend(f,x)))→ return ({})

else if f = x→ return({x})
else if f = gh→ return(max(mrv(g),mrv(h)))

else if f = g + h→ return(max(mrv(g),mrv(h)))
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else if f = gc and c ∈ C → return(mrv(g))
else if f = log(g)→ return(mrv(g))
else if f = eg →

if limx→∞ g = ±∞→
return(max({eg}, mrv(g)))
else→ return mrv(g)

end

The function max() computes the maximum of the two sets of expressions. Max()
compares two elements of its argument sets and returns the set which is in the
higher comparability class or the union of both if they have the same order of
variation.

For example, we have

mrv(ex) = {ex}
mrv(log(log(log(x+ x2 + x3)))) = {x}
mrv(x) = {x}
mrv(ex + e−x + x2 + x log(x)) = {ex, e−x}

mrv(ee
−x

) = {e−x}

For further details, proofs and explanations of the algorithm, please consult Gruntz’
thesis[Gru96].

20.38.2.1 Mrv_limit Examples

Consider the following in REDUCE:

mrv_limit(e^x,x,infinity);

infinity

mrv_limit(1/log(x),x,infinity);

0

b:=e^x*(e^(1/x-e^-x)-e^(1/x));

-1 - x
x + x - e

b := e *(e - 1)

mrv_limit(b,x,infinity);
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-1

ex := (log(-log(x)+log(log(x)))-log(log(x)))
/(log(log(x)+log(log(log(x)))))*log(x);

log(x)*( - log(log(x)) + log(log(log(x)) - log(x)))
ex := -----------------------------------------------------

log(log(log(log(x))) + log(x))

mrv_limit(ex,x,infinity);

1

(log(x+e^-x)+log(1/x))/(log(x)*e^x);

- x -1 -1 - x
e *log(x) *(log(x ) + log(e + x));

mrv_limit(ws,x,infinity);

0

mrv_limit((log(x)*e^-x)/e^(log(x)+e^(x^2)),x,infinity);

0

More examples can be found in the mrvlimit.tst file.

20.38.3 Tracing the algorihm

The package provides a means of tracing the mrv_limit function at its main
steps, and is intended to help the user if he encounters problems. Messages are
displayed informing the user which Taylor expansion is being computed, all re-
cursive calls are listed, and the value returned by the mrv function is given. This
information is displayed when a switch trlimit is on.

Note that, due to the recursiveness of the algorithm there is a lot of output when
the trlimit switch is on.
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20.39 NCPOLY: Non-commutative Polynomial Ideals

This package allows the user to set up automatically a consistent environment for
computing in an algebra where the non–commutativity is defined by Lie-bracket
commutators. The package uses the REDUCE noncom mechanism for elementary
polynomial arithmetic; the commutator rules are automatically computed from the
Lie brackets.

Authors: Herbert Melenk and Joachim Apel

20.39.1 Introduction

REDUCE supports a very general mechanism for computing with objects under a
non–commutative multiplication, where commutator relations must be introduced
explicitly by rule sets when needed. The package NCPOLY allows you to set up
automatically a consistent environment for computing in an algebra where the
non–commutativity is defined by Lie-bracket commutators. The package uses the
REDUCE noncom mechanism for elementary polynomial arithmetic; the com-
mutator rules are automatically computed from the Lie brackets. You can perform
polynomial arithmetic directly, including division and factorization. Additionally
NCPOLY supports computations in a one sided ideal (left or right), especially one
sided Gröbner bases and polynomial reduction.

20.39.2 Setup, Cleanup

Before the computations can start the environment for a non–commutative compu-
tation must be defined by a call to nc_setup:

nc_setup(〈vars〉[,〈comms〉][,〈dir〉]);

where

〈vars〉 is a list of variables; these must include the non–commutative quantities.

〈comms〉 is a list of equations <u>*<v> - <v>*<u>=<rh> where < u > and
< v > are members of < vars >, and < rh > is a polynomial.

〈dir〉 is either left or right selecting a left or a right one sided ideal. The initial
direction is left.

nc_setup generates from 〈comms〉 the necessary rules to support an algebra
where all monomials are ordered corresponding to the given variable sequence.
All pairs of variables which are not explicitly covered in the commutator set are
considered as commutative and the corresponding rules are also activated.
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The second parameter in nc_setup may be omitted if the operator is called for
the second time, e.g. with a reordered variable sequence. In such a case the last
commutator set is used again.

Remarks:

• The variables need not be declared noncom - nc_setup performs all nec-
essary declarations.

• The variables need not be formal operator expressions; nc_setup encap-
sulates a variable x internally as nc!*(!_x) expressions anyway where
the operator fnc!* keeps the noncom property.

• The commands order and korder should be avoided because nc_setup
sets these such that the computation results are printed in the correct term
order.

Example:

nc_setup({KK,NN,k,n},
{NN*n-n*NN= NN, KK*k-k*KK= KK});

NN*n; -> nn*n
n*NN; -> nn*n - nn
nc_setup({k,n,KK,NN});
NN*n - NN -> n*nn;

Here KK,NN, k, n are non–commutative variables where the commutators are
described as [NN,n] = NN , [KK, k] = KK.

The current term order must be compatible with the commutators: the product
< u > ∗ < v > must precede all terms on the right hand side < rh > under the
current term order. Consequently

• the maximal degree of < u > or < v > in < rh > is 1,

• in a total degree ordering the total degree of < rh > may be not higher than
1,

• in an elimination degree order (e.g. lex) all variables in < rh > must be
below the minimum of < u > and < v >.

• If < rh > does not contain any variables or has at most < u > or < v >,
any term order can be selected.
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If you want to use the non–commutative variables or results from non–commutative
computations later in commutative operations it might be necessary to switch off
the non–commutative evaluation mode because not all operators in REDUCE are
prepared for that environment. In such a case use the command

nc_cleanup;

without parameters. It removes all internal rules and definitions which nc_setup
had introduced. To reactive non–commutative call nc_setup again.

20.39.3 Left and right ideals

A (polynomial) left ideal L is defined by the axioms

u ∈ L, v ∈ L =⇒ u+ v ∈ L

u ∈ L =⇒ k ∗ u ∈ L for an arbitrary polynomial k

where “*” is the non–commutative multiplication. Correspondingly, a right ideal
R is defined by

u ∈ R, v ∈ R =⇒ u+ v ∈ R

u ∈ R =⇒ u ∗ k ∈ R for an arbitrary polynomial k

20.39.4 Gröbner bases

When a non–commutative environment has been set up by nc_setup, a basis
for a left or right polynomial ideal can be transformed into a Gröbner basis by the
operator nc_groebner:

nc_groebner(〈plist〉);

Note that the variable set and variable sequence must be defined before in the
nc_setup call. The term order for the Gröbner calculation can be set by us-
ing the torder declaration. The internal steps of the Gröbner calculation can be
watched by setting the switches trgroeb (=list all internal basis polynomials) or
trgroebs (=list additionally the S-polynomials) 38.

For details about torder, trgroeb and trgroebs see section 20.26.

2: nc_setup({k,n,NN,KK},{NN*n-n*NN=NN,KK*k-k*KK=KK},
left);

38The command lisp(!*trgroebfull:=t); causes additionally all elementary polynomial
operations to be printed.
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3: p1 := (n-k+1)*NN - (n+1);

p1 := - k*nn + n*nn - n + nn - 1

4: p2 := (k+1)*KK -(n-k);

p2 := k*kk + k - n + kk

5: nc_groebner ({p1,p2});

{k*nn - n*nn + n - nn + 1,

k*kk + k - n + kk,

n*nn*kk - n*kk - n + nn*kk - kk - 1}

Important: Do not use the operators of the GROEBNER package directly as they
would not consider the non–commutative multiplication.

20.39.5 Left or right polynomial division

The operator nc_divide computes the one sided quotient and remainder of two
polynomials:

nc_divide(〈p1〉,〈p2〉);

The result is a list with quotient and remainder. The division is performed as a
pseudo–division, multiplying < p1 > by coefficients if necessary. The result {<
q >,< r >} is defined by the relation

< c > ∗ < p1 >=< q > ∗ < p2 > + < r > for direction left and

< c > ∗ < p1 >=< p2 > ∗ < q > + < r > for direction right,

where < c > is an expression that does not contain any of the ideal variables, and
the leading term of < r > is lower than the leading term of 〈p2〉 according to the
actual term order.
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20.39.6 Left or right polynomial reduction

For the computation of the one sided remainder of a polynomial modulo a given
set of other polynomials the operator nc_preduce may be used:

nc_preduce(〈polynomial〉,〈plist〉);

The result of the reduction is unique (canonical) if and only if 〈plist〉 is a one sided
Gröbner basis. Then the computation is at the same time an ideal membership test:
if the result is zero, the polynomial is member of the ideal, otherwise not.

20.39.7 Factorization

20.39.7.1 Technique

Polynomials in a non–commutative ring cannot be factored using the ordinary
factorize command of REDUCE. Instead one of the operators of this section
must be used:

nc_factorize(〈polynomial〉);

The result is a list of factors of 〈polynomial〉. A list with the input expression is
returned if it is irreducible.

As non–commutative factorization is not unique, there is an additional operator
which computes all possible factorizations

nc_factorize_all(〈polynomial〉);

The result is a list of factor decompositions of 〈polynomial〉. If there are no fac-
tors at all the result list has only one member which is a list containing the input
polynomial.
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20.39.7.2 Control of the factorization

In contrast to factoring in commutative polynomial rings, the non–commutative
factorization is rather time consuming. Therefore two additional operators allow
you to reduce the amount of computing time when you look only for isolated fac-
tors in special context, e.g. factors with a limited degree or factors which contain
only explicitly specified variables:

left_factor(〈polynomial〉[,〈deg〉[,〈vars〉]])
right_factor(〈polynomial〉[,〈deg〉[,〈vars〉]])
left_factors(〈polynomial〉[,〈deg〉[,〈vars〉]])
right_factors(〈polynomial〉[,〈deg〉[,〈vars〉]])

where 〈polynomial〉 is the form under investigation, 〈vars〉 is an optional list of
variables which must appear in the factor, and 〈deg〉 is an optional integer degree
bound for the total degree of the factor, a zero for an unbounded search, or a mono-
mial (product of powers of the variables) where each exponent is an individual
degree bound for its base variable; unmentioned variables are allowed in arbitrary
degree. The operators right_factor and left_factor stop when they have
found one factor, while the operators right_factors and left_factors se-
lect all one–sided factors within the given range. If there is no factor of the desired
type, an empty list is returned by right_factors and left_factors while
the routines right_factor and left_factor return the input polynomial.

20.39.7.3 Time of the factorization

The share variable nc_factor_time sets an upper limit for the time to be spent
for a call to the non–commutative factorizer. If the value is a positive integer,
a factorization is terminated with an error message as soon as the time limit is
reached. The time units are milliseconds.

20.39.7.4 Usage of SOLVE

The factorizer internally uses solve, which is controlled by the REDUCE switch
varopt. This switch (which per default is set on) allows to reorder the variable
sequence, which is favourable for the normal system. It should be avoided to set
varopt off when using the non–commutative factorizer, unless very small poly-
nomials are used.
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20.39.8 Output of expressions

It is often desirable to have the commutative parts (coefficients) in a non–
commutative operation condensed by factorization. The operator

nc_compact(〈polynomial〉)

collects the coefficients to the powers of the lowest possible non-commutative vari-
able.

load ncpoly;

nc_setup({n,NN},{NN*n-n*NN=NN})$
p1 := n**4 + n**2*nn + 4*n**2 + 4*n*nn + 4*nn + 4;

4 2 2
p1 := n + n *nn + 4*n + 4*n*nn + 4*nn + 4

nc_compact p1;

2 2 2
(n + 2) + (n + 2) *nn
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20.40 NORMFORM: Computation of
Matrix Normal Forms

This package contains routines for computing the following normal forms of ma-
trices:

• smithex_int

• smithex

• frobenius

• ratjordan

• jordansymbolic

• jordan.

Author: Matt Rebbeck

20.40.1 Introduction

When are two given matrices similar? Similar matrices have the same trace, deter-
minant, characteristic polynomial, and eigenvalues, but the matrices

U =

(
0 1
0 0

)
and V =

(
0 0
0 0

)
are the same in all four of the above but are not similar. Otherwise there could exist
a nonsingular N∈M2 (the set of all 2 × 2 matrices) such that U = NVN−1 =
N 0 N−1 = 0 , which is a contradiction since U ̸= 0 .

Two matrices can look very different but still be similar. One approach to deter-
mining whether two given matrices are similar is to compute the normal form of
them. If both matrices reduce to the same normal form they must be similar.

NORMFORM is a package for computing the following normal forms of matrices:

• smithex

• smithex_int

• frobenius

• ratjordan

• jordansymbolic
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• jordan

By default all calculations are carried out in Q (the rational numbers). For
smithex, frobenius, ratjordan, jordansymbolic, and jordan, this
field can be extended. Details are given in the respective sections.

The frobenius, ratjordan, and jordansymbolic normal forms can also
be computed in a modular base. Again, details are given in the respective sections.

The algorithms for each routine are contained in the source code.

NORMFORM has been converted from the normform and Normform packages writ-
ten by T. M. L. Mulders and A. H. M. Levelt. These have been implemented in
Maple [CGG+91].

20.40.2 Smith normal form

Function
smithex(A, x) computes the Smith normal form S of the matrix A.

It returns {S,P,P−1} where S,P , and P−1 are such that PSP−1 = A.

A is a rectangular matrix of univariate polynomials in x.

x is the variable name.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 20.40.8.

Synopsis:

• The Smith normal form S of an n by m matrix A with univariate poly-
nomial entries in x over a field F is computed. That is, the polynomials
are then regarded as elements of the Euclidean domain F(x).

• The Smith normal form is a diagonal matrix S where:

– rank(A) = number of nonzero rows (columns) of S.
– S(i, i) is a monic polynomial for 0 < i ≤ rank(A).
– S(i, i) divides S(i+ 1, i+ 1) for 0 < i < rank(A).
– S(i, i) is the greatest common divisor of all i by i minors of A.

Hence, if we have the case that n = m, as well as rank(A) = n, then

n∏
i=1

S(i, i) = det(A)
lcoeff(det(A), x)

.
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• The Smith normal form is obtained by doing elementary row and col-
umn operations. This includes interchanging rows (columns), multi-
plying through a row (column) by −1, and adding integral multiples of
one row (column) to another.

• Although the rank and determinant can be easily obtained from S, this
is not an efficient method for computing these quantities except that this
may yield a partial factorization of det(A) without doing any explicit
factorizations.

Example:

A =

(
x x+ 1
0 3 ∗ x2

)

smithex(A, x) =
{(

1 0
0 x3

)
,

(
1 0

3 ∗ x2 1

)
,

(
x x+ 1
−3 −3

)}

20.40.3 smithex_int

Function
Given an n by m rectangular matrix A that contains only integer entries,
smithex_int(A) computes the Smith normal form S of A.

It returns {S,P,P−1} where S, P , and P−1 are such that PSP−1 = A.

Synopsis

• The Smith normal form S of an n by m matrix A with integer entries
is computed.

• The Smith normal form is a diagonal matrix S where:

– rank(A) = number of nonzero rows (columns) of S.
– sign(S(i, i)) = 1 for 0 < i ≤ rank(A).
– S(i, i) divides S(i+ 1, i+ 1) for 0 < i < rank(A).
– S(i, i) is the greatest common divisor of all i by i minors of A.

Hence, if we have the case that n = m, as well as rank(A) = n, then

|det(A)| =
n∏

i=1

S(i, i).

• The Smith normal form is obtained by doing elementary row and col-
umn operations. This includes interchanging rows (columns), multi-
plying through a row (column) by −1, and adding integral multiples of
one row (column) to another.
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Example

A =

 9 −36 30
−36 192 −180
30 −180 180



smithex_int(A) =
3 0 0
0 12 0
0 0 60

 ,

−17 −5 −4
64 19 15
−50 −15 −12

 ,

 1 −24 30
−1 25 −30
0 −1 1


20.40.4 frobenius

Function
frobenius(A) computes the Frobenius normal form F of the matrix A.

It returns {F ,P,P−1} where F , P , and P−1 are such that PFP−1 = A.

A is a square matrix.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 20.40.8

Modular arithmetic
frobenius can be calculated in a modular base. For details see subsection
20.40.9.

Synopsis

• F has the following structure:

F =


Cp1

Cp2
. . .
Cpk


where the C(pi)’s are companion matrices associated with polynomials
p1, p2, . . . , pk, with the property that pi divides pi+1 for i = 1 . . . k−1.
All unmarked entries are zero.

• The Frobenius normal form defined in this way is unique (ie: if we
require that pi divides pi+1 as above).
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Example

A =

( −x2+y2+y
y

−x2+x+y2−y
y

−x2−x+y2+y
y

−x2+x+y2−y
y

)

frobenius(A) ={(
0 x∗(x2−x−y2+y)

y

1 −2∗x2+x+2∗y2
y

)
,

(
1 −x2+y2+y

y

0 −x2−x+y2+y
y

)
,

(
1 −x2+y2+y

x2+x−y2−y

0 −y
x2+x−y2−y

)}

20.40.5 ratjordan

Function
ratjordan(A) computes the rational Jordan normal formR of the matrix
A.

It returns {R,P,P−1} whereR, P , and P−1 are such that PRP−1 = A.

A is a square matrix.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 20.40.8.

Modular arithmetic
ratjordan can be calculated in a modular base. For details see subsection
20.40.9.

Synopsis

• R has the following structure:

R =



r11
r12

. . .
r21

r22
. . .


The rij’s have the following shape:

rij =


C(p) I

C(p) I
. . . . . .
C(p) I

C(p)
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where there are eij times C(p) blocks along the diagonal and C(p) is
the companion matrix associated with the irreducible polynomial p. All
unmarked entries are zero.

Example

A =

(
x+ y 5
y x2

)
ratjordan(A) ={(

0 −x3 − x2 ∗ y + 5 ∗ y
1 x2 + x+ y

)
,

(
1 x+ y

0 y

)
,

(
1 −(x+y)

y

0 1
y

)}

20.40.6 jordansymbolic

Function
jordansymbolic(A) computes the Jordan normal form J of the matrix
A.

It returns {J ,L,P,P−1}, where J , P , and P−1 are such that PJP−1 =
A. L = {ll, ξ}, where ξ is a name and ll is a list of irreducible factors of
p(ξ).

A is a square matrix.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 20.40.8.

Modular arithmetic
jordansymbolic can be calculated in a modular base. For details see
subsection 20.40.9.

Synopsis

• A Jordan block ȷk(λ) is a k by k upper triangular matrix of the form:

ȷk(λ) =


λ 1

λ 1
. . . . . .

λ 1
λ


There are k − 1 terms “+1” in the superdiagonal; the scalar λ appears
k times on the main diagonal. All other matrix entries are zero, and
ȷ1(λ) = (λ).
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• A Jordan matrix J ∈ Mn (the set of all n by n matrices) is a direct
sum of jordan blocks

J =


ȷn1(λ1)

ȷn2(λ2)
. . .

ȷnk
(λk)

 , n1 + n2 + · · ·+ nk = n

in which the orders ni may not be distinct and the values λi need not
be distinct.

• Here λ is a zero of the characteristic polynomial p of A. If p does
not split completely, symbolic names are chosen for the missing zeroes
of p. If, by some means, one knows such missing zeroes, they can
be substituted for the symbolic names. For this, jordansymbolic
actually returns {J ,L,P,P−1}. J is the Jordan normal form of A
(using symbolic names if necessary). L = {ll , ξ}, where ξ is a name
and ll is a list of irreducible factors of p(ξ). If symbolic names are used
then ξij is a zero of lli. P and P−1 are as above.

Example

A =

(
1 y
y2 3

)
jordansymbolic(A) ={(

ξ11 0
0 ξ12

)
,
{{
−y3 + ξ2 − 4 ∗ ξ + 3

}
, ξ
}
,

(
ξ11 − 3 ξ12 − 3

y2 y2

)
,

(
ξ11−2

2∗(y3−1)
ξ11+y3−1

2∗y2∗(y3+1)
ξ12−2

2∗(y3−1)
ξ12+y3−1

2∗y2∗(y3+1)

)}
solve(-yˆ3+xiˆ2-4*xi+3,xi);

{ξ =
√
y3 + 1 + 2, ξ = −

√
y3 + 1 + 2}

J = sub({xi(1,1)=sqrt(yˆ3+1)+2,
xi(1,2)=-sqrt(yˆ3+1)+2},
first jordansymbolic (A))

J =

(√
y3 + 1 + 2 0

0 −
√
y3 + 1 + 2

)
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20.40.7 jordan

Function
jordan(A) computes the Jordan normal form J of the matrix A.

It returns {J ,P,P−1}, where J , P , and P−1 are such that PJP−1 = A.

A is a square matrix.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 20.40.8.

Note
In certain polynomial cases the switch fullroots is turned on to compute
the zeroes. This can lead to the calculation taking a long time, as well as the
output being very large. In this case a message
*****
WARNING: fullroots turned on. May take a while.
will be printed. It may be better to kill the calculation and compute
jordansymbolic instead.

Synopsis

• The Jordan normal form J with entries in an algebraic extension of Q
is computed.

• A Jordan block ȷk(λ) is a k by k upper triangular matrix of the form:

ȷk(λ) =


λ 1

λ 1
. . . . . .

λ 1
λ


There are k − 1 terms “+1” in the superdiagonal; the scalar λ appears
k times on the main diagonal. All other matrix entries are zero, and
ȷ1(λ) = (λ).

• A Jordan matrix J ∈ Mn (the set of all n by n matrices) is a direct
sum of jordan blocks.

J =


ȷn1(λ1)

ȷn2(λ2)
. . .

ȷnk
(λk)

 , n1 + n2 + · · ·+ nk = n

in which the orders ni may not be distinct and the values λi need not
be distinct.
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• Here λ is a zero of the characteristic polynomial p of A. The zeroes of
the characteristic polynomial are computed exactly, if possible. Other-
wise they are approximated by floating point numbers.

Example

A =



−9 −21 −15 4 2 0
−10 21 −14 4 2 0
−8 16 −11 4 2 0
−6 12 −9 3 3 0
−4 8 −6 0 5 0
−2 4 −3 0 1 3


J = first jordan(A);

J =



3 0 0 0 0 0
0 3 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 i+ 2 0
0 0 0 0 0 −i+ 2



20.40.8 Algebraic extensions: Using the ARNUM package

The algebraic field Q can now be extended. E.g., defpoly sqrt2**2-2;
will extend it to include

√
2 (defined here by sqrt2). The ARNUM package was

written by Eberhard Schrüfer and is described in section 9.12.5.

20.40.8.1 Example

defpoly sqrt2**2-2;
(sqrt2 now changed to

√
2 for looks!)

A =

4 ∗
√
2− 6 −4 ∗

√
2 + 7 −3 ∗

√
2 + 6

3 ∗
√
2− 6 −3 ∗

√
2 + 7 −3 ∗

√
2 + 6

3 ∗
√
2 1− 3 ∗

√
2 −2 ∗

√
2



ratjordan(A) =



√
2 0 0

0
√
2 0

0 0 −3 ∗
√
2 + 1

 ,


7 ∗
√
2− 6 2∗

√
2−49
31

−21∗
√
2+18

31

3 ∗
√
2− 6 21∗

√
2−18

31
−21∗

√
2+18

31

3 ∗
√
2 + 1 −3∗

√
2+24

31
3∗

√
2−24
31

 ,
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 0
√
2 + 1 1

−1 4 ∗
√
2 + 9 4 ∗

√
2

−1 −1
6 ∗
√
2 + 1 1


20.40.9 Modular arithmetic

Calculations can be performed in a modular base by setting the switch modular
to on. The base can then be set by setmod p; (p a prime). The normal form will
then have entries in Z/pZ.

By also switching on balanced_mod the output will be shown using a symmetric
modular representation.

Information on this modular manipulation can be found in section 9.12.3.

20.40.9.1 Example

on modular;
setmod 23;

A =

(
10 18
17 20

)
jordansymbolic(A) ={(

18 0
0 12

)
, {{λ+ 5, λ+ 11} , λ} ,

(
15 9
22 1

)
,

(
1 14
1 15

)}
on balanced_mod;

jordansymbolic(A) ={(
−5 0
0 −11

)
, {{λ+ 5, λ+ 11} , λ} ,

(
−8 9
−1 1

)
,

(
1 −9
1 −8

)}



926 CHAPTER 20. USER CONTRIBUTED PACKAGES

20.41 ODESOLVE:
Ordinary Differential Equation Solver

ODESOLVE is a solver for ordinary differential equations. It uses only elementary
solution techniques. At present, it can handle only a single scalar equation pre-
sented as an algebraic expression or equation, and it can solve first-order equations
of simple types, linear equations with constant coefficients, Euler equations, and
some more complicated types. For example, the evaluation of

depend(y, x);
odesolve(df(y,x) = x^2 + e^x, y, x);

yields the result

x 3
3*arbconst(1) + 3*e + x

{y=---------------------------}
3

Main authors: Malcolm MacCallum and Francis Wright

Other contributor: Alan Barnes

20.41.1 Introduction

ODESOLVE [Mac88, Wri97, Wri99] was developed partly under the auspices
of the European CATHODE project [CAT]. Various test files that illustrate
the capabilities of ODESOLVE, including three versions (with names beginning
with zim) based on a published review of ODE (ordinary differential equat-
ion) solvers [PZ96], are included in the source code distribution in the directory
packages/odesolve, which you can access online at
https://sourceforge.net/p/reduce-algebra/code/HEAD/tree/
trunk/packages/odesolve/.

ODESOLVE implements most of the simple and well known solution techniques
[Zwi92]. It also provides an extension interface (see §20.41.5), which could be
used to support more sophisticated solvers, such as PSODE [Man94, MM97, PS83]
and CRACK [BW92], to handle cases where simple techniques fail, although none
of these extensions is implemented yet.

The main motivation behind ODESOLVE is pragmatic. It is intended to meet user
expectations, to have an easy user-interface that normally does the right thing au-
tomatically, and to return solutions in the form that the user wants and expects.

The ODESOLVE package autoloads the first time the normal algebraic-mode

https://sourceforge.net/p/reduce-algebra/code/HEAD/tree/trunk/packages/odesolve/
https://sourceforge.net/p/reduce-algebra/code/HEAD/tree/trunk/packages/odesolve/
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odesolve operator is used.

20.41.2 User interface

The principal interface is via the operator odesolve. (It also has a synonym
called dsolve to make porting of examples from Maple easier, but it does not
accept general Maple syntax! And if solve is applied to a manifest ODE then it
will call odesolve.)

For purposes of description let us refer to the dependent variable as “y” and the
independent variable as “x”, but of course the names are arbitrary. The general
input syntax is

odesolve(ode, y, x, conditions, options);

All arguments except the first are optional. This is possible because, if necessary,
ODESOLVE attempts to deduce the dependent and independent variables used and
to make any necessary DEPEND declarations. Messages are output to indicate any
assumptions or dependence declarations that are made. Here is an example of what
is probably the shortest possible valid input:

odesolve(df(y,x));

*** Dependent var(s) assumed to be y

*** Independent var assumed to be x

*** depend y , x

{y=arbconst(1)}

Output of ODESOLVE messages is controlled by the standard REDUCE switch
msg.

20.41.2.1 Specifying the ODE and its variables

The first argument (ode) is required, and must be either an ODE or a variable (or
expression) that evaluates to an ODE. Automatic dependence declaration works
only when the ODE is input directly as an argument to the odesolve operator.
Here, “ODE” means an equation or expression containing one or more deriva-
tives of y with respect to x. Derivatives of y with respect to other variables are
not allowed because ODESOLVE does not solve partial differential equations, and
symbolic derivatives of variables other than y are treated as symbolic constants.
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An expression is implicitly equated to zero, as is usual in equation solvers.

The independent variable may be either an operator that explicitly depends on the
independent variable, e.g. y(x) (as required in Maple), or a simple variable that
is declared (by the user or automatically by ODESOLVE) to depend on the inde-
pendent variable. If the independent variable is an operator then it may depend on
parameters as well as the independent variable. Variables may be simple identifiers
or, more generally, REDUCE “kernels”, e.g.

operator x, y;
odesolve(df(y(x(a),b),x(a)) = 0);

*** Dependent var(s) assumed to be y(x(a),b)

*** Independent var assumed to be x(a)

{y(x(a),b)=arbconst(1)}

The order in which arguments are given must be preserved, but arguments may
be omitted, except that if x is specified then y must also be specified, although an
empty list {} can be used as a “place-holder” to represent “no specified argument”.
Variables are distinguished from options by requiring that if a variable is specified
then it must appear in the ODE, otherwise it is assumed to be an option.

Generally in REDUCE it is not recommended to use the identifier t as a variable,
since it is reserved in Lisp. However, it is very common practice in applied math-
ematics to use it as a variable to represent time, and for that reason ODESOLVE

provides special support to allow it as either the independent or a dependent vari-
able. But, of course, its use may still cause trouble in other parts of REDUCE!

20.41.2.2 Specifying conditions

If specified, the “conditions” argument must take the form of an (unordered) list of
(unordered lists of) equations with either y, x, or a derivative of y on the left. A
single list of conditions need not be contained within an outer list. Combinations
of conditions are allowed. Conditions within one (inner) list all relate to the same
x value. For example:

Boundary conditions:
{{y=y0, x=x0}, {y=y1, x=x1}, ...}

Initial conditions:
{x=x0, y=y0, df(y,x)=dy0, ...}

Combined conditions:
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{{y=y0, x=x0}, {df(y,x)=dy1, x=x1}, {df(y,x)=dy2, y=y2, x=x2}, ...}

Here is an example of boundary conditions:

odesolve(df(y,x,2) = y, y, x,
{{x = 0, y = A}, {x = 1, y = B}});

2*x 2*x 2
- e *a + e *b*e + a*e - b*e

{y=-----------------------------------}
x 2 x

e *e - e

Here is an example of initial conditions:

odesolve(df(y,x,2) = y, y, x,
{x = 0, y = A, df(y,x) = B});

2*x 2*x
e *a + e *b + a - b

{y=-------------------------}
x

2*e

Here is an example of combined conditions:

odesolve(df(y,x,2) = y, y, x,
{{x=0, y=A}, {x=1, df(y,x)=B}});

2*x 2*x 2
e *a + e *b*e + a*e - b*e

{y=--------------------------------}
x 2 x

e *e + e

Boundary conditions on the values of y at various values of x may also be speci-
fied by replacing the variables by equations with single values or matching lists of
values on the right, of the form

y = y0, x = x0

or

y = {y0, y1, ...}, x = {x0, x2, ...}
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For example

odesolve(df(y,x) = y, y = A, x = 0);

x
{y=e *a}

odesolve(df(y,x,2) = y, y = {A, B}, x = {0, 1});

2*x 2*x 2
- e *a + e *b*e + a*e - b*e

{y=-----------------------------------}
x 2 x

e *e - e

20.41.2.3 Specifying options and defaults

The final arguments may be one or more of the option identifiers listed in the table
below, which take precedence over the default settings. All options can also be
specified on the right of equations with the identifier “output” on the left, e.g. “out-
put = basis”. This facility if provided mainly for compatibility with other systems
such as Maple, although it also allows options to be distinguished from variables
in case of ambiguity. Some options can be specified on the left of equations that
assign special values to the option. Currently, only “trode” and its synonyms can
be assigned the value 1 to give an increased level of tracing.

The following switches set default options – they are all off by default. Options set
locally using option arguments override the defaults set by switches.

Switch Option Effect on solution
odesolve_explicit explicit fully explicit
odesolve_expand expand expand roots of unity
odesolve_full full fully explicit and expanded
odesolve_implicit implicit implicit instead of parametric

algint turn on algint
odesolve_noint noint turn off selected integrations
odesolve_verbose verbose display ODE and conditions
odesolve_basis basis output basis solution for linear ODE

trode


trode
trace

tracing

 turn on algorithm tracing

odesolve_fast fast turn off heuristics
odesolve_check check turn on solution checking
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An “explicit” solution is an equation with y isolated on the left whereas an “im-
plicit” solution is an equation that determines y as one or more of its solutions. A
“parametric” solution expresses both x and y in terms of some additional param-
eter. Some solution techniques naturally produce an explicit solution, but some
produce either an implicit or a parametric solution. The “explicit” option causes
ODESOLVE to attempt to convert solutions to explicit form, whereas the “implicit”
option causes ODESOLVE to attempt to convert parametric solutions (only) to im-
plicit form (by eliminating the parameter). These solution conversions may be slow
or may fail in complicated cases.

ODESOLVE introduces two operators used in solutions: root_of_unity and
plus_or_minus, the latter being a special case of the former, i.e. a second root
of unity. These operators carry a tag that associates the same root of unity when it
appears in more than one place in a solution (cf. the standard root_of operator).
The “expand” option expands a single solution expressed in terms of these oper-
ators into a set of solutions that do not involve them. ODESOLVE also introduces
two operators expand_roots_of_unity and expand_plus_or_minus,
that are used internally to perform the expansion described above, and can be used
explicitly.

The “algint” option turns on “algebraic integration” locally only within ODE-
SOLVE. It also loads the algint package if necessary. Algint allows ODESOLVE

to solve some ODEs for which the standard REDUCE integrator hangs (i.e. takes
an extremely long time to return). If the resulting solution contains unevaluated
integrals then the algint switch should be turned on outside ODESOLVE before the
solution is re-evaluated, otherwise the standard integrator may well hang again!
For some ODEs, the algint option leads to better solutions than the standard RE-
DUCE integrator.

Alternatively, the “noint” option prevents REDUCE from attempting to evaluate
the integrals that arise in some solution techniques. If ODESOLVE takes too long to
return a result then you might try adding this option to see if it helps solve this par-
ticular ODE, as illustrated in the test files. This option is provided to speed up the
computation of solutions that contain integrals that cannot be evaluated, because
in some cases REDUCE can spend a long time trying to evaluate such integrals
before returning them unevaluated. This only affects integrals evaluated within the
odesolve operator. If a solution containing an unevaluated integral that was re-
turned using the “noint” option is re-evaluated, it may again take REDUCE a very
long time to fail to evaluate the integral, so considerable caution is recommended!
(A global switch called “noint” is also installed when ODESOLVE is loaded, and
can be turned on to prevent REDUCE from attempting to evaluate any integrals.
But this effect may be very confusing, so this switch should be used only with
extreme care. If you turn it on and then forget, you may wonder why REDUCE
seems unable to evaluate even trivial integrals!)

The “verbose” option causes ODESOLVE to display the ODE, variables and con-
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ditions as it sees them internally, after pre-processing. This is intended for use in
demonstrations and possibly for debugging, and not really for general users.

The “basis” option causes ODESOLVE to output the general solutions of linear
ODEs in basis format (explained below). Special solutions (of ODEs with condi-
tions) and solutions of nonlinear ODEs are not affected.

The “trode” (or “trace” or “tracing”) option turns on tracing of the algorithms used
by ODESOLVE. It reports its classification of the ODE and any intermediate results
that it computes, such as a chain of progressively simpler (in some sense) ODEs
that finally leads to a solution. Tracing can produce a lot of output, e.g. see the
test log file “zimmer.rlg”. The option “trode = 1” or the global assignment
“!*trode := 1” causes ODESOLVE to report every test that it tries in its classi-
fication process, producing even more tracing output. This is probably most useful
for debugging, but it may give the curious user further insight into the operation of
ODESOLVE.

The “fast” option disables all non-deterministic solution techniques (including
most of those for nonlinear ODEs of order > 1). It may be most useful if ODE-
SOLVE is used as a subroutine, including calling it recursively in a hook. It makes
ODESOLVE behave like the version distributed with REDUCE 3.7, and so does not
affect the odesolve.tst file. The “fast” option causes ODESOLVE to return
no solution fast in cases where, by default, if would return either a solution or no
solution more slowly (perhaps much more slowly). Solution of sufficiently simple
“deterministically-solvable” ODEs is unaffected.

The “check” option turns on checking of the solution. This checking is performed
by code that is largely independent of the solver, so as to perform a genuinely
independent check. It is not turned on by default so as to avoid the computa-
tional overhead, which is currently of the order of 30%. A check is made that
each component solution satisfies the ODE and that a general solution contains
at least enough arbitrary constants, or equivalently that a basis solution contains
enough basis functions. Otherwise, warning messages are output. It is possible
that ODESOLVE may fail to verify a solution because the automatic simplification
fails, which indicates a failure in the checker rather than in the solver.

In some cases, in particular in symbolic solutions of Clairaut ODEs, the checker
may need to differentiate a composition of operators using the chain rule. In order
to do this, it turns on the differentiator switch expanddf locally only.

20.41.3 Output syntax

If ODESOLVE is successful it outputs a list of sub-solutions that together represent
the solution of the input ODE. Each sub-solution is either an equation that defines a
branch of the solution, explicitly or implicitly, or it is a list of equations that define a
branch of the solution parametrically in the form {y = G(p), x = F (p), p}. Here
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p is the parameter, which is actually represented in terms of an operator called
arbparam which has an integer argument to distinguish it from other unrelated
parameters, as usual for arbitrary values in REDUCE.

A general solution will contain a number of arbitrary constants represented by an
operator called arbconst with an integer argument to distinguish it from other
unrelated arbitrary constants. A special solution resulting from applying conditions
will contain fewer (usually no) arbitrary constants.

The general solution of a linear ODE in basis format is a list consisting of a list of
basis functions for the solution space of the reduced ODE followed by a particular
solution if the input ODE had a y-independent “driver” term, i.e. was not reduced
(which is sometimes ambiguously called “homogeneous”). The particular solution
is normally omitted if it is zero. The dependent variable y does not appear in a
basis solution. The linear solver uses basis solutions internally.

Currently, there are cases where ODESOLVE cannot solve a linear ODE using its
linear solution techniques, in which case it will try nonlinear techniques. These
may generate a solution that is not (obviously) a linear combination of basis solu-
tions. In this case, if a basis solution has been requested, ODESOLVE will report
that it cannot separate the nonlinear combination, which it will return as the default
linear combination solution.

If ODESOLVE fails to solve the ODE then it will return a list containing the input
ODE (always in the form of a differential expression equated to 0). At present,
ODESOLVE does not return partial solutions. If it fails to solve any part of the
problem then it regards this as complete failure. (You can probably see if this has
happened by turning on algorithm tracing.)

20.41.4 Solution techniques

The ODESOLVE interface module pre-processes the problem and applies any con-
ditions to the solution. The other modules deal with the actual solution.

ODESOLVE first classifies the input ODE according to whether it is linear or non-
linear and calls the appropriate solver. An ODE that consists of a product of linear
factors is regarded as nonlinear. The second main classification is based on whether
the input ODE is of first or higher degree.

Solution proceeds essentially by trying to reduce nonlinear ODEs to linear ones,
and to reduce higher order ODEs to first order ODEs. Only simple linear ODEs and
simple first-order nonlinear ODEs can be solved directly. This approach involves
considerable recursion within ODESOLVE.

If all solution techniques fail then ODESOLVE attempts to factorize the derivative
of the whole ODE, which sometimes leads to a solution.
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20.41.4.1 Linear solution techniques

ODESOLVE splits every linear ODE into a “reduced ODE” and a “driver” term.
The driver is the component of the ODE that is independent of y, the reduced ODE
is the component of the ODE that depends on y, and the sign convention is such
that the ODE can be written in the form “reduced ODE = driver”. The reduced
ODE is then split into a list of “ODE coefficients”.

The linear solver now determines the order of the ODE. If it is 1 then the ODE is
immediately solved using an integrating factor (if necessary). For a higher order
linear ODE, ODESOLVE considers a sequence of progressively more complicated
solution techniques. For most purposes, the ODE is made “monic” by dividing
through by the coefficient of the highest order derivative. This puts the ODE into
a standard form and effectively deals with arbitrary overall algebraic factors that
would otherwise confuse the solution process. (Hence, there is no need to perform
explicit algebraic factorization on linear ODEs.) The only situation in which the
original non-monic form of the ODE is considered is when checking for exactness,
which may depend critically on otherwise irrelevant overall factors.

If the ODE has constant coefficients then it can (in principle) be solved using ele-
mentary “D-operator” techniques in terms of exponentials via an auxiliary equat-
ion. However, this works only if the polynomial auxiliary equation can be solved.
Assuming that it can and there is a driver term, ODESOLVE tries to use a method
based on inverse “D-operator” techniques that involves repeated integration of
products of the solutions of the reduced ODE with the driver. Experience (by Mal-
colm MacCallum) suggests that this normally gives the most satisfactory form of
solution if the integrals can be evaluated. If any integral fails to evaluate, the more
general method of “variation of parameters”, based on the Wronskian of the solu-
tion set of the reduced ODE, is used instead. This involves only a single integral
and so can never lead to nested unevaluated integrals.

If the ODE has non-constant coefficients then it may be of Euler (sometimes am-
biguously called “homogeneous”) type, which can be trivially reduced to an ODE
with constant coefficients. A shift in x is accommodated in this process. Next it
is tested for exactness, which leads to a first integral that is an ODE of order one
lower. After that it is tested for the explicit absence of y and low order derivatives,
which allows trivial order reduction. Then the monic ODE is tested for exactness,
and if that fails and the original ODE was non-monic then the original form is
tested for exactness.

Finally, pattern matching is used to seek a solution involving special functions,
such as Bessel functions. Currently, this is implemented only for second-order
ODEs satisfied by Bessel and Airy-integral functions. It could easily be extended
to other orders and other special functions. Shifts in x could also be accommodated
in the pattern matching.
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If all linear techniques fail then ODESOLVE currently calls the variable interchange
routine (described below), which takes it into the nonlinear solver. Occasionally,
this is successful in producing some, although not necessarily the best, solution of
a linear ODE.

20.41.4.2 Nonlinear solution techniques

In order to handle trivial nonlinearity, ODESOLVE first factorizes the ODE alge-
braically, solves each factor that depends on y and then merges the resulting so-
lutions. Other factors are ignored, but a warning is output unless they are purely
numerical.

If all attempts at solution fail then ODESOLVE checks whether the original (unfac-
tored) ODE was exact, because factorization could destroy exactness. Currently,
ODESOLVE handles only first and second order nonlinear exact ODEs.

A version of the main solver applied to each algebraic factor branches depending
on whether the ODE factor is linear or nonlinear, and the nonlinear solver branches
depending on whether the order is 1 or higher and calls one of the solvers described
in the next two sections. If that solver fails, ODESOLVE checks for exactness (of
the factor). If that fails, it checks whether only a single order derivative is involved
and tries to solve algebraically for that. If successful, this decomposes the ODE
into components that are, in some sense, simpler and may be solvable. (However,
in some cases these components are algebraically very complicated examples of
simple types of ODE that the integrator cannot in practice handle, and it can take a
very long time before returning an unevaluated integral.)

If all else fails, ODESOLVE interchanges the dependent and independent variables
and calls the top-level solver recursively. It keeps a list of all ODEs that have
entered the top-level solver in order to break infinite loops that could arise if the
solution of the variable-interchanged ODE fails.

First-order nonlinear solution techniques

If the ODE is a first-degree polynomial in the derivative then ODESOLVE represents
it in terms of the “gradient”, which is a function of x and y such that the ODE can
be written as “dy/dx = gradient”. It then checks in sequence for the following
special types of ODE, each of which it can (in principle) solve:

Separable The gradient has the form f(x)g(y), leading immediately to a solution
by quadrature, i.e. the solution can be immediately written in terms of indef-
inite integrals. (This is considered to be a solution of the ODE, regardless of
whether the integrals can be evaluated.) The solver recognises both explicit
and implicit dependence when detecting separable form.
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Quasi-separable The gradient has the form f(y + kx), which is (trivially) sepa-
rable after a linear transformation. It arises as a special case of the “quasi-
homogeneous” case below, but is better treated earlier as a case in its own
right.

Homogeneous The gradient has the form f(y/x), which is algebraically homoge-
neous. A substitution of the form “y = vx” leads to a first-order linear ODE
that is (in principle) immediately solvable.

Quasi-homogeneous The gradient has the form f
(
a1x+b1y+c1
a2x+b2y+c2

)
, which is homo-

geneous after a linear transformation.

Bernoulli The gradient has the form P (x)y +Q(x)yn, in which case the ODE is
a first-order linear ODE for y1−n.

Riccati The gradient has the form a(x)y2 + b(x)y+ c(x), in which case the ODE
can be transformed into a linear second-order ODE that may be solvable.

If the ODE is not first-degree then it may be linear in either x or y. Solving by
taking advantage of this leads to a parametric solution of the original ODE, in
which the parameter corresponds to y′. It may then be possible to eliminate the
parameter to give either an implicit or explicit solution.

An ODE is “solvable for y” if it can be put into the form y = f(x, y′). Differenti-
ating with respect to x leads to a first-order ODE for y′(x), which may be easier to
solve than the original ODE. The special case that y = xF (y′) +G(y′) is called a
Lagrange (or d’Alembert) ODE. Differentiating with respect to x leads to a first-
order linear ODE for x(y′). The even more special case that y = xy′ + G(y′),
which may arise in the equivalent implicit form F (xy′ − y) = G(y′), is called a
Clairaut ODE. The general solution is given by replacing y′ by an arbitrary con-
stant, and it may be possible to obtain a singular solution by differentiating and
solving the resulting factors simultaneously with the original ODE.

An ODE is “solvable for x” if it can be put into the form x = f(y, y′). Differenti-
ating with respect to y leads to a first-order ODE for y′(y), which may be easier to
solve than the original ODE.

Currently, ODESOLVE recognises the above forms only if the ODE manifestly has
the specified form and does not try very hard to actually solve for x or y, which
perhaps it should!

Higher-order nonlinear solution techniques

The techniques used here are all special cases of Lie symmetry analysis, which is
not yet applied in any general way.
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Higher-order nonlinear ODEs are passed through a number of “simplifier” filters
that are applied in succession, regardless of whether the previous filter simplifies
the ODE or not. Currently, the first filter tests for the explicit absence of y and
low order derivatives, which allows trivial order reduction. The second filter tests
whether the ODE manifestly depends on x+ k for some constant k, in which case
it shifts x to remove k.

After that, ODESOLVE tests for each of the following special forms in sequence.
The sequence used here is important, because the classification is not unique, so it
is important to try the most useful classification first.

Autonomous An ODE is autonomous if it does not depend explicitly on x, in
which case it can be reduced to an ODE in y′ of order one lower.

Scale invariant or equidimensional in x An ODE is scale invariant if it is invari-
ant under the transformation x → ax, y → apy, where a is an arbitrary
indeterminate and p is a constant to be determined. It can be reduced to an
autonomous ODE, and thence to an ODE of order one lower. The special
case p = 0 is called equidimensional in x. It is the nonlinear generalization
of the (reduced) linear Euler ODE.

Equidimensional in y An ODE is equidimensional in y if it is invariant under the
transformation y → ay. An exponential transformation of y leads to an
ODE of the same order that may be “more linear” and so easier to solve,
but there is no guarantee of this. All (reduced) linear ODEs are trivially
equidimensional in y.

The recursive nature of ODESOLVE, especially the thread described in this section,
can lead to complicated “arbitrary constant expressions”. Arbitrary constants must
be included at the point where an ODE is solved by quadrature. Further processing
of such a solution, as may happen when a recursive solution stack is unwound, can
lead to arbitrary constant expressions that should be re-written as simple arbitrary
constants. There is some simple code included to perform this arbitrary constant
simplification, but it is rudimentary and not entirely successful.

20.41.5 Extension interface

The idea is that the ODESolve extension interface allows any user to add solution
techniques without needing to edit and recompile the main source code, and (in
principle) without needing to be intimately familiar with the internal operation of
ODESOLVE.

The extension interface consists of a number of “hooks” at various critical places
within ODESOLVE. These hooks are modelled in part on the hook mechanism
used to extend and customize the Emacs editor, which is a large Lisp-based system
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with a structure similar to that of REDUCE. Each ODESOLVE hook is an identifier
which can be defined to be a function (i.e. a procedure), or have assigned to it
(in symbolic mode) a function name or a (symbolic mode) list of function names.
The function should be written to accept the arguments specified for the particular
hook, and it should return either a solution to the specified class of ODE in the
specified form or nil.

If a hook returns a non-nil value then that value is used by ODESOLVE as the
solution of the ODE at that stage of the solution process. (If the ODE being solved
was generated internally by ODESOLVE or conditions are imposed then the solution
will be re-processed before being finally returned by ODESOLVE.) If a hook returns
nil then it is ignored and ODESOLVE proceeds as if the hook function had not been
called at all. This is the same mechanism that it used internally by ODESOLVE to
run sub-solvers. If a hook evaluates to a list of function names then they are applied
in turn to the hook arguments until a non-nil value is returned and this is the value
of the hook; otherwise the hook returns nil. The same code is used to run all hooks
and it checks that an identifier is the name of a function before it tries to apply
it; otherwise the identifier is ignored. However, the hook code does not perform
any other checks, so errors within functions run by hooks will probably terminate
ODESOLVE and errors in the return value will probably cause fatal errors later in
ODESOLVE. Such errors are user errors rather than ODESOLVE errors!

Hooks are defined in pairs which are inserted before and after critical stages of
the solver, which currently means the general ODE solver, the nonlinear ODE
solver, and the solver for linear ODEs of order greater than one (on the grounds
that solving first order linear ODEs is trivial and the standard ODESOLVE code
should always suffice). The precise interface definition is as follows.

A reference to an “algebraic expression” implies that the REDUCE representation
is a prefix or pseudo-prefix form. A reference to a “variable” means an identifier
(and never a more general kernel). The “order” of an ODE is always an explicit
positive integer. The return value of a hook function must always be either nil or an
algebraic-mode list (which must be represented as a prefix form). Since the input
and output of hook functions uses prefix forms (and never standard quotient forms),
hook functions can equally well be written in either algebraic or symbolic mode,
and in fact ODESOLVE uses a mixture internally. (An algebraic-mode procedure
can return nil by returning nothing. The integer zero is not equivalent to nil in the
context of ODESOLVE hooks.)

Hook names: ODESolve_Before_Hook, ODESolve_After_Hook.

Run before and after: The general ODE solver.

Arguments: 3
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1. The ODE in the form of an algebraic expression with no denominator
that must be made identically zero by the solution.

2. The dependent variable.

3. The independent variable.

Return value: A list of equations exactly as returned by ODESOLVE itself.

Hook names: ODESolve_Before_Non_Hook,
ODESolve_After_Non_Hook.

Run before and after: The nonlinear ODE solver.

Arguments: 4

1. The ODE in the form of an algebraic expression with no denominator
that must be made identically zero by the solution.

2. The dependent variable.

3. The independent variable.

4. The order of the ODE.

Return value: A list of equations exactly as returned by ODESOLVE itself.

Hook names: ODESolve_Before_Lin_Hook,
ODESolve_After_Lin_Hook.

Run before and after: The general linear ODE solver.

Arguments: 6

1. A list of the coefficient functions of the “reduced ODE”, i.e. the co-
efficients of the different orders (including zero) of derivatives of the
dependent variable, each in the form of an algebraic expression, in low
to high derivative order. (In general the ODE will not be “monic” so
the leading (i.e. last) coefficient function will not be 1. Hence, the ODE
may contain an essentially irrelevant overall algebraic factor.)

2. The “driver” term, i.e. the term involving only the independent variable,
in the form of an algebraic expression. The sign convention is such that
“reduced ODE = driver”.

3. The dependent variable.
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4. The independent variable.

5. The (maximum) order (> 1) of the ODE.

6. The minimum order derivative present.

Return value: A list consisting of a basis for the solution space of the reduced
ODE and optionally a particular integral of the full ODE. This list does not
contain any equations, and the dependent variable never appears in it. The
particular integral may be omitted if it is zero. The basis is itself a list of
algebraic expressions in the independent variable. (Hence the return value is
always a list and its first element is also always a list.)

Hook names: ODESolve_Before_Non1Grad_Hook,
ODESolve_After_Non1Grad_Hook.

Run before and after: The solver for first-order first-degree nonlinear (“gradi-
ent”) ODEs, which can be expressed in the form dy/dx = gradient(y, x).

Arguments: 3

1. The “gradient”, which is an algebraic expression involving (in general)
the dependent and independent variables, to which the ODE equates
the derivative.

2. The dependent variable.

3. The independent variable.

Return value: A list of equations exactly as returned by ODESOLVE itself. (In
this case the list should normally contain precisely one equation.)

The file extend.tst contains a very simple test and demonstration of the op-
eration of the first three classes of hook. Beware that this extension interface is
experimental and subject to change.
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20.42 ORTHOVEC: Manipulation of Scalars and Vectors

ORTHOVEC is a collection of REDUCE procedures and operations which provide
a simple-to-use environment for the manipulation of scalars and vectors. Opera-
tions include addition, subtraction, dot and cross products, division, modulus, div,
grad, curl, laplacian, differentiation, integration, and Taylor expansion.

Author: James W. Eastwood

Version 2 is summarized in [Eas91]. It differs from the original ([Eas87]) in revised
notation and extended capabilities.

20.42.1 Introduction

The revised version of ORTHOVEC ([Eas91]) is, like the original ([Eas87]), a col-
lection of REDUCE procedures and operators designed to simplify the machine
aided manipulation of vectors and vector expansions frequently met in many ar-
eas of applied mathematics. The revisions have been introduced for two reasons:
firstly, to add extra capabilities missing from the original and secondly, to tidy up
input and output to make the package easier to use.

The changes from Version 1 include:

1. merging of scalar and vector unary and binary operators, +,−, ∗, /

2. extensions of the definitions of division and exponentiation to vectors

3. new vector dependency procedures

4. application of l’Hôpital’s rule in limits and Taylor expansions

5. a new component selector operator

6. algebraic mode output of LISP vector components

The LISP vector primitives are again used to store vectors, although with the in-
troduction of LIST types in algebraic mode in REDUCE 3.4, the implementation
may have been more simply achieved using lists to store vector components.

The philosophy used in Version 2 follows that used in the original: namely, alge-
braic mode is used wherever possible. The view is taken that some computational
inefficiencies are acceptable if it allows coding to be intelligible to (and thence
adaptable by) users other than LISP experts familiar with the internal workings of
REDUCE.

Procedures and operators in ORTHOVEC fall into the five classes: initialisation,
input-output, algebraic operations, differential operations and integral operations.
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Definitions are given in the following sections, and a summary of the procedure
names and their meanings are give in Table 1. The final section discusses test
examples.

20.42.2 Initialisation

The procedure vstart initialises ORTHOVEC. It may be called after ORTHOVEC

has been loaded to reset coordinates. vstart provides a menu of standard coor-
dinate systems:

1. cartesian (x, y, z) = (x, y, z)

2. cylindrical (r, θ, z) = (r, th, z)

3. spherical (r, θ, ϕ) = (r, th, ph)

4. general (u1, u2, u3) = (u1, u2, u3)

5. others

which the user selects by number. Selecting options (1)-(4) automatically sets up
the coordinates and scale factors. Selection option (5) shows the user how to select
another coordinate system. If vstart is not called, then the default cartesian
coordinates are used. ORTHOVEC may be re-initialised to a new coordinate system
at any time during a given REDUCE session by typing

vstart $

20.42.3 Input-Output

ORTHOVEC assumes all quantities are either scalars or 3 component vectors. To
define a vector a with components (c1, c2, c3) use the procedure svec as follows

a := svec(c1, c2, c3);

The standard REDUCE output for vectors when using the terminator “;” is to list
the three components inside square brackets [· · · ], with each component in prefix
form. A replacement for the standard REDUCE procedure maprin is included in
the package to change the output of LISP vector components to algebraic notation.
The procedure vout (which returns the value of its argument) can be used to give
labelled output of components in algebraic form: e.g.,

b := svec (sin(x)**2, y**2, z)$
vout(b)$
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The operator _ can be used to select a particular component (1, 2 or 3) for output
e.g.

b _1 ;

Note the space before the _ operator: otherwise this would be read as identifier
b_1.

20.42.4 Algebraic Operations

Six infix operators, sum, difference, quotient, times, exponentiation and cross prod-
uct, and four prefix operators, plus, minus, reciprocal and modulus are defined in
ORTHOVEC. These operators can take suitable combinations of scalar and vector
arguments, and in the case of scalar arguments reduce to the usual definitions of
+,−, ∗, /, etc.

The operators are represented by symbols

+, -, /, *, ^, ><

The composite >< is an attempt to represent the cross product symbol × in ASCII
characters. If we let v be a vector and s be a scalar, then valid combinations
of arguments of the procedures and operators and the type of the result are as
summarised below. The notation used is
result :=procedure(left argument, right argument) or
result :=(left operand) operator (right operand) .

Vector Addition
v := vectorplus(v) or v := + v
s := vectorplus(s) or s := + s
v := vectoradd(v,v) or v := v + v
s := vectoradd(s,s) or s := s + s

Vector Subtraction
v := vectorminus(v) or v := - v
s := vectorminus(s) or s := - s
v := vectordifference(v,v) or v := v - v
s := vectordifference(s,s) or s := s - s

Vector Division
v := vectorrecip(v) or v := / v
s := vectorrecip(s) or s := / s
v := vectorquotient(v,v) or v := v / v
v := vectorquotient(v, s ) or v := v / s
v := vectorquotient( s ,v) or v := s / v
s := vectorquotient(s,s) or s := s / s
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Vector Multiplication
v := vectortimes( s ,v) or v := s * v
v := vectortimes(v, s ) or v := v * s
s := vectortimes(v,v) or s := v * v
s := vectortimes( s , s ) or s := s * s

Vector Cross Product
v := vectorcross(v,v) or v := v × v

Vector Exponentiation
s := vectorexpt (v, s ) or s := v ˆ s
s := vectorexpt ( s , s ) or s := s ˆ s

Vector Modulus
s := vmod (s)
s := vmod (v)

All other combinations of operands for these operators lead to error messages being
issued. The first two instances of vector multiplication are scalar multiplication of
vectors, the third is the product of two scalars and the last is the inner (dot)
product. The unary operators +, -, / can take either scalar or vector arguments
and return results of the same type as their arguments. vmod returns a scalar.

In compound expressions, parentheses may be used to specify the order of combi-
nation. If parentheses are omitted the ordering of the operators, in increasing order
of precedence is

+ | - | dotgrad | * | >< | ^ | _

and these are placed in the precedence list defined in REDUCE after <. The differ-
ential operator dotgrad is defined in the following section, and the component
selector _ was introduced in section 3.

Vector divisions are defined as follows: If a and b are vectors and c is a scalar, then

a/b =
a · b
| b |2

c/a =
ca

| a |2

Both scalar multiplication and dot products are given by the same symbol, braces
are advisable to ensure the correct precedences in expressions such as (a ·b)(c ·d).

Vector exponentiation is defined as the power of the modulus:
an ≡ vmod(a)n =| a |n
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s := div (v)
v := grad(s)
v := curl(v)
v := delsq(v)
s := delsq(s)
v := v dotgrad v
s := v dotgrad s

Table 20.18: ORTHOVEC valid combinations of operator and argument

20.42.5 Differential Operations

Differential operators provided are div, grad, curl, delsq, and dotgrad. All
but the last of these are prefix operators having a single vector or scalar argument
as appropriate. Valid combinations of operator and argument, and the type of the
result are shown in table 20.18.

All other combinations of operator and argument type cause error messages to be
issued. The differential operators have their usual meanings [Spi59]. The coordi-
nate system used by these operators is set by invoking vstart (cf. Sec. 20.42.2).
The names h1, h2 and h3 are reserved for the scale factors, and u1, u2 and u3
are used for the coordinates.

A vector extension, vdf, of the REDUCE procedure DF allows the differentiation
of a vector (scalar) with respect to a scalar to be performed. Allowed forms are
vdf(v, s)→ v and vdf(s, s)→ s , where, for example

vdf( B,x) ≡ ∂B
∂x

The standard REDUCE declarations depend and nodepend have been redefined
to allow dependences of vectors to be compactly defined. For example

a := svec(a1,a2,a3)$;
depend a,x,y;

causes all three components a1,a2 and a3 of a to be treated as functions of x and
y. Individual component dependences can still be defined if desired.

depend a3,z;

The procedure vtaylor gives truncated Taylor series expansions of scalar or vec-
tor functions:

vtaylor(vex,vx,vpt,vorder);
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VEX VX VPT VORDER

v v v v
v v v s
v s s s
s v v v
s v v s
s s s s

Table 20.19: ORTHOVEC valid combination of argument types.

returns the series expansion of the expression VEX with respect to variable VX
about point VPT to order VORDER. Valid combinations of argument types are
shown in table 20.19.

Any other combinations cause error messages to be issued. Elements of VORDER
must be non-negative integers, otherwise error messages are issued. If scalar
VORDER is given for a vector expansion, expansions in each component are trun-
cated at the same order, VORDER.

The new version of Taylor expansion applies l’Hôpital’s rule in evaluating coef-
ficients, so handle cases such as sin(x)/(x) , etc. which the original version of
ORTHOVEC could not. The procedure used for this is ov_limit, which can be
used directly to find the limit of a scalar function ex of variable x at point pt:-

ans := ov_limit(ex,x,pt);
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20.42.6 Integral Operations

Definite and indefinite vector, volume and scalar line integration procedures are
included in ORTHOVEC. They are defined as follows:

vint(v, x) =

∫
v(x)dx

dvint(v, x, a, b) =

∫ b

a
v(x)dx

volint(v) =

∫
vh1h2h3du1du2du3

dvolint(v, l,u, n) =

∫ u

l
vh1h2h3du1du2du3

lineint(v, ω, t) =

∫
v · dr ≡

∫
vihi

∂ωi

∂t
dt

dlineint(v, ωt, a, b) =

∫ b

a
vihi

∂ωi

∂t
dt

In the vector and volume integrals, v are vector or scalar, a, b, x and n are scalar.
Vectors l and u contain expressions for lower and upper bounds to the integrals.
The integer index n defines the order in which the integrals over u1, u2 and u3 are
performed in order to allow for functional dependencies in the integral bounds:

n order
1 u1 u2 u3
2 u3 u1 u2
3 u2 u3 u1
4 u1 u3 u2
5 u2 u1 u3
otherwise u3 u2 u1

The vector ω in the line integral’s arguments contain explicit paramterisation of the
coordinates u1, u2, u3 of the line u(t) along which the integral is taken.

20.42.7 Test Cases

To use the REDUCE source version of ORTHOVEC, initiate a REDUCE session and
then load the package with the command load_package orthovec; (see
section 23.2 of the REDUCE manual). If coordinate dependent differential and
integral operators other than cartesian are needed, then vstart must be used to
reset coordinates and scale factors.

Six simple examples are given in the Test Run Output file orthovec.rlg to illustrate
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Procedures Description
vstart select coordinate system
svec set up a vector
vout output a vector
vectorcomponent _ extract a vector component (1-3)

vectoradd + add two vectors or scalars
vectorplus + unary vector or scalar plus
vectorminus - unary vector or scalar minus
vectordifference - subtract two vectors or scalars
vectorquotient / vector divided by scalar
vectorrecip / unary vector or scalar division

(reciprocal)
vectortimes * multiply vector or scalar by

vector/scalar
vectorcross >< cross product of two vectors
vectorexpt ^ exponentiate vector modulus or scalar
vmod length of vector or scalar

Table 20.20: Procedures names and operators used in ORTHOVEC (part 1)

the working of ORTHOVEC. The input lines were taken from the file orthovec.tst
(the Test Run Input), but could equally well be typed in at the Terminal.

Example 1

Show that

(a× b) · (c× d)− (a · c)(b · d) + (a · d)(b · c) ≡ 0

Example 2

Write the equation of motion

∂v

∂t
+ v · ∇v +∇p− curl(B)×B

in cylindrical coordinates.

Example 3

Taylor expand

• sin(x) cos(y) + ez about the point (0, 0, 0) to third order in x, fourth order
in y and fifth order in z.

• sin(x)/x about x to fifth order.

• v about x = (x, y, z) to fifth order, where v = (x/ sin(x), (ey − 1)/y, (1 +
z)10).
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Procedures Description
div divergence of vector
grad gradient of scalar
curl curl of vector
delsq laplacian of scalar or vector
dotgrad (vector).grad(scalar or vector)

vtaylor vector or scalar Taylor series of vector or scalar
vptaylor vector or scalar Taylor series of scalar
taylor scalar Taylor series of scalar
limit limit of quotient using l’Hôpital’s rule

vint vector integral
dvint definite vector integral
volint volume integral
dvolint definite volume integral
lineint line integral
dlineint definite line integral

maprin vector extension of REDUCE maprin
depend vector extension of REDUCE depend
nodepend vector extension of REDUCE nodepend

Table 20.21: Procedures names and operators used in ORTHOVEC (part 2)
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Example 4

Obtain the second component of the equation of motion in example 2, and the first
component of the final vector Taylor series in example 3.

Example 5

Evaluate the line integral ∫ r2

r1

A · dr

from point r1 = (1, 1, 1) to point r2 = (2, 4, 8) along the path (x, y, z) =
(s, s2, s3) where

A = (3x2 + 5y)i− 12xyj+ 2xyz2k

and (i, j,k) are unit vectors in the (x, y, z) directions.

Example 6

Find the volume V common to the intersecting cylinders x2 + y2 = r2 and x2 +
z2 = r2 i.e. evaluate

V = 8

∫ r

0
dx

∫ ub

0
dy

∫ ub

0
dz

where ub =
√
r2 − x2
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20.43 PHYSOP: Operator Calculus in Quantum Theory

This package has been designed to meet the requirements of theoretical physicists
looking for a computer algebra tool to perform complicated calculations in quan-
tum theory with expressions containing operators. These operations consist mainly
of the calculation of commutators between operator expressions and in the evalua-
tions of operator matrix elements in some abstract space.

Author: Mathias Warns

20.43.1 Introduction

The package PHYSOP has been designed to meet the requirements of theoretical
physicists looking for a computer algebra tool to perform complicated calculations
in quantum theory with expressions containing operators. These operations consist
mainly in the calculation of commutators between operator expressions and in the
evaluations of operator matrix elements in some abstract space. Since the capabil-
ities of the current REDUCE release to deal with complex expressions containing
noncommutative operators are rather restricted, the first step was to enhance these
possibilities in order to achieve a better usability of REDUCE for these kind of
calculations. This has led to the development of a first package called NONCOM2
which is described in section 2. For more complicated expressions involving both
scalar quantities and operators the need for an additional data type has emerged
in order to make a clear separation between the various objects present in the cal-
culation. The implementation of this new REDUCE data type is realized by the
PHYSOP (for PHYSical OPerator) package described in section 3.

20.43.2 The NONCOM2 Package

The package NONCOM2 redefines some standard REDUCE routines in order to
modify the way noncommutative operators are handled by the system. In standard
REDUCE declaring an operator to be noncommutative using the noncom state-
ment puts a global flag on the operator. This flag is checked when the system has
to decide whether or not two operators commute during the manipulation of an
expression.

The NONCOM2 package redefines the noncom statement in a way more suitable
for calculations in physics. Operators have now to be declared noncommutative
pairwise, i.e. coding:

NONCOM A,B;

declares the operators A and B to be noncommutative but allows them to commute
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with any other (noncommutative or not) operator present in the expression. In a
similar way if one wants e.g. A(X) and A(Y) not to commute, one has now to
code:

NONCOM A,A;

Each operator gets a new property list containing the operators with which it does
not commute. A final example should make the use of the redefined NONCOM
statement clear:

NONCOM A,B,C;

declares A to be noncommutative with B and C, B to be noncommutative with A
and C and C to be noncommutative with A and B. Note that after these declaration
e.g. A(X) and A(Y) are still commuting kernels.

Finally to keep the compatibility with standard REDUCE declaring a single iden-
tifier using the NONCOM statement has the same effect as in standard REDUCE
i.e., the identifier is flagged with the NONCOM tag.

From the user’s point of view there are no other new commands implemented by
the package. Commutation relations have to be declared in the standard way as
described in the manual i.e. using LET statements. The package itself consists
of several redefined standard REDUCE routines to handle the new definition of
noncommutativity in multiplications and pattern matching processes.

CAVEAT: Due to its nature, the package is highly version dependent. The current
version has been designed for the 3.3 and 3.4 releases of REDUCE and may not
work with previous versions. Some different (but still correct) results may occur
by using this package in conjunction with let statements since part of the pattern
matching routines have been redesigned. The package has been designed to bridge
a deficiency of the current REDUCE version concerning the notion of noncommu-
tativity and it is the author’s hope that it will be made obsolete by a future release
of REDUCE.

20.43.3 The PHYSOP package

The package PHYSOP implements a new REDUCE data type to perform calcula-
tions with physical operators. The noncommutativity of operators is implemented
using the NONCOM2 package so this file should be loaded prior to the use of
PHYSOP39. In the following the new commands implemented by the package are

39To build a fast loading version of PHYSOP the NONCOM2 source code should be read in prior
to the PHYSOP code
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described. Beside these additional commands, the full set of standard REDUCE
instructions remains available for performing any other calculation.

20.43.3.1 Type declaration commands

The new REDUCE data type PHYSOP implemented by the package allows the
definition of a new kind of operators (i.e. kernels carrying an arbitrary number
of arguments). Throughout this manual, the name “operator” will refer, unless
explicitly stated otherwise, to this new data type. This data type is in turn divided
into 5 subtypes. For each of this subtype, a declaration command has been defined:

SCALOP A; declares A to be a scalar operator. This operator may carry an ar-
bitrary number of arguments i.e. after the declaration: SCALOP A; all
kernels of the form e.g. A(J), A(1,N), A(N,L,M) are recognized by
the system as being scalar operators.

VECOP V; declares V to be a vector operator. As for scalar operators, the vector
operators may carry an arbitrary number of arguments. For example V(3)
can be used to represent the vector operator V⃗3. Note that the dimension of
space in which this operator lives is arbitrary. One can however address a
specific component of the vector operator by using a special index declared
as PHYSINDEX (see below). This index must then be the first in the argu-
ment list of the vector operator.

TENSOP C(3); declares C to be a tensor operator of rank 3. Tensor operators of
any fixed integer rank larger than 1 can be declared. Again this operator may
carry an arbitrary number of arguments and the space dimension is not fixed.
The tensor components can be addressed by using special PHYSINDEX in-
dices (see below) which have to be placed in front of all other arguments in
the argument list.

STATE U; declares U to be a state, i.e. an object on which operators have a
certain action. The state U can also carry an arbitrary number of arguments.

PHYSINDEX X; declares X to be a special index which will be used to address
components of vector and tensor operators.

It is very important to understand precisely the way how the type declaration com-
mands work in order to avoid type mismatch errors when using the PHYSOP pack-
age. The following examples should illustrate the way the program interprets type
declarations. Assume that the declarations listed above have been typed in by the
user, then:

• A,A(1,N),A(N,M,K) are SCALAR operators.
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• V,V(3),V(N,M) are VECTOR operators.

• C, C(5),C(Y,Z) are TENSOR operators of rank 3.

• U,U(P),U(N,L,M) are STATES.

BUT: V(X),V(X,3),V(X,N,M) are all scalar operators since the special index
X addresses a specific component of the vector operator (which is a scalar
operator). Accordingly, C(X,X,X) is also a scalar operator because the di-
agonal component Cxxx of the tensor operator C is meant here (C has rank 3
so 3 special indices must be used for the components).

In view of these examples, every time the following text refers to scalar operators,
it should be understood that this means not only operators defined by the SCALOP
statement but also components of vector and tensor operators. Depending on the
situation, in some case when dealing only with the components of vector or tensor
operators it may be preferable to use an operator declared with SCALOP rather than
addressing the components using several special indices (throughout the manual,
indices declared with the PHYSINDEX command are referred to as special indices).

Another important feature of the system is that for each operator declared using
the statements described above, the system generates 2 additional operators of the
same type: the adjoint and the inverse operator. These operators are accessible to
the user for subsequent calculations without any new declaration. The syntax is as
following:

If A has been declared to be an operator (scalar, vector or tensor) the adjoint oper-
ator is denoted A!+ and the inverse operator is denoted A!-1 (an inverse adjoint
operator A!+!-1 is also generated). The exclamation marks do not appear when
these operators are printed out by REDUCE (except when the switch NAT is set to
off) but have to be typed in when these operators are used in an input expression.
An adjoint (but no inverse) state is also generated for every state defined by the
user. One may consider these generated operators as ”placeholders” which means
that these operators are considered by default as being completely independent of
the original operator. Especially if some value is assigned to the original operator,
this value is not automatically assigned to the generated operators. The user must
code additional assignement statements in order to get the corresponding values.

Exceptions from these rules are (i) that inverse operators are always ordered at
the same place as the original operators and (ii) that the expressions A!-1*A and
A*A!-1 are replaced40 by the unit operator UNIT. This operator is defined as a
scalar operator during the initialization of the PHYSOP package. It should be used
to indicate the type of an operator expression whenever no other PHYSOP occur
in it. For example, the following sequence:

40This may not always occur in intermediate steps of a calculation due to efficiency reasons.
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SCALOP A;
A:= 5;

leads to a type mismatch error and should be replaced by:

SCALOP A;
A:=5*UNIT;

The operator UNIT is a reserved variable of the system and should not be used for
other purposes.

All other kernels (including standard REDUCE operators) occurring in expressions
are treated as ordinary scalar variables without any PHYSOP type (referred to as
scalars in the following). Assignement statements are checked to ensure correct
operator type assignement on both sides leading to an error if a type mismatch
occurs. However an assignement statement of the form A:= 0 or LET A = 0 is
always valid regardless of the type of A.

Finally a command CLEARPHYSOP has been defined to remove the PHYSOP type
from an identifier in order to use it for subsequent calculations (e.g. as an ordinary
REDUCE operator). However it should be remembered that no substitution rule
is cleared by this function. It is therefore left to the user’s responsibility to clear
previously all substitution rules involving the identifier from which the PHYSOP

type is removed.

Users should be very careful when defining procedures or statements of the type
FOR ALL ... LET ... that the PHYSOP type of all identifiers occurring in
such expressions is unambigously fixed. The type analysing procedure is rather
restrictive and will print out a ”PHYSOP type conflict” error message if such am-
biguities occur.

20.43.3.2 Ordering of operators in an expression

The ordering of kernels in an expression is performed according to the following
rules:
1. Scalars are always ordered ahead of PHYSOP operators in an expression. The
REDUCE statement korder can be used to control the ordering of scalars but
has no effect on the ordering of operators.

2. The default ordering of operators follows the order in which they have been
declared (and not the alphabetical one). This ordering scheme can be changed
using the command OPORDER. Its syntax is similar to the korder statement,
i.e. coding: OPORDER A,V,F; means that all occurrences of the operator A are
ordered ahead of those of V etc. It is also possible to include operators carrying
indices (both normal and special ones) in the argument list of OPORDER. However
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including objects not defined as operators (i.e. scalars or indices) in the argument
list of the OPORDER command leads to an error.

3. Adjoint operators are placed by the declaration commands just after the original
operators on the OPORDER list. Changing the place of an operator on this list
means not that the adjoint operator is moved accordingly. This adjoint operator can
be moved freely by including it in the argument list of the OPORDER command.

20.43.3.3 Arithmetic operations on operators

The following arithmetic operations are possible with operator expressions:

1. Multiplication or division of an operator by a scalar.

2. Addition and subtraction of operators of the same type.

3. Multiplication of operators is only defined between two scalar operators.

4. The scalar product of two VECTOR operators is implemented with a new func-
tion DOT . The system expands the product of two vector operators into an ordinary
product of the components of these operators by inserting a special index generated
by the program. To give an example, if one codes:

VECOP V,W;
V DOT W;

the system will transform the product into:

V(IDX1) * W(IDX1)

where IDX1 is a PHYSINDEX generated by the system (called a DUMMY INDEX
in the following) to express the summation over the components. The identifiers
IDXn (n is a nonzero integer) are reserved variables for this purpose and should
not be used for other applications. The arithmetic operator DOT can be used both
in infix and prefix form with two arguments.

5. Operators (but not states) can only be raised to an integer power. The sys-
tem expands this power expression into a product of the corresponding number of
terms inserting dummy indices if necessary. The following examples explain the
transformations occurring on power expressions (system output is indicated with
an ->):

SCALOP A; A**2;
- --> A*A
VECOP V; V**4;
- --> V(IDX1)*V(IDX1)*V(IDX2)*V(IDX2)
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TENSOP C(2); C**2;
- --> C(IDX3,IDX4)*C(IDX3,IDX4)

Note in particular the way how the system interprets powers of tensor operators
which is different from the notation used in matrix algebra.

6. Quotients of operators are only defined between scalar operator expressions.
The system transforms the quotient of 2 scalar operators into the product of the
first operator times the inverse of the second one. Example41:

SCALOP A,B; A / B;
-1

--> (B )*A

7. Combining the last 2 rules explains the way how the system handles negative
powers of operators:

SCALOP B;
B**(-3);

-1 -1 -1
--> (B )*(B )*(B )

The method of inserting dummy indices and expanding powers of operators has
been chosen to facilitate the handling of complicated operator expressions and par-
ticularly their application on states (see section 3.4.3). However it may be use-
ful to get rid of these dummy indices in order to enhance the readability of the
system’s final output. For this purpose the switch contract has to be turned
on (contract is normally set to OFF). The system in this case contracts over
dummy indices reinserting the DOT operator and reassembling the expanded pow-
ers. However due to the predefined operator ordering the system may not remove
all the dummy indices introduced previously.

20.43.3.4 Special functions

Commutation relations

If 2 PHYSOPs have been declared noncommutative using the (redefined) noncom
statement, it is possible to introduce in the environment elementary (anti-) com-
mutation relations between them. For this purpose, 2 scalar operators comm and
anticomm are available. These operators are used in conjunction with let state-
ments. Example:

41This shows how inverse operators are printed out when the switch NAT is on
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SCALOP A,B,C,D;
LET COMM(A,B)=C;
FOR ALL N,M LET ANTICOMM(A(N),B(M))=D;
VECOP U,V,W; PHYSINDEX X,Y,Z;
FOR ALL X,Y LET COMM(V(X),W(Y))=U(Z);

Note that if special indices are used as dummy variables in FOR ALL ...
LET constructs then these indices should have been declared previously using the
PHYSINDEX command.

Every time the system encounters a product term involving 2 noncommutative
operators which have to be reordered on account of the given operator ordering,
the list of available (anti-) commutators is checked in the following way: First the
system looks for a commutation relation which matches the product term. If it fails
then the defined anticommutation relations are checked. If there is no successful
match the product term A*B is replaced by:

A*B;
--> COMM(A,B) + B*A

so that the user may introduce the commutation relation later on.

The user may want to force the system to look for anticommutators only; for this
purpose a switch anticom is defined which has to be turned on (anticom is
normally set to OFF). In this case, the above example is replaced by:

ON ANTICOM;
A*B;
--> ANTICOMM(A,B) - B*A

Once the operator ordering has been fixed (in the example above B has to be or-
dered ahead of A), there is no way to prevent the system from introducing (anti-
)commutators every time it encounters a product whose terms are not in the right
order. On the other hand, simply by changing the OPORDER statement and reeval-
uating the expression one can change the operator ordering without the need to
introduce new commutation relations. Consider the following example:

SCALOP A,B,C; NONCOM A,B; OPORDER B,A;
LET COMM(A,B)=C;
A*B;
- --> B*A + C;
OPORDER A,B;
B*A;

- --> A*B - C;
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The functions comm and anticomm should only be used to define elemen-
tary (anti-) commutation relations between single operators. For the calcula-
tion of (anti-) commutators between complex operator expressions, the functions
commute and anticommute have been defined. Example (is included as ex-
ample 1 in the test file):

VECOP P,A,K;
PHYSINDEX X,Y;
FOR ALL X,Y LET COMM(P(X),A(Y))=K(X)*A(Y);
COMMUTE(P**2,P DOT A);

Adjoint expressions

As has been already mentioned, for each operator and state defined using the dec-
laration commands quoted in section 3.1, the system generates automatically the
corresponding adjoint operator. For the calculation of the adjoint representation of
a complicated operator expression, a function adj has been defined. Example42:

SCALOP A,B;
ADJ(A*B);

+ +
--> (B )*(A )

Application of operators on states

For this purpose, a function opapply has been defined. It has 2 arguments and
is used in the following combinations:

(i) let opapply(operator, state) = state; This is to define a elementary action
of an operator on a state in analogy to the way elementary commutation relations
are introduced to the system. Example:

SCALOP A; STATE U;
FOR ALL N,P LET OPAPPLY((A(N),U(P))= EXP(I*N*P)*U(P);

(ii) let opapply(state, state) = scalar exp.; This form is to define scalar prod-
ucts between states and normalization conditions. Example:

STATE U;
FOR ALL N,M LET OPAPPLY(U(N),U(M)) =

IF N=M THEN 1 ELSE 0;

42This shows how adjoint operators are printed out when the switch nat is on
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(iii) state := opapply(operator expression, state); In this way, the action of
an operator expression on a given state is calculated using elementary relations
defined as explained in (i). The result may be assigned to a different state vector.

(iv) opapply(state, opapply(operator expression, state)); This is the way
how to calculate matrix elements of operator expressions. The system proceeds in
the following way: first the rightmost operator is applied on the right state, which
means that the system tries to find an elementary relation which match the appli-
cation of the operator on the state. If it fails the system tries to apply the leftmost
operator of the expression on the left state using the adjoint representations. If
this fails also, the system prints out a warning message and stops the evaluation.
Otherwise the next operator occuring in the expression is taken and so on until the
complete expression is applied. Then the system looks for a relation expressing the
scalar product of the two resulting states and prints out the final result. An example
of such a calculation is given in the test file.

The infix version of the opapply function is the vertical bar | . It is right asso-
ciative and placed in the precedence list just above the minus (−) operator. Some
of the REDUCE implementation may not work with this character, the prefix form
should then be used instead43.

20.43.4 Known problems in the current release of PHYSOP

(i) Some spurious negative powers of operators may appear in the result of a cal-
culation using the PHYSOP package. This is a purely ”cosmetic” effect which is
due to an additional factorization of the expression in the output printing routines
of REDUCE. Setting off the REDUCE switch allfac (allfac is normally on)
should make these terms disappear and print out the correct result (see example 1
in the test file).

(ii) The current release of the PHYSOP package is not optimized w.r.t. computation
speed. Users should be aware that the evaluation of complicated expressions in-
volving a lot of commutation relations requires a significant amount of CPU time
and memory. Therefore the use of PHYSOP on small machines is rather limited.
A minimal hardware configuration should include at least 4 MB of memory and a
reasonably fast CPU (type Intel 80386 or equiv.).

(iii) Slightly different ordering of operators (especially with multiple occurrences
of the same operator with different indices) may appear in some calculations due
to the internal ordering of atoms in the underlying LISP system (see last example
in the test file). This cannot be entirely avoided by the package but does not affect
the correctness of the results.

43The source code can also be modified to choose another special character for the function
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20.43.5 Final remarks

The package PHYSOP has been presented by the author at the IV inter. Conference
on Computer Algebra in Physical Research, Dubna (USSR) 1990 (see [War91]). It
has been developed with the aim in mind to perform calculations of the type exem-
plified in the test file included in the distribution of this package. However it should
also be useful in some other domains like e.g. the calculations of complicated Feyn-
man diagrams in QCD which could not be performed using the HEPHYS package.
The author is therefore grateful for any suggestion to improve or extend the usabil-
ity of the package. Users should not hesitate to contact the author for additional
help and explanations on how to use this package. Some bugs may also appear
which have not been discovered during the tests performed prior to the release of
this version. Please send in this case to the author a short input and output listing
displaying the encountered problem.
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20.43.6 Appendix: List of error and warning messages

In the following the error (E) and warning (W) messages specific to the PHYSOP
package are listed.

cannot declare x as data type (W): An attempt has been made to declare
an object x which cannot be used as a PHYSOP operator of the required type.
The declaration command is ignored.

x already defined as data type (W): The object x has already been de-
clared using a REDUCE type declaration command and can therefore not
be used as a PHYSOP operator. The declaration command is ignored.

x already declared as data type (W): The object x has already been de-
clared with a PHYSOP declaration command. The declaration command is
ignored.

x is not a PHYSOP (E): An invalid argument has been included in an
OPORDER command. Check the arguments.

invalid argument(s) to function (E): A function implemented by the
PHYSOP package has been called with an invalid argument. Check type
of arguments.
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Type conflict in operation (E): A PHYSOP type conflict has occured dur-
ing an arithmetic operation. Check the arguments.

invalid call of function with args: arguments (E): A function of
the PHYSOP package has been declared with invalid argument(s). Check
the argument list.

type mismatch in expression (E): A type mismatch has been detected in an
expression. Check the corresponding expression.

type mismatch in assignement (E): A type mismatch has been detected in
an assignment or in a LET statement. Check the listed statement.

PHYSOP type conflict in expr (E): A ambiguity has been detected dur-
ing the type analysis of the expression. Check the expression.

operators in exponent cannot be handled (E): An operator has
occurred in the exponent of an expression.

cannot raise a state to a power (E): states cannot be exponentiated
by the system.

invalid quotient (E): An invalid denominator has occurred in a quotient.
Check the expression.

physops of different types cannot be commuted (E): An in-
valid operator has occurred in a call of the COMMUTE/ANTICOMMUTE func-
tion.

commutators only implemented between scalar operators
(E): An invalid operator has occurred in the call of the
COMMUTE/ANTICOMMUTE function.

evaluation incomplete due to missing elementary relations
(W): The system has not found all the elementary commutators or
application relations necessary to calculate or reorder the input expression.
The result may however be used for further calculations.
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20.44 PM: A REDUCE Pattern Matcher

PM is a general pattern matcher similar in style to those found in systems such
as SMP and Mathematica, and is based on the pattern matcher described in Kevin
McIsaac, “Pattern Matching Algebraic Identities”, SIGSAM Bulletin, 19 (1985),
4-13.

Author: Kevin McIsaac

PM is a general pattern matcher similar in style to those found in systems such as
SMP and Mathematica, and is based on the pattern matcher described in [McI85].
The following is a description of its structure.

A template is any expression composed of literal elements, e.g. 5, a, or a+1, and
specially-denoted pattern variables, e.g. ?a or ??b. Atoms beginning with ? are
called generic variables and match any expression.

Atoms beginning with ?? are called multi-generic variables and match any ex-
pression or any sequence of expressions including the null or empty sequence. A
sequence is an expression of the form [a1,a2,...]. When placed in a func-
tion argument list the brackets are removed, i.e. f([a,1]) -> f(a,1) and
f(a,[1,2],b) -> f(a,1,2,b).

A template is said to match an expression if the template is literally equal to the ex-
pression, or if by replacing any of the generic or multi-generic symbols occurring in
the template, the template can be made to be literally equal to the expression. These
replacements are called the bindings for the generic variables. A replacement is
an expression of the form exp1 -> exp2, which means exp1 is replaced by
exp2, or exp1 -> exp2, which is the same except exp2 is not simplified until
after the substitution for exp1 is made. If the expression has any of the properties
associativity, commutativity, or an identity element, they are used to determine if
the expressions match. If an attempt to match the template to the expression fails
the matcher backtracks, unbinding generic variables, until it reaches a place where
it can make a different choice. It then proceeds along the new branch.

The current matcher proceeds from left to right in a depth-first search of the tem-
plate expression tree. Rearrangements of the expression are generated when the
match fails and the matcher backtracks.

The matcher also supports semantic matching. Briefly, if a subtemplate does not
match the corresponding subexpression because they have different structures, then
the two are equated and the matcher continues matching the rest of the expression
until all the generic variables in the subexpression are bound. The equality is then
checked. This is controlled by the switch semantic. By default it is on.
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20.44.1 M(exp,temp)

The template temp is matched against the expression exp. If the template is
literally equal to the expression T is returned. If the template is literally equal to
the expression after replacing the generic variables by their bindings then the set of
bindings is returned as a set of replacements. Otherwise 0 (nil) is returned.

Examples:

A “literal” template:

m(f(a), f(a));
t

Not literally equal:

m(f(a), f(b));
0

Nested operators:

m(f(a,h(b)), f(a,h(b)));
t

“Generic” templates:

m(f(a,b), f(a,?a));
{?a -> b}
m(f(a,b), f(?a,?b));
{?b -> b, ?a -> a}

The multi-generic symbol ??a matches the “rest” of the arguments:

m(f(a,b), f(??a));
{??a -> {[a, b]}

but the generic symbol ?a does not:

m(f(a,b), f(?a));
0

Flag h as “associative”:

flag(’(h), ’assoc);
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Associativity is used to group terms together:

m(h(a,b,d,e), h(?a,d,?b));
{?b -> e, ?a -> h(a,b)}

“plus” is a symmetric function:

m(a+b+c, c+?a+?b);
{?b -> a, ?a -> b}

and it is also associative

m(a+b+c, b+?a);
{?a -> c + a}

Note that the effect of using a multi-generic symbol is different:

m(a+b+c,b+??c);
{??c -> [c,a]}

20.44.2 temp _= logical_exp

A template may be qualified by the use of the conditional operator _=,
such!-that. When a such-that condition is encountered in a template, it
is held until all generic variables appearing in logical_exp are bound.

On the binding of the last generic variable, logical_exp is simplified and if
the result is not T the condition fails and the pattern matcher backtracks. When
the template has been fully parsed any remaining held such-that conditions are
evaluated and compared to T.

Examples:

m(f(a,b), f(?a,?b_=(?a=?b)));
0
m(f(a,a), f(?a,?b_=(?a=?b)));
{?b -> a, ?a -> a}

Note that f(?a,?b_=(?a=?b)) is the same as f(?a,?a).



966 CHAPTER 20. USER CONTRIBUTED PACKAGES

20.44.3 S(exp,{temp1→ sub1, temp2→ sub2, . . . }, rept, depth)

Substitute the set of replacements into exp, re-substituting a maximum of rept
times and to a maximum depth depth. rept and depth have the default values
of 1 and∞ respectively. Essentially, S is a breadth-first search-and-replace. (There
is also a depth-first version, Sd(...).) Each template is matched against exp
until a successful match occurs.

Any replacements for generic variables are applied to the r.h.s. of that replacement
and exp is replaced by the r.h.s. The substitution process is restarted on the new
expression starting with the first replacement. If none of the templates match exp
then the first replacement is tried against each sub-expression of exp. If a matching
template is found then the sub-expression is replaced and process continues with
the next sub-expression.

When all sub-expressions have been examined, if a match was found, the expres-
sion is evaluated and the process is restarted on the sub-expressions of the resulting
expression, starting with the first replacement. When all sub-expressions have been
examined and no match found the sub-expressions are reexamined using the next
replacement. Finally when this has been done for all replacements and no match
found then the process recures on each sub-expression. The process is terminated
after rept replacements or when the expression no longer changes.

The command

Si(exp, {temp1 -> sub1, temp2 -> sub2, ...}, depth)

means “substitute infinitely many times until expression stops changing”. It is
short-hand for S(exp,{temp1 -> sub1, temp2 -> sub2,...},Inf,
depth).

Examples:

s(f(a,b), f(a,?b) -> ?b\^{}2);
2
b
s(a+b, a+b -> a{*}b);
b*a

“Associativity” is used to group a+ b+ c to (a+ b) + c:

s(a+b+c, a+b -> a*b);
b*a + c

The next three examples use a rule set that defines the factorial function. Substitute
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once:

s(nfac(3),
{nfac(0) -> 1, nfac(?x) -> ?x*nfac(?x-1)});

3*nfac(2)

Substitute twice:

s(nfac(3),
{nfac(0) -> 1, nfac(?x) -> ?x*nfac(?x-1)}, 2);

6*nfac(1)

Substitute until expression stops changing:

si(nfac(3),
{nfac(0) -> 1, nfac(?x) -> ?x{*}nfac(?x-1)});

6

Only substitute at the top level:

s(a+b+f(a+b), a+b -> a*b, inf, 0);
f(b+a) + b*a

20.44.4 temp :- exp and temp ::- exp

If during simplification of an expression, tempmatches some sub-expression, then
that sub-expression is replaced by exp. If there is a choice of templates to apply,
the least general is used.

If an old rule exists with the same template, then the old rule is replaced by the new
rule. If exp is nil the rule is retracted.

temp ::- exp is the same as temp :- exp, but the l.h.s. is not simplified
until the replacement is made.

Examples:

Define the factorial function of a natural number as a recursive function and a
termination condition. For all other values write it as a gamma function. Note that
the order of definition is not important, as the rules are re-ordered so that the most
specific rule is tried first. Note the use of ::- instead of :- to stop simplification
of the l.h.s. hold stops its arguments from being simplified.

fac(?x _= Natp(?x)) ::- ?x*fac(?x-1);



968 CHAPTER 20. USER CONTRIBUTED PACKAGES

hold(fac(?X-1)*?X)
fac(0) :- 1;
1
fac(?x) :- Gamma(?x+1);
gamma(?X + 1)
fac(3);
6
fac(3/2);
gamma(5/2)

20.44.5 Arep({rep1,rep2,. . . })

In future simplifications automatically apply replacements rep1, rep2, ...
until the rules are retracted. In effect, this replaces the operator -> by :- in the set
of replacements {rep1, rep2, ...}.

20.44.6 Drep({rep1,rep2,..})

Delete the rules rep1, rep2, ....

As we said earlier, the matcher has been constructed along the lines of the pat-
tern matcher described in McIsaac with the addition of such-that conditions and
“semantic matching” as described in Grief. To make a template efficient, some
consideration should be given to the structure of the template and the position of
such-that statements. In general the template should be constructed so that fail-
ure to match is recognized as early as possible. The multi-generic symbol should
be used whenever appropriate, particularly with symmetric functions. For further
details see McIsaac.

Examples:

f(?a,?a,?b) is better than f(?a,?b,?c_=(?a=?b)). ?a+??b is better
than ?a+?b+?c....

The template f(?a+?b,?a,?b), matched against f(3,2,1) is matched as
f(?e_=(?e=?a+?b),?a,?b) when semantic matching is allowed.

20.44.7 Switches

trpm Produces a trace of the rules applied during a substitution. This is useful to
see how the pattern matcher works, or to understand an unexpected result.

In general usage the following switches need not be considered:
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semantic Allow semantic matches, e.g. f(?a+?b,?a,?b) will match
f(3,2,1), even though the matcher works from left to right.

sym!-assoc Limits the search space of symmetric associative functions when
the template contains multi-generic symbols so that generic symbols will not
function. For example (a+b+c,?a+??b) will return

{?a -> a, ??b -> [b,c]} or
{?a -> b, ??b -> [a,c]} or
{?a -> c, ??b -> [a,b]}

but not {?a -> a+b, ??b -> c}, etc. No sane template should require
these types of matches. However they can be made available by turning the
switch off.



970 CHAPTER 20. USER CONTRIBUTED PACKAGES

20.45 QHULL: Compute the Complex Hull

This package is an interface to qhull (www.qhull.org), which has to be installed
externally. There are 3 options for this package to find the qhull program:

1. Put it into the path of your shell (recommended).

2. Set and export an environment variable QHULL to the complete path, e.g., in
the Bash:

export QHULL=/usr/bin/qhull

3. Inside Reduce set the variable qhull_call!* to the complete path, e.g.,

symbolic(qhull_call!* := "/usr/bin/qhull");

Example: Compute the convex hull of a list integer points as a subset of that list as
follows:

1: qhull {{2,0,0}, {0,2,0}, {0,2,2}, {0,0,0}, {1,1,1}};

{{2,0,0},{0,2,0},{0,2,2},{0,0,0}}

2: symbolic;

nil

3* qhull_qhull
{{2,0,0}, {0,2,0}, {0,2,2}, {0,0,0}, {1,1,1}};

((2 0 0) (0 2 0) (0 2 2) (0 0 0))

Author: Thomas Sturm, March 2013

http://www.qhull.org
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20.46 QSUM: Indefinite and Definite Summation of q-
Hypergeometric Terms

Authors: Harald Böing and Wolfram Koepf

20.46.1 Introduction

This package is an implementation of the q-analogues of Gosper’s and Zeil-
berger’s44 algorithm for indefinite, and definite summation of q-hypergeometric
terms, respectively.

An expression ak is called a q-hypergeometric term, if ak/ak−1 is a rational func-
tion with respect to qk. Most q-terms are based on the q-shifted factorial or
qpochhammer. Other typical q-hypergeometric terms are ratios of products of pow-
ers, q-factorials, q-binomial coefficients, and q-shifted factorials that are integer-
linear in their arguments.

20.46.2 Elementary q-Functions

Our package supports the input of the following elementary q-functions:

• qpochhammer(a,q,infinity)

(a; q)∞ :=

∞∏
j=0

(
1− a qj

)
• qpochhammer(a,q,k)

(a; q)k :=


∏k−1

j=0

(
1− a qj

)
if k > 0

1 if k = 0∏k
j=1

(
1− a q−j

)−1 if k < 0

• qbrackets(k,q)

[q, k] :=
qk − 1

q − 1

• qfactorial(k,q)

[k]q! :=
(q; q)k
(1− q)k

44The ZEILBERG package (see [Koe95b]) contains the hypergeometric versions. Those algo-
rithms are described in [Gos78],[Zei91],[Zei90] and [Koe95a].
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• qbinomial(n,k,q)(
n

k

)
q

:=
(q; q)n

(q; q)k · (q; q)n−k

Furthermore it is possible to use an abbreviation for the generalized q-hypergeometric
series (basic generalized hypergeometric series, see e. g. [GR90], Chapter 1) which
is defined as:

rϕs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q, z] :=
∞∑
k=0

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

zk

(q; q)k

[
(−1)k q(

k
2)
]1+s−r

(20.95)

where (a1, a2, . . . , ar; q)k is a short form to write the product
∏r

j=1 (aj ; q)k. An
rϕs series terminates if one of its numerator parameters is of the form q−n with

n ∈ N. The additional factor
[
(−1)k q(

k
2)
]1+s−r

(which does not occur in the
corresponding definition of the generalized hypergeometric function) is due to a
confluence process. With this factor one gets the simple formula:

lim
ar→∞ rϕs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q, z] = r−1ϕs

[
a1, a2, . . . , ar−1

b1, b2, . . . , bs

∣∣∣∣ q, z].
Another variation is the bilateral basic hypergeometric series (see e. g. [GR90],
Chapter 5) that is defined as

rψs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q, z] := ∞∑
k=−∞

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

zk
[
(−1)k q(

k
2)
]s−r

.

The summands of those generalized q-hypergeometric series may be entered by

• qphihyperterm(a1,a2,...,a3,b1,b2,...,b3,q,z,k) and

• qpsihyperterm(a1,a2,...,a3,b1,b2,...,b3,q,z,k)

respectively.

20.46.3 q-Gosper Algorithm

The q-Gosper algorithm[Koo93] is a decision procedure, that decides by alge-
braic calculations whether or not a given q-hypergeometric term ak has a q-
hypergeometric term antidifference gk, i. e. ak = gk − gk−1 with gk/gk−1 rational
in qk. The ratio gk/ak is also rational in qk — an important fact which makes the
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rational certification (see § 20.46.4) of Zeilberger’s algorithm possible. If the pro-
cedure is successful it returns gk, in which case we call ak q-Gosper-summable.
Otherwise no q-hypergeometric antidifference exists. Therefore if the q-Gosper
algorithm does not return a q-hypergeometric antidifference, it has proved that no
such solution exists, an information that may be quite useful and important.

Any antidifference is uniquely determined up to a constant, and is denoted by

gk =
∑

ak δk .

Finding gk given ak is called indefinite summation. The antidifference operator Σ
is the inverse of the downward difference operator ∇ak = ak − ak−1. There is
an analogous summation theory corresponding to the upward difference operator
∆ak = ak+1 − ak.

In case, an antidifference gk of ak is known, any sum
∑n

k=m ak can be easily
calculated by an evaluation of g at the boundary points like in the integration case:

n∑
k=m

ak = gn − gm−1

20.46.4 q-Zeilberger Algorithm

The q-Zeilberger algorithm [Koo93] deals with the definite summation of q-hyper-
geometric terms f(n, k) wrt. n and k:

s(n) :=
∞∑

k=−∞
f(n, k)

Zeilberger’s idea is to use Gosper’s algorithm to find an inhomogeneous recurrence
equation with polynomial coefficients for f(n, k) of the form

J∑
j=0

σj(n) · f(n+ j, k) = g(k)− g(k − 1), (20.96)

where g(k)/f(k) is rational in qk and qn. Assuming finite support of f(n, k) wrt.
k (i. e. f(n, k) = 0 for any n and all sufficiently large k) we can sum equation
(20.96) over all k ∈ Z. Thus we receive a homogeneous recurrence equation with
polynomial coefficients (called holonomic equation) for s(n):

J∑
j=0

σj(n) · s(n+ j) = 0 (20.97)

At this stage the implementation assumes that the summation bounds are infinite
and the input term has finite support wrt. k. If those input requirements are not
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fulfilled the resulting recursion is probably not valid. Thus we strongly advise the
user to check those requirements.

Despite this restriction you may still be able to get valuable information by the
program: On request it returns the left hand side of the recurrence equation (20.97)
and the antidifference g(k) of equation (20.96).

Once you have the certificate g(k) it is trivial (at least theoretically) to prove equat-
ion (20.97) as long as the input requirements are fulfilled. Let’s assume somone
gives us equation (20.96). If we divide it by f(n, k) we get a rational identity (in
qn and qk) —due to the fact that g(k)/f(n, k) is rational in qn and qk. Once we
confirmed this identity we sum equation (20.96) over k ∈ Z:

∑
k∈Z

J∑
j=0

σj(n) · f(n+ j, k) =
∑
k∈Z

(g(k)− g(k − 1)), (20.98)

Again we exploit the fact that g(k) is a rational multiple of f(n, k) and thus g(k)
has finite support which makes the telescoping sum on the right hand side vanish.
If we exchange the order of summation we get equation (20.97) which finishes the
proof.

Note that we may relax the requirements for f(n, k): An infinite support is possible
as long as lim

k→∞
g(k) = 0. (This is certainly true if lim

k→∞
p(k) f(k) = 0 for all

polynomials p(k).)

For a quite general class of q-hypergeometric terms (proper q-hypergeometric
terms) the q-Zeilberger algorithm always finds a recurrence equation, not necessar-
ily of lowest order though. Unlike Zeilberger’s original algorithm its q-analogue
more often fails to determine the recursion of lowest possible order, however (see
[PR95]).

If the resulting recurrence equation is of first order

a(n) s(n− 1) + b(n) s(n) = 0 ,

s(n) turns out to be a q-hypergeometric term (as a and b are polynomials in qn),
and a q-hypergeometric solution can be easily established using a suitable initial
value.

If the resulting recurrence equation has order larger than one, this information can
be used for identification purposes: Any other expression satisfying the same re-
currence equation, and the same initial values, represents the same function.

Our implementation is mainly based on [Koo93] and on the hypergeometric ana-
logue described in [Koe95a]. More examples can be found in [GR90], [Gas95],
some of which are contained in the test file qsum.tst.
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20.46.5 REDUCE operator qgosper

The qgosper operator is an implementation of the q-Gosper algorithm.

• qgosper(a,q,k) determines a q-hypergeometric antidifference. (By de-
fault it returns a downward antidifference, which may be changed by the
switch qgosper_down; see also § 20.46.8.) If it does not return a q-
hypergeometric antidifference, then such an antidifference does not exist.

• qgosper(a,q,k,m,n) determines a closed formula for the definite sum
n∑

k=m

ak using the q-analogue of Gosper’s algorithm. This is only successful

if q-Gosper’s algorithm applies.

Examples: The following two examples can be found in [GR90] ((II.3) and
(2.3.4)).

1: qgosper(qpochhammer(a,q,k)*q^k/qpochhammer(q,q,k),q,k);

k
(q *a - 1)*qpochhammer(a,q,k)
-------------------------------

(a - 1)*qpochhammer(q,q,k)

2: qgosper(qpochhammer(a,q,k)*qpochhammer(a*q^2,q^2,k)*
qpochhammer(q^(-n),q,k)*q^(n*k)/(qpochhammer(a,q^2,k)*
qpochhammer(a*q^(n+1),q,k)*qpochhammer(q,q,k)),q,k);

k*n k k n
( - q *(q *a - 1)*(q - q )

1 2 2

*qpochhammer(----,q,k)*qpochhammer(a*q ,q ,k)
n
q

2*k n

*qpochhammer(a,q,k))/((q *a - 1)*(q - 1)

n 2

*qpochhammer(q *a*q,q,k)*qpochhammer(a,q ,k)

*qpochhammer(q,q,k))

Here are some other simple examples:

3: qgosper(qpochhammer(q^(-n),q,k)*z^k
/qpochhammer(q,q,k),q,k);
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***** No q-hypergeometric antidifference exists.

4: off qgosper_down;

5: qgosper(q^k*qbrackets(k,q),q,k);

k k
- q *(q + 1 - q )*qbrackets(k,q)

-----------------------------------
k

(q - 1)*(q + 1)*(q - 1)

6: on qgosper_down;

7: qgosper(q^k,q,k,0,n);

n
q *q - 1

----------
q - 1

20.46.6 REDUCE operator qsumrecursion

The qsumrecursion operator is an implementation of the q-Zeilberger algo-
rithm. It tries to determine a homogeneous recurrence equation for summ(n) wrt.
n with polynomial coefficients (in n), where

summ(n) :=
∞∑

k=−∞
f(n, k).

If successful the left hand side of the recurrence equation (20.97) is returned.

There are three different ways to pass a summand f(n, k) to qsumrecursion:

• qsumrecursion(f,q,k,n), where f is a q-hypergeometric term wrt.
k and n, k is the summation variable and n the recursion variable, q is a
symbol.

• qsumrecursion(upper,lower,q,z,n) is a shortcut for
qsumrecursion(qphihyperterm(upper,lower,q,z,k),

q,k,n)

• qsumrecursion(f,upper,lower,q,z,n) is a similar shortcut for
qsumrecursion(f*qphihyperterm(upper,lower,q,z,k),

q,k,n),
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i. e. upper and lower are lists of upper and lower parameters of the generalized
q-hypergeometric function. The third form is handy if you have any additional
factors.

For all three instances the following variations are allowed:

• If for some reason the recursion order is known in advance you can spec-
ify it as an additional (optional ) argument at the very end of the parame-
ter sequence. There are two ways. If you just specify a positive integer,
qsumrecursion looks only for a recurrence equation of this order. You
can also specify a range by a list of two positive integers, i. e. the first one
specifying the lowest and the second one the highest order.

By default qsumrecursion will search for recurrences of order from 1
to 5. (The global variable qsumrecursion_recrange!* controls this
behavior, see § 20.46.8.)

• Usually qsumrecursion uses summ as a name for the summ-function
defined above. If you want to use another operator, say e. g. s, then the
following syntax applies: qsumrecursion(f,q,k,s(n))

As a first example we want to consider the q-binomial theorem:

∞∑
k=0

(a; q)k
(q; q)k

zk =
(a z; q)∞
(z; q)∞

,

provided that |z|, |q| < 1. It is the q-analogue of the binomial theorem in the sense
that

lim
q→1−

∞∑
k=0

(qa; q)k
(q; q)k

zk =
∞∑
k=0

(a)k
k!

zk = (1− z)−a .

For a := q−n with n ∈ N our implementation gets:

8: qsumrecursion(qpochhammer(q^(-n),q,k)*z^k/
qpochhammer(q,q,k),q,k,n);

n n
- ((q - z)*summ(n - 1) - q *summ(n))

Notice that the input requirements are fulfilled. For n ∈ N the summand is zero
for all k > n as (q−n; q)k = 0 and the (q; q)k-term in the denominator makes the
summand vanish for all k < 0.

With the switch qsumrecursion_certificate it is possible to get the an-
tidifference gk described above. When switched on, qsumrecursion returns a
list with five entries, see § 20.46.8. For the last example we get:
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9: on qsumrecursion_certificate;

10: proof:= qsumrecursion(qpochhammer(q^(-n),q,k)*z^k/
qpochhammer(q,q,k),q,k,n);

n n
proof := - ((q - z)*summ(n - 1) - q *summ(n)),

k n
- (q - q )*z

----------------,
n

q - 1

k 1
z *qpochhammer(----,q,k)

n
q

--------------------------,
qpochhammer(q,q,k)

k,

downward_antidifference

11: off qsumrecursion_certificate;

Let’s define the list entries as {rec,cert,f,k,dir}. If you substitute
summ(n+ j) by f(n+ j, k) in rec then you obtain the left hand side of equation
(20.96), where f is the input summand. The function g(k) := f*cert is the cor-
responding antidifference, where dir states which sort of antidifference was cal-
culated downward_antidifference or upward_antidifference, see
also § 20.46.8. Those informations enable you to prove the recurrence equation for
the sum or supply you with the necessary informations to determine an inhomoge-
neous recurrence equation for a sum with nonnatural bounds.

For our last example we can now calculate both sides of equation (20.96):

12: lhside:= qsimpcomb(sub(summ(n)=part(proof,3),
summ(n-1)=sub(n=n-1,part(proof,3)),part(proof,1)));

k k n n
lhside := (z *(q *(q - z) + q *(z - 1))

1 n

*qpochhammer(----,q,k))/((q - 1)
n

q
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*qpochhammer(q,q,k))

13: rhside:= qsimpcomb((part(proof,2)*part(proof,3)-
sub(k=k-1,part(proof,2)*part(proof,3))));

k k n n k
rhside := ( - z *((q - q )*z - q *(q - 1))

1 n

*qpochhammer(----,q,k))/((q - 1)
n

q

*qpochhammer(q,q,k))

14: qsimpcomb((rhside-lhside)/part(proof,3));

0

Thus we have proved the validity of the recurrence equation.

As some other examples we want to consider some generalizations of orthogonal
polynomials from the Askey–Wilson–scheme [KS94]: The q-Laguerre (3.21), q-
Charlier (3.23) and the continuous q-Jacobi (3.10) polynomials.

15: operator qlaguerre,qcharlier;

16: qsumrecursion(qpochhammer(q^(alpha+1),q,n)/
qpochhammer(q,q,n),
{q^(-n)}, {q^(alpha+1)}, q, -x*q^(n+alpha+1),
qlaguerre(n));

n alpha + n n
((q + 1 - q )*q - q *(q *x + q))

*qlaguerre(n - 1) + (

alpha + n
(q - q)*qlaguerre(n - 2)

n
+ (q - 1)*qlaguerre(n))*q

17: qsumrecursion({q^(-n),q^(-x)},{0},q,-q^(n+1)/a,
qcharlier(n));

x n n 2*n
- ((q *((q + 1 - q )*a + q )*q - q )
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x

*qcharlier(n - 1) + q *(

n n
(q + a*q)*(q - q)*qcharlier(n - 2)

- qcharlier(n)*a*q))

18: on qsum_nullspace;

19: term:= qpochhammer(q^(alpha+1),q,n)/qpochhammer(q,q,n)*
qphihyperterm({q^(-n),q^(n+alpha+beta+1),

q^(alpha/2+1/4)*exp(I*theta),
q^(alpha/2+1/4)*exp(-I*theta)},

{q^(alpha+1),
-q^((alpha+beta+1)/2),
-q^((alpha+beta+2)/2)},

q,q,k)$

20: qsumrecursion(term,q,k,n,2);

n i*theta alpha beta n
- ((q *e *(q *(q *(q *(q + 1) - q)

alpha + beta + n

n beta + n

*(q + 1 - q - q )) -

(alpha + beta)/2 alpha n
q *(q *(q *(q + 1) - q

beta + n n
+ q *(q + 1 - q ))

2*alpha + beta + 2*n
- (q + q)))

(2*alpha + 1)/4

*(sqrt(q) + q) + q

2*i*theta alpha + beta + 2*n 2

*(e + 1)*(q - q )

alpha + beta + 2*n

*(q - 1))

alpha + beta + 2*n
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*(q - q)*summ(n - 1) -

i*theta (alpha + beta + 2*n)/2
e *((q

(alpha + beta + 2*n)/2

*(q + q)

(alpha + beta + 2*n)/2

*(q - q)

*(sqrt(q) + q) + (

(2*alpha + 2*beta + 4*n + 1)/2
q

alpha + beta + 2*n 2
+ q)*(q - q )

alpha + beta + n n
)*(q - 1)*(q - 1)

alpha

*summ(n) + (q *(sqrt(q)*q

alpha + beta + 2*n
+ q ) +

(3*alpha + beta + 2*n)/2
q

*(sqrt(q) + q))

alpha + beta + 2*n

*(q - 1)

alpha + n beta + n

*(q - q)*(q - q)

*summ(n - 2)))

21: off qsum_nullspace;

The setting of qsum_nullspace (see [PR95] and § 20.46.8) results in a faster
calculation of the recurrence equation for this example.

20.46.7 Simplification Operators

An essential step in the algorithms introduced above is to decide whether a term ak
is q-hypergeometric, i. e. if the ratio ak/ak−1 is rational in qk.
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The procedure qsimpcomb provides this facility. It tries to simplify all expo-
nential expressions in the given term and applies some transformation rules to the
known elementary q-functions as qpochhammer, qbrackets, qbinomial
and qfactorial. Note that the procedure may fail to completely simplify some
expressions. This is due to the fact that the procedure was designed to simplify
ratios of q-hypergeometric terms in the form f(k)/f(k − 1) and not arbitrary q-
hypergeometric terms.

E. g. an expression like (a; q)−n · (a/qn; q)n is not recognized as 1, despite the
transformation formula

(a; q)−n =
1

(a/qn; q)n
,

which is valid for n ∈ N.

Note that due to necessary simplification of powers, the switch precise is (lo-
cally) turned off in qsimpcomb. This might produce wrong results if the input
term contains e. g. complex variables.

The following synomyms may be used:

• up_qratio(f,k) or qratio(f,k) for
qsimpcomb(sub(k=k+1,f)/f) and

• down_qratio(f,k) for qsimpcomp(f/sub(k=k-1,f)).

20.46.8 Global Variables and Switches

The following switches can be used in connection with the QSUM package:

• qsum_trace, default setting is off. If it is turned on some intermediate
results are printed.

• qgosper_down, default setting is on. It determines whether qgosper
returns a downward or an upward antidifference gk for the input term ak,
i. e. ak = gk − gk−1 or ak = gk+1 − gk respectively.

• qsumrecursion_down, default setting is on. If it is switched on a down-
ward recurrence equation will be returned by qsumrecursion. Switching
it off leads to an upward recurrence equation.

• qsum_nullspace, default setting is off. The antidifference g(k) is al-
ways a rational multiple (in qk) of the input term f(k). qgosper and
qsumrecursion determine this certificate, which requires solving a set of
linear equations. If the switch qsum_nullspace is turned on a modified
nullspace-algorithm will be used for solving those equations. In general this
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method is slower. However if the resulting recurrence equation is quite com-
plicated it might help to switch on qsum_nullspace. See also [Knu81]
and [PR95].

• qgosper_specialsol, default setting is on. The antidifference g(k)
which is determined by qgosper might not be unique. If this switch is
turned on, just one special solution is returned. If you want to see all solu-
tions, you should turn the switch off.

• qsumrecursion_exp, default setting is off. This switch determines if the
coefficients of the resulting recurrence equation should be factored. Turning
it off might speed up the calculation (if factoring is complicated). Note that
when turning on qsum_nullspace usually no speedup occurs by switch-
ing qsumrecursion_exp on.

• qsumrecursion_certificate, default off. As Zeilberger’s algorithm
delivers a recurrence equation for a q-hypergeometric term f(n, k), see equat-
ion (20.96), this switch is used to get all necessary informations for proving
this recurrence equation.

If it is set on, instead of simply returning the resulting recurrence equat-
ion (for the sum)—if one exists—calling qsumrecursion returns a list
{rec,cert,f,k,dir} with five items: The first entry contains the re-
currence equation, while the other items enable you to prove the recurrence
a posteriori by rational arithmetic.

If we denote by r the recurrence rec where we substituted the summ-
function by the input term
textttf (with the corresponding shifts in n) then the following equation is
valid:

r = cert*f - sub(k=k-1,cert*f)

if dir=downward_antidifference or

r = sub(k=k+1,cert*f) - cert*f

if dir=upward_antidifference.

The global variable qsumrecursion_recrange!* controls for which recur-
sion orders the procedure qsumrecursion looks. It has to be a list with two
entries, the first one representing the lowest and the second one the highest order
of a recursion to search for. By default it is set to {1,5}.

20.46.9 Messages

The following messages may occur:
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• If your call to qgosper or qsumrecursion reveals some incorrect syntax,
e. g. wrong number of arguments or wrong type you may receive the following
messages:

***** Wrong number of arguments.

or

***** Wrong type of arguments.

• If you call qgosper with a summand term that is free of the summation vari-
able you get

WARNING: Summand is independent of summation variable.

***** No q-hypergeometric antidifference exists.

• If qgosper finds no antidifference it returns:

***** No q-hypergeometric antidifference exists.

• If qsumrecursion finds no recursion in the specified range it returns:

***** Found no recursion. Use higher order.

(If you do not pass a range as an argument to qsumrecursion the default
range in qsumrecursion_recrange!* will be used.)

• If the input term passed to qgosper (qsumrecursion) is not q-hyper-
geometric wrt. the summation variable — say k — (and the recursion variable)
then you get

***** Input term is probably not q-hypergeometric.

With all the examples we tested, our procedures decided properly whether the
input term was q-hypergeometric or not. However, we cannot guarantee in gen-
eral that qsimpcomb always returns an expression that looks rational in qk if it
actually is.

• If the global variable qsumrecursion_recrange!* was assigned an in-
valid value:

Global variable qsumrecursion_recrange!* must be a
list of two positive integers: {lo,hi} with lo<=hi.

***** Invalid value of qsumrecursion_recrange!*
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20.47 RANDPOLY: A Random Polynomial Generator

This package is based on a port of the Maple random polynomial generator together
with some support facilities for the generation of random numbers and anonymous
procedures.

Author: Francis Wright

This package is based on a port of the Maple random polynomial generator together
with some support facilities for the generation of random numbers and anonymous
procedures.

20.47.1 Introduction

The operator randpoly is based on a port of the Maple random polynomial gen-
erator. In fact, although by default it generates a univariate or multivariate poly-
nomial, in its most general form it generates a sum of products of arbitrary integer
powers of the variables multiplied by arbitrary coefficient expressions, in which the
variable powers and coefficient expressions are the results of calling user-supplied
functions (with no arguments). Moreover, the “variables” can be arbitrary expres-
sions, which are composed with the underlying polynomial-like function.

The user interface, code structure and algorithms used are essentially identical to
those in the Maple version. The package also provides an analogue of the Maple
rand random-number-generator generator, primarily for use by randpoly.
There are principally two reasons for translating these facilities rather than de-
signing comparable facilites anew: (1) the Maple design seems satisfactory and
has already been “proven” within Maple, so there is no good reason to repeat the
design effort; (2) the main use for these facilities is in testing the performance of
other algebraic code, and there is an advantage in having essentially the same test
data generator implemented in both Maple and REDUCE . Moreover, it is interest-
ing to see the extent to which a facility can be translated without change between
two systems. (This aspect will be described elsewhere.)

Sections 20.47.2 and 20.47.3 describe respectively basic and more advanced use of
randpoly; §20.47.4 describes subsidiary functions provided to support advanced
use of randpoly; §20.47.5 gives examples; an appendix gives some details of the
only non-trivial algorithm, that used to compute random sparse polynomials. Ad-
ditional examples of the use of randpoly are given in the test and demonstration
file randpoly.tst.
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20.47.2 Basic use of randpoly

The operator randpoly requires at least one argument corresponding to the poly-
nomial variable or variables, which must be either a single expression or a list of
expressions.45 In effect, randpoly replaces each input expression by an internal
variable and then substitutes the input expression for the internal variable in the
generated polynomial (and by default expands the result as usual), although in fact
if the input expression is a REDUCE kernel then it is used directly. The rest of
this document uses the term “variable” to refer to a general input expression or the
internal variable used to represent it, and all references to the polynomial structure,
such as its degree, are with respect to these internal variables. The actual degree of
a generated polynomial might be different from its degree in the internal variables.

By default, the polynomial generated has degree 5 and contains 6 terms. Therefore,
if it is univariate it is dense whereas if it is multivariate it is sparse.

20.47.2.1 Optional arguments

Other arguments can optionally be specified, in any order, after the first compulsory
variable argument. All arguments receive full algebraic evaluation, subject to the
current switch settings etc. The arguments are processed in the order given, so that
if more than one argument relates to the same property then the last one specified
takes effect. Optional arguments are either keywords or equations with keywords
on the left.

In general, the polynomial is sparse by default, unless the keyword dense is spec-
ified as an optional argument. (The keyword sparse is also accepted, but is the
default.) The default degree can be changed by specifying an optional argument of
the form

degree = 〈natural number〉 .

In the multivariate case this is the total degree, i.e. the sum of the degrees with
respect to the individual variables. The keywords deg and maxdeg can also be
used in place of degree. More complicated monomial degree bounds can be con-
structed by using the coefficient function described below to return a monomial
or polynomial coefficient expression. Moreover, randpoly respects internally
the REDUCE “asymptotic” commands let, weight etc. described in §11.4 of
the REDUCE manual, which can be used to exercise additional control over the
polynomial generated.

45If it is a single expression then the univariate code is invoked; if it is a list then the multivariate
code is invoked, and in the special case of a list of one element the multivariate code is invoked to
generate a univariate polynomial, but the result should be indistinguishable from that resulting from
specifying a single expression not in a list.
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In the sparse case (only), the default maximum number of terms generated can be
changed by specifying an optional argument of the form

terms = 〈natural number〉 .

The actual number of terms generated will be the minimum of the value of terms
and the number of terms in a dense polynomial of the specified degree, number of
variables, etc.

20.47.3 Advanced use of randpoly

The default order (or minimum or trailing degree) can be changed by specifying an
optional argument of the form

ord = 〈natural number〉 .

The keyword is ord rather than order because order is a reserved command
name in REDUCE . The keyword mindeg can also be used in place of ord. In
the multivariate case this is the total degree, i.e. the sum of the degrees with respect
to the individual variables. The order normally defaults to 0.

However, the input expressions to randpoly can also be equations, in which case
the order defaults to 1 rather than 0. Input equations are converted to the difference
of their two sides before being substituted into the generated polynomial. The
purpose of this facility is to easily generate polynomials with a specified zero – for
example

randpoly(x = a);

generates a polynomial that is guaranteed to vanish at x = a, but is otherwise
random.

Order specification and equation input are extensions of the current Maple version
of randpoly.

The operator randpoly accepts two further optional arguments in the form of
equations with the keywords coeffs and expons on the left. The right sides of
each of these equations must evaluate to objects that can be applied as functions of
no variables. These functions should be normal algebraic procedures (or something
equivalent); the coeffs procedure may return any algebraic expression, but the
expons procedure must return an integer (otherwise randpoly reports an error).
The values returned by the functions should normally be random, because it is the
randomness of the coefficients and, in the sparse case, of the exponents that makes
the constructed polynomial random.
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A convenient special case is to use the function rand on the right of one or both of
these equations; when called with a single argument rand returns an anonymous
function of no variables that generates a random integer. The single argument of
rand should normally be an integer range in the form a .. b, where a, b are integers
such that a < b. The spaces around (or at least before) the infix operator “..” are
necessary in some cases in REDUCE and generally recommended. For example,
the expons argument might take the form

expons = rand(0 .. n)

where n will be the maximum degree with respect to each variable independently.
In the case of coeffs the lower limit will often be the negative of the upper limit
to give a balanced coefficient range, so that the coeffs argument might take the
form

coeffs = rand(-n .. n)

which will generate random integer coefficients in the range [−n, n].

20.47.4 Subsidiary functions: rand, proc, random

20.47.4.1 Rand: a random-number-generator generator

The first argument of randmust be either an integer range in the form a .. b, where
a, b are integers such that a < b, or a positive integer n which is equivalent to the
range 0 .. n − 1. The operator rand constructs a function of no arguments that
calls the REDUCE random number generator function random to return a random
integer in the range specified; in the case that the first argument of rand is a single
positive integer n the function constructed just calls random(n), otherwise the
call of random is scaled and shifted.

As an additional convenience, if rand is called with a second argument that is an
identifier then the call of rand acts exactly like a procedure definition with the
identifier as the procedure name. The procedure generated can then be called with
an empty argument list by the algebraic processor.

[Note that rand() with no argument is an error in REDUCE and does not return
directly a random number in a default range as it does in Maple – use instead the
REDUCE function random (see below).]

20.47.4.2 Proc: an anonymous procedure generator

The operator proc provides a generalization of rand, and is primarily intended to
be used with expressions involving the random function (see below). Essentially,
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it provides a mechanism to prevent functions such as random being evaluated
when the arguments to randpoly are evaluated, which is too early. The operator
proc accepts a single argument which is converted into the body of an anonymous
procedure, which is returned as the value of proc. (If a named procedure is re-
quired then the normal REDUCE procedure statement should be used instead.)
Examples are given in the following sections, and in the file randpoly.tst.

20.47.4.3 Random: a generalized interface

As an additional convenience, this package extends the interface to the standard
REDUCE random function so that it will directly accept either a natural number
or an integer range as its argument, exactly as for the first argument of rand.
Hence effectively

rand(X) = proc random(X)

although rand is marginally more efficient. However, proc and the generalized
random interface allow expressions such as the following anonymous random
fraction generator to be easily constructed:

proc(random(-99 .. 99)/random(1 .. 99))

20.47.4.4 Further support for procs

Rand is a special case of proc, and (for either) if the switch comp is on (and the
compiler is available) then the generated procedure body is compiled.

Rand with a single argument and proc both return as their values anonymous
procedures, which if they are not compiled are Lisp lambda expressions. However,
if compilation is in effect then they return only an identifier that has no external
significance46 but which can be applied as a function in the same way as a lambda
expression.

It is primarily intended that such “proc expressions” will be used immediately as
input to randpoly. The algebraic processor is not intended to handle lambda ex-
pressions. However, they can be output or assigned to variables in algebraic mode,
although the output form looks a little strange and is probably best not displayed.
But beware that lambda expressions cannot be evaluated by the algebraic processor
(at least, not without declaring some internal Lisp functions to be algebraic oper-
ators). Therefore, for testing purposes or curious users, this package provides the
operators showproc and evalproc respectively to display and evaluate “proc
expressions” output by rand or proc (or in fact any lambda expression), in the

46It is not interned on the oblist.
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case of showproc provided they are not compiled.

20.47.5 Examples

The file randpoly.tst gives a set of test and demonstration examples.

The following additional examples were taken from the Maple randpoly help
file and converted to REDUCE syntax by replacing [ ] by { } and making the other
changes shown explicitly:

randpoly(x);

5 4 3 2
- 54*x - 92*x - 30*x + 73*x - 69*x - 67

randpoly({x, y}, terms = 20);

5 4 4 3 2 3 3
31*x - 17*x *y - 48*x - 15*x *y + 80*x *y + 92*x

2 3 2 2 4 3
+ 86*x *y + 2*x *y - 44*x + 83*x*y + 85*x*y

2 5 4 3
+ 55*x*y - 27*x*y + 33*x - 98*y + 51*y - 2*y

2
+ 70*y - 60*y - 10

randpoly({x, sin(x), cos(x)});

4 3 3
sin(x)*( - 4*cos(x) - 85*cos(x) *x + 50*sin(x)

2
- 20*sin(x) *x + 76*sin(x)*x + 96*sin(x))

% randpoly(z, expons = rand(-5..5)); % Maple
% A generalized random "polynomial"!
% Note that spaces are needed around .. in REDUCE.
on div; off allfac;



991

randpoly(z, expons = rand(-5 .. 5));

4 3 -3 -4 -5
- 39*z + 14*z - 77*z - 37*z - 8*z

off div; on allfac;
% Maple
% randpoly([x], coeffs = proc() randpoly(y) end);
randpoly({x}, coeffs = proc randpoly(y));

5 5 5 4 5 3 5 2 5
95*x *y - 53*x *y - 78*x *y + 69*x *y + 58*x *y

5 4 5 4 4 4 3 4 2
- 58*x + 64*x *y + 93*x *y - 21*x *y + 24*x *y

4 4 3 5 3 4 3 3
- 13*x *y - 28*x - 57*x *y - 78*x *y - 44*x *y

3 2 3 3 2 5 2 4
+ 37*x *y - 64*x *y - 95*x - 71*x *y - 69*x *y

2 3 2 2 2 2 5
- x *y - 49*x *y + 77*x *y + 48*x + 38*x*y

4 3 2 5
+ 93*x*y - 65*x*y - 83*x*y + 25*x*y + 51*x + 35*y

4 3 2
- 18*y - 59*y + 73*y - y + 31

% A more conventional alternative is ...
% procedure r; randpoly(y)$
% randpoly({x}, coeffs = r);
% or, in fact, equivalently ...
% randpoly({x}, coeffs = procedure r; randpoly(y));

randpoly({x, y}, dense);

5 4 4 3 2 3 3
85*x + 43*x *y + 68*x + 87*x *y - 93*x *y - 20*x

2 2 2 2 4 3
- 74*x *y - 29*x *y + 7*x + 10*x*y + 62*x*y
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2 5 4 3
- 86*x*y + 15*x*y - 97*x - 53*y + 71*y - 46*y

2
- 28*y + 79*y + 44

20.47.6 Appendix: Algorithmic background

The only part of this package that involves any mathematics that is not completely
trivial is the procedure to generate a sparse set of monomials of specified maximum
and minimum total degrees in a specified set of variables. This involves some com-
binatorics, and the Maple implementation calls some procedures from the Maple
Combinatorial Functions Package combinat (of which I have implemented re-
stricted versions in REDUCE).

Given the maximum possible number N of terms (in a dense polynomial), the re-
quired number of terms (in the sparse polynomial) is selected as a random subset of
the natural numbers up to N , where each number indexes a term. In the univariate
case these indices are used directly as monomial exponents, but in the multivari-
ate case they are converted to monomial exponent vectors using a lexicographic
ordering.

20.47.6.1 Numbers of polynomial terms

By explicitly enumerating cases with 1, 2, etc. variables, as indicated by the induc-
tive proof below, one deduces that:

Proposition 1. In n variables, the number of distinct monomials having total de-
gree precisely r is r+n−1Cn−1, and the maximum number of distinct monomials in
a polynomial of maximum total degree d is d+nCn.

Proof Suppose the first part of the proposition is true, namely that there are at most

Nh(n, r) =
r+n−1Cn−1

distinct monomials in an n-variable homogeneous polynomial of total degree r.
Then there are at most

N(d, r) =
d∑

r=0

r+n−1Cn−1 =
d+nCn

distinct monomials in an n-variable polynomial of maximum total degree d.
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The sum follows from the fact that

r+nCn =
(r + n)n

n!

where xn = x(x− 1)(x− 2) · · · (x− n+ 1) denotes a falling factorial, and

∑
a≤x<b

xn =
xn+1

n+ 1

∣∣∣∣b
a

.

(See, for example [GK82, equation (1.37)]. Hence the second part of the proposi-
tion follows from the first.

The proposition holds for 1 variable (n = 1), because there is clearly 1 distinct
monomial of each degree precisely r and hence at most d + 1 distinct monomials
in a polynomial of maximum degree d.

Suppose that the proposition holds for n variables, which are represented by the
vector X . Then a homogeneous polynomial of degree r in the n + 1 variables X
together with the single variable x has the form

xrP0(X) + xr−1P1(X) + · · ·+ x0Pr(X)

where Ps(X) represents a polynomial of maximum total degree s in the n variables
X , which therefore contains at most s+nCn distinct monomials. The homogeneous
polynomial of degree r in n+ 1 terms therefore contains at most

r∑
s=0

s+nCn = r+n+1Cn+1

distinct monomials. Hence the proposition holds for n+1 variables, and therefore
by induction it holds for all n. □

20.47.6.2 Mapping indices to exponent vectors

The previous proposition is also the basis of the algorithm to map term indices
m ∈ N to exponent vectors v ∈ Nn, where n is the number of variables.

Define a norm ∥ · ∥ on exponent vectors by ∥v∥ =
∑n

i=1 vi, which corresponds
to the total degree of the monomial. Then, from the previous proposition, the
number of exponent vectors of length n with norm ∥v∥ ≤ d is N(n, d) = d+nCn.
The elements of the mth exponent vector are constructed recursively by applying
the algorithm to successive tail vectors, so let a subscript denote the length of the
vector to which a symbol refers.

The aim is to compute the vector of length n with index m = mn. If this vector
has norm dn then the index and norm must satisfy

N(n, dn − 1) ≤ mn < N(n, dn),
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which can be used (as explained below) to compute dn given n and mn. Since
there are N(n, dn − 1) vectors with norm less than dn, the index of the (n − 1)-
element tail vector must be given by mn−1 = mn − N(n, dn − 1), which can be
used recursively to compute the norm dn−1 of the tail vector. From this, the first
element of the exponent vector is given by v1 = dn − dn−1.

The algorithm therefore has a natural recursive structure that computes the norm of
each tail subvector as the recursion stack is built up, but can only compute the first
term of each tail subvector as the recursion stack is unwound. Hence, it constructs
the exponent vector from right to left, whilst being applied to the elements from
left to right. The recursion is terminated by the observation that v1 = d1 = m1 for
an exponent vector of length n = 1.

The main sub-procedure, given the required length n and index mn of an exponent
vector, must return its norm dn and the index of its tail subvector of length n −
1. Within this procedure, N(n, d) can be efficiently computed for values of d
increasing from 0, for which N(n, 0) = nCn = 1, until N(n, d) > m by using the
observation that

N(n, d) = d+nCn =
(d+ n)(d− 1 + n) · · · (1 + n)

d!
.
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20.48 RATAPRX: Rational Approximations Package for
REDUCE

Authors: Lisa Temme, Wolfram Koepf and Alan Barnes

20.48.1 Periodic Decimal Representation

The division of one integer by another often results in a period in the decimal
part. The rational2periodic function in this package can recognise and
represent such an answer in a periodic representation. The inverse function,
periodic2rational, converts a periodic representation back to a rational
number.

Periodic Representation of a Rational Number

SYNTAX: rational2periodic(〈n〉)
rational2periodic(〈n〉,〈b〉)

INPUT: 〈n〉 is a rational number
〈b〉 is the number base, if absent the default is 10.

RESULT: periodic({〈a1〉,. . . ,〈an〉},
{〈b1〉,. . . ,〈bm〉},
{〈c1〉,. . . ,〈ck〉},
±〈b〉)

where {〈a1〉,...,〈an〉} is a list of the digits in the integer part,
{〈b1〉,...,〈bm〉} is a list of the digits in the non-periodic part,
{〈c1〉,...,〈ck〉} is a list of the digits in the periodic part
and ±〈b〉 where 〈b〉 is the number base 2 ≤ b ≤ 16,
a minus indicating the rational number 〈n〉 was negative.

EXAMPLES:
−59/70 written as −0.8428571

1: rational2periodic(-59/70);

periodic({0}, {8}, {4,2,8,5,7,1}, -10)}

2: rational2periodic(1/80,16);

periodic({0}, {0}, {3}, 16)

Normally the operator periodic will not be seen as the output will be pret-
typrinted as −0.8428571 and 0.03 (base 16) respectively.
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Rational Number of a Periodic Representation

SYNTAX: periodic2rational(
periodic({〈a1〉,. . . ,〈an〉},

{〈b1〉,. . . ,〈bm〉},
{〈c1〉,. . . ,〈ck〉},
±〈b〉))

periodic2rational({〈a1〉,. . . ,〈an〉},
{〈b1〉,. . . ,〈bm〉},
{〈c1〉,. . . ,〈ck〉},
±〈b〉)

INPUT: {〈a1〉,...,〈an〉} is a list of the digits in the integer part,
{〈b1〉,...,〈bm〉} is a list of the digits in the non-periodic part,
{〈c1〉,...,〈ck〉} is a list of the digits in the periodic part
and where 〈b〉 is the number base 2 ≤ b ≤ 16, a minus
indicating the rational number result should be negative.
If the base is omitted, 10 is assumed.

RESULT: A rational number.

EXAMPLES:
0.8428571 written as 59/70

3: periodic2rational(
periodic({0},{8},{4,2,8,5,7,1}));

59
----
70

4: periodic2rational(
{0},{8},{4,2,8,5,7,1}, -10);

59
- ----

70

Note that periodic2rational will produce the correct rational result when
passed a parameter for the periodic part which is not minimal. Similarly, a par-
ameter for the periodic part which consists of all 9’s (or in base b, all (b − 1)’s)
is treated correctly although such periodic parts are not canonical and are never
generated by calls to rational2periodic.

For example,
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periodic2rational({0}, {}, {1, 2, 1, 2});
periodic2rational({0}, {1}, {2, 1});
periodic2rational({0}, {1, 2}, {1, 2, 1, 2});

all produce the same rational result, namely 4
33 , as the canonical input

periodic2rational({0}, {}, {1, 2});

Similarly,

periodic2rational({0}, {}, {9});
periodic2rational({0}, {9}, {9});
periodic2rational({0}, {}, {9, 9, 9, 9});

all produce the same rational result, namely 1, as the canonical input

periodic2rational({1}, {}, {});

Although the operators periodic2rational and rational2periodic
work even when ROUNDED is ON, they are best used when ROUNDED is OFF.
The input to rational2periodic should not be a rounded number, otherwise
an error results.

For example, the input rational2periodic(1/7); will produce the in-
tended periodic representation even with ROUNDED ON. However, the input

a := 1/7; rational2periodic(a);

will result in an error as the simplifier is applied in the assignment and rounds the
rational number.

Similarly, although the result of periodic2rational will always be a rational
number (represented by a QUOTIENT prefix form), if the simplifier is applied to
the result a rounded value will be produced.

20.48.2 Continued Fractions

A continued fraction (see [JT80]) has the general form

a0 +
a1

b1 +
a2

b2+
a3

b3+...

.

A more compact way of writing this is as

a0 +
a1|
|b1

+
a2|
|b2

+
a3|
|b3

+ . . . .



998 CHAPTER 20. USER CONTRIBUTED PACKAGES

Even more succinctly:

{a0, {a1, b1}, {a2, b2}, . . .}

This is represented in REDUCE as

contfrac(Expression, Rational approximant,
{a0, {a1, b1}, {a2, b2}, . . . })

The operator cfrac is used to generate a generalised continued fraction expansion
of an algebraic expression.

cfrac(〈num〉)
cfrac(〈num〉, 〈length〉)
cfrac(〈func〉, 〈var〉)
cfrac(〈func〉, 〈var〉, 〈length〉)

INPUT:
〈num〉 is any real number
〈func〉 is a function
〈var〉 is the function main variable
〈length〉 is the maximum number of terms (continuents) to be generated and is
optional.

For non-rational function or irrational number input the 〈length〉 argument specifies
the number of continuents (ordered pairs, {ai, bi}), to be returned. Its default value
is five. For rational function or rational number input the length argument can
only truncate the answer, it cannot return additional pairs even if the precision is
increased. The default for rational function or rational number input is the complete
continued fraction.

For a non-rational function, power series expansion is necessary. The new switch
cf_taylor controls whether the TAYLOR or the TPS package is used to produce
the power series required. By default this switch is OFF and so the TPS package is
normally employed. In most cases the choice is not important, but the TPS option
is somewhat better at handling cases where the series expansion is rather sparse. In
a few cases TPS may fail to produce a series expansion when TAYLOR succeeds
and vice-versa.

For numerical input the default value is exact for rational number arguments whilst
for irrational or rounded input it is dependent on the precision of the session. The
length argument will only take effect if is smaller than the number of ordered
pairs which the default value would return.

If the number of continuent pairs returned does not exceed twelve, the result will
usually be pretty-printed as a two element list consisting of the convergent followed
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by a rendering of the traditional continued fraction expansion. For a larger number
of pairs the output is of the second element is printed as a list of pairs. Thus, usually
the operator contfrac is not seen in the output.

EXAMPLES

cfrac(pi, 4);

355 1
{pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

cfrac(sqrt 2, 5);

41 1
{sqrt(2),----,1 + ---------------------}

29 1
2 + ---------------

1
2 + ---------

1
2 + ---

2

cfrac(23.696, 4);

2962 237 1
{------,-----,23 + ---------------}

125 10 1
1 + ---------

1
2 + ---

3

cfrac((x+2/3)^2/(6*x-5), x, 10);

2
9*x + 12*x + 4

{-----------------, exact,
54*x - 45
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6*x + 13 1
---------- + -------------}

36 24*x - 20
-----------

9

cfrac(e^x, x);

3 2
x x + 9*x + 36*x + 60

{e , -----------------------,
2

3*x - 24*x + 60

x
1 + ---------------------------}

x
1 - ---------------------

x
2 + ---------------

x
3 - ---------

x
2 + ---

5

The operator CF is a synonym for the operator continued_fraction.

cf(〈num〉)
cf(〈num〉, 〈size〉)
cf(〈num〉, 〈size〉, 〈numterms〉)

The operator takes the same arguments as the operator continued_fraction:
the original number to be expanded 〈num〉, an optional maximum size 〈size〉 per-
mitted for the denominator of the convergent and an optional maximum number of
continuents 〈numterms〉 to be generated.

The output is in the same format as that of cfrac described above. As with the op-
erator cfrac output of CF is normally pretty-printed so the operator confract
will not be seen.

The operators cf_expression, cf_convergent and cf_continuents
are accessors and allow the various parts of a continued fraction object 〈cf_object〉
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(as returned by any of the operators cf, cfrac, continued_fraction and
cf_euler) to be extracted.

These three operators return, respectively, the originating expression of the con-
tinued fraction object, the last convergent of the continued fraction, a list of its
continuents (that is a list of pairs of partial numerators and denominators).

The operator cf_convergents returns a list of all the convergents of the ex-
pansion.

cf_expression(〈cf_object〉)
cf_convergent(〈cf_object〉)
cf_continuents(〈cf_object〉)
cf_convergents(〈cf_object〉)

EXAMPLES

2: cf(6/11);

6 6 1
{----,----,---------------}

11 11 1
1 + ---------

1
1 + ---

5

3: a := cf(pi,1000);

355 1
a := {pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

4: cf_convergents a;

22 333 355
{3,----,-----,-----}

7 106 113

5: cf_continuents a;
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{3,7,15,1}

6: precision 20;

12

7: cf pi;

{pi,

21053343141
-------------,
6701487259

{3,

{1,7},

{1,15},

{1,1},

{1,292},

{1,1},

{1,1},

{1,1},

{1,2},

{1,1},

{1,3},

{1,1},

{1,14},

{1,2},

{1,1},
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{1,1},

{1,2},

{1,2},

{1,2},

{1,2},

{1,1}}}

The operator cf_euler is used to generate a generalised continued fraction
expansion of an algebraic expression using a formula due to Leonhard Euler
( [Eul48]).

cf_euler(〈func〉, 〈var〉)
cf_euler(〈func〉, 〈var〉, 〈length〉)

INPUT:
〈func〉 is a function
〈var〉 is the function main variable
〈length〉 is the maximum number of continuents to be generated and is optional.

The meaning of the parameters is similar to those of cfrac, but the continued
fraction expansion generated will usually be different. Note that unlike cfrac,
cf_euler cannot currently generate continued fraction expansion of numbers
and for a rational function argument (with a non-constant denominator) the expan-
sion will not be exact.

A number of operators are provided for transforming their continued fraction argu-
ment 〈cf_object〉 into an equivalent expansion, that is one with exactly the same
convergents. They all accept as their single argument any continued fraction object
〈cf_object〉. These are:

cf_unit_denominators
converts all partial denominators to 1.

cf_unit_numerators
converts all partial numerators to 1.

cf_remove_fractions
converts the denominators of the partial numerators and partial denominators in the
continuents to 1.

cf_remove_constant
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removes the zeroth continuent (if non-zero) absorbing it into the first continuent
pair.

The operator cf_transform is a general purpose function for transforming its
continued fraction argument 〈cf_object〉 into an equivalent expansion. Unlike the
four preceding operators it requires a second argument: a list of multipliers used to
modify the partial numerators and denominators of the original expansion.

cf_transform(〈cf_object〉, 〈multiplier-list〉)

To understand the operation of cf_transform consider first the special case
where 〈multiplier-list〉 is a list of the form {1, 1, . . . , 1, ln, 1, . . . , 1} whose nth
element is ln. Only the nth continuent pair {an, bn} and (n+1)th partial numer-
ator an+1 are altered and become {lnan, lnbn} and lnan+1 respectively. For a
〈multiplier-list〉 that has more than one non-unit element, the above transforma-
tions are applied sequentially from left to right.

If the number of continuent pairs in the 〈cf_object〉 is greater than the length of the
〈multiplier-list〉, the latter is (in effect) padded with 1’s. Conversely if it is shorter,
the surplus elements of 〈multiplier-list〉 are ignored.

The operator cf_even_odd splits its continued fraction argument 〈cf_object〉
into two continued fraction objects: namely its even and odd parts (in that order)
which are returned as a two-element list.

cf_even_odd(〈cf_object〉)

The convergents of the even part are the even-numbered convergents of the original
expansion and those of the odd part are the odd-numbered ones (except the zeroth
convergent which is necessarily zero). For the continued fraction expansions gen-
erated by the operators cf and cfrac with a numerical first argument 〈num〉.
The convergents of the even part form a monotonically increasing sequence whilst
those of the odd part (after the zeroth) form a monotonically decreasing sequence.

EXAMPLES

cf_remove_fractions(cf_euler(e^x, x, 4));

3 2
x x + 3*x + 6*x + 6

{e , ---------------------,
6

1
-------------------------------------}

x
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1 - -------------------------------
x

(x + 1) - -------------------
2*x

(x + 2) - -------
x + 3

a := cf_remove_fractions(cf_euler(4*atan x, x, 4));

a := {4*atan(x),

7 5 3
- 60*x + 84*x - 140*x + 420*x

-----------------------------------,
105

2 2
(4*x)/(1 + x /(( - x + 3)

2
9*x

+ -------------------------------
2

2 25*x
( - 3*x + 5) + -------------

2
- 5*x + 7

))}

b := (a where x => 1);

304 4
b := {pi,-----,----------------------}

105 1
1 + ----------------

9
2 + ----------

25
2 + ----

2

c := cf(pi, 0, 6);
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104348 1
c := {pi,--------,3 + ------------------------------}

33215 1
7 + ------------------------

1
15 + -----------------

1
1 + -----------

1
292 + ---

1

cf_remove_constant c;

104348 22
{pi,--------,-------------------------------}

33215 1
7 + -------------------------

22
333 + -----------------

1
1 + -----------

1
292 + ---

1

c:= cf(pi, 0, 8)$
d := cf_even_odd c;

208341 15
d := {{pi,--------,3 + ----------------------},

66317 292
106 - --------------

15
4687 - -----

585

312689 22
{pi,--------,-------------------------}}

99532 1
7 + -------------------

22
355 - -----------

1
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294 - ---
3

cf_convergents c;

22 333 355 103993 104348 208341
{3,----,-----,-----,--------,--------,--------,

7 106 113 33102 33215 66317

312689
--------}
99532

cf_convergents first d;

333 103993 208341
{3,-----,--------,--------}

106 33102 66317

cf_convergents second d;

22 355 104348 312689
{0,----,-----,--------,--------}

7 113 33215 99532

20.48.3 Padé Approximation

The Padé approximant represents a function by the ratio of two polynomials. The
coefficients of the powers occuring in the polynomials are determined by the co-
efficients in the Taylor series expansion of the function (see [BGM96]). Given a
power series

f(x) = c0 + c1(x− h) + c2(x− h)2 . . .
and the degree of numerator, n, and of the denominator, d, the pade function finds
the unique coefficients ai, bi in the Padé approximant

a0 + a1x+ · · ·+ anx
n

b0 + b1x+ · · ·+ bdxd
.

SYNTAX: pade(〈f〉, 〈x〉, 〈h〉, 〈n〉, 〈d〉)

INPUT: 〈f 〉 the funtion to be approximated
〈x〉 the function variable
〈h〉 the point at which the approximation is evaluated
〈n〉 the (specified) degree of the numerator
〈d〉 the (specified) degree of the denominator
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RESULT: Padé Approximant, ie. a rational function.

ERROR MESSAGES:

***** not yet implemented
The Taylor series expansion for the function, f, has not yet been implemented
in the REDUCE Taylor Package.

***** no Pade Approximation exists
A Padé Approximant of this function does not exist.

***** Pade Approximation of this order does not exist
A Padé Approximant of this order (ie. the specified numerator and denomina-
tor orders) does not exist but one of a different order may exist.

EXAMPLES

23: pade(sin(x),x,0,3,3);

2
x*( - 7*x + 60)

------------------
2

3*(x + 20)

24: pade(tanh(x),x,0,5,5);

4 2
x*(x + 105*x + 945)

-----------------------
4 2

15*(x + 28*x + 63)

25: pade(atan(x),x,0,5,5);

4 2
x*(64*x + 735*x + 945)

--------------------------
4 2

15*(15*x + 70*x + 63)

26: pade(exp(1/x),x,0,5,5);

***** no Pade Approximation exists
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27: pade(factorial(x),x,1,3,3);

***** not yet implemented

28: pade(asech(x),x,0,3,3);

2 2 2
- 3*log(x)*x + 8*log(x) + 3*log(2)*x - 8*log(2) + 2*x
--------------------------------------------------------

2
3*x - 8

29: taylor(ws-asech(x),x,0,10);

11
log(x)*(0 + O(x ))

13 6 43 8 1611 10 11
+ (-----*x + ------*x + -------*x + O(x ))

768 2048 81920

30: pade(sin(x)/x^2,x,0,10,0);

***** Pade Approximation of this order does not exist

31: pade(sin(x)/x^2,x,0,10,2);

10 8 6 4 2
( - x + 110*x - 7920*x + 332640*x - 6652800*x

+ 39916800)/(39916800*x)

32: pade(exp(x),x,0,10,10);

10 9 8 7 6
(x + 110*x + 5940*x + 205920*x + 5045040*x

5 4 3
+ 90810720*x + 1210809600*x + 11762150400*x

2
+ 79394515200*x + 335221286400*x + 670442572800)/

10 9 8 7 6
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(x - 110*x + 5940*x - 205920*x + 5045040*x

5 4
- 90810720*x + 1210809600*x

3 2
- 11762150400*x + 79394515200*x

- 335221286400*x + 670442572800)

33: pade(sin(sqrt(x)),x,0,3,3);

(sqrt(x)*
3 2

(56447*x - 4851504*x + 132113520*x - 885487680))\

3 2
(7*(179*x - 7200*x - 2209680*x - 126498240))
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20.49 RATINT: Integrate Rational Functions using the
Minimal Algebraic Extension to the Constant Field

Author: Neil Langmead

This package was written when the author was a placement student at ZIB Berlin.

20.49.1 Rational Integration

This package implements the Horowitz/ Rothstein/ Trager algorithms [GCL92]
for the integration of rational functions in REDUCE. We work within a field K of
characteristic 0 and functions p, q ∈ K[x]. K is normally the field Q of rational
numbers, but not always. These procedures return

∫ p
qdx. The aim is to be able to

integrate any function of the form p/q in x, where p and q are polynomials in the
fieldQ. The algorithms used avoid algebraic number extensions wherever possible,
and in general, express the integral using the minimal algebraic extension field.

20.49.1.1 Syntax of ratint

This function has the following syntax:

ratint(〈p〉,〈q〉,〈var〉)

where 〈p〉 and 〈q〉 are polynomials in 〈var〉, so that p/q is a rational function in
var. The output of ratint is a list of two elements: the first is the polynomial
part of the integral, the second is the logarithmic part. The integral is the sum of
these parts.

20.49.1.2 Examples

Consider the following examples in REDUCE (the meaning of the log_sum op-
erator will be explained in the next section).

ratint(1,x^2-2,x);

{0,

2 1
log_sum(beta,beta - ---,0,log(2*beta*x - 1)*beta)}

8

p:=441*x^7+780*x^6-2861*x^5+4085*x^4+7695*x^3+3713*x^2
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-43253*x+24500;

q:=9*x^6+6*x^5-65*x^4+20*x^3+135*x^2-154*x+49;

ratint(p,q,x);

49 6 226 5 268 4 1608 3
{(----*(x + -----*x - -----*x - ------*x

2 147 49 49

6011 2 536 256 4
+ ------*x + -----*x - -----))/(x

147 21 9

2 3 2 7
- ---*x - 4*x + 6*x - ---),

3 3

0}

k:=36*x^6+126*x^5+183*x^4+(13807/6)*x^3-407*x^2
-(3242/5)*x+(3044/15);

l:=(x^2+(7/6)*x+(1/3))^2*(x-(2/5))^3;

ratint(k,l,x);

5271 3 39547 2 31018 7142
------*(x + -------*x - -------*x + -------)

5 52710 26355 26355
{------------------------------------------------,

4 11 3 11 2 2 4
x + ----*x - ----*x - ----*x + ----

30 25 25 75

37451 2 91125 2
-------*(log(x - ---) + -------*log(x + ---)

16 5 37451 3

128000 1
- --------*log(x + ---))}

37451 2
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ratint(1,x^2+1,x);

2 1
{0,log_sum(beta,beta + ---,0,log(2*beta*x - 1)*beta)}

4

20.49.2 The Algorithm

The following main algorithm is used:

procedure ratint(p, q, x);
% p and q are polynomials in x, with coefficients in the
% constant field Q
solution_list← HorowitzReduction(p, q, x)
c/d← part(solution_list,1)
poly_part← part(solution_list,2)
rat_part← part(solution_list,3)
rat_part← LogarithmicPartIntegral(rat_part, x)
return(rat_part+ c/d+ poly_part)
end

The algorithm contains two subroutines, HorowitzReduction and rt. HorowitzRe-
duction is an implementation of Horowitz’ method to reduce a given rational func-
tion into a polynomial part and a logarithmic part. The integration of the polyno-
mial part is a trivial task, and is done by the int operator in REDUCE. The integra-
tion of the logarithmic part is done by the routine rt, which is an implementation
of the Rothstein and Trager method. These two answers are outputed in a list, the
complete answer being the sum of these two parts.
These two algorithms are as follows:

procedure how(p, q, x)

for a given rational function p/q in x, this algorithm calculates the
reduction of

∫
(p/q) into a polynomial part and logarithmic part.

poly_part← quo(p, q); p← rem(p, q);

d← GCD(q, q′); b← quo(q, d); m← deg(b);
n← deg(d);

a←
∑m−1

i=1 aix
i; c←

∑n−1
i=1 cix

i;
r ← b ∗ c′ − quo(b ∗ d′, d) + d ∗ a;

for i from 0 to m+ n− 1 do
{



1014 CHAPTER 20. USER CONTRIBUTED PACKAGES

eqns(i)← coeff(p, i) = coeff(r, i);
};

solve(eqns, {a(0), ...., a(m− 1), c(0), ...., c(n− 1)});

return(c/d+
∫
poly_part+ a/b);

end;

procedure RothsteinTrager(a, b, x)

% Given a rational function a/b in x with deg(a) < deg(b),
with b monic and square free, we calculate

∫
(a/b)

R(z)← resultant(a− zb′, b)
(r1(z)...rk(z))← factors(R(z))
integral← 0

for i from 1 to k do
{
d← degree(ri(z))
if d = 1 then {

c← solve(ri(z) = 0, z)
v← GCD(a− cb′, b)
v← v/lcoeff(v)
integral← integral + c ∗ log(v)
}

else {
% we need to do a GCD over algebraic number field
v← GCD(a− α ∗ b′, b)
v← v/lcoff(v), where α = roof_of(ri(z))

if d = 2 then {
% give answer in terms of radicals
c← solve(ri(z) = 0, z)
for j from 1 to 2 do {
v[j]← substitute(α = c[j], v)
integral← integral + c[j] ∗ log(v[j])
}
else {
% Need answer in terms of root_of notation
for j from 1 to d do {
v[j]← substitute(α = c[j], v)
integral← integral + c[j] ∗ log(v[j])
% where c[j] = root_of(ri(z)) }
}

}
}

return(integral)
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end

20.49.3 The log_sum operator

The algorithms above returns a sum of terms of the form∑
α|R(α)=0

log(S(α, x)),

where R ∈ K[z] is square free, and S ∈ K[z, x]. In the cases where the degree
of R(α) is less than two, this is merely a sum of logarithms. For cases where the
degree is two or more, I have chosen to adopt this notation as the answer to the
original problem of integrating the rational function. For example, consider the
integral ∫

a

b
=

∫
2x5 − 19x4 + 60x3 − 159 + x2 + 50x+ 11

x6 − 13x5 + 58x4 − 85x3 − 66x2 − 17x+ 1
dx

Calculating the resultant R(z) = resx(a− zb′, b) and factorising gives

R(z) = −190107645728000(z3 − z2 + z + 1)2

Making the result monic, we have

R2(z) = z3 − z2 + z + 1

which does not split over the constant field Q. Continuting with the Rothstein
Trager algorithm, we now calculate

gcd(a− α b′, b) = z2 + (2 ∗ α− 5) ∗ z + α2,

where α is a root of R2(z).
Thus we can write∫

a

b
=

∑
α|α3−α2+α+1=0

α ∗ log(x2 + 2αx− 5x+ α2),

and this is the answer now returned by REDUCE, via a function called log_sum.
This has the following syntax:

log_sum(α, eqn(α), 0, sum_term, var)

where α satisfies eqn = 0, and sum_term is the term of the summation in the
variable var. Thus in the above example, we have∫

a

b
dx = log_sum(α, α3 − α2 + α+ 1, 0, α ∗ log(x2 + 2αx− 5x+ α2), x)

Many rational functions that could not be integrated by REDUCE previously can
now be integrated with this package. The above is one example; some more are
given on the next page.
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20.49.3.1 More examples∫
1

x5 + 1
dx =

1

5
log(x+ 1)

+ 5 log_sum(β, β4 +
1

5
β3 +

1

25
β2 +

1

125
β +

1

625
, 0, log(5 ∗ β + x) ∗ β)

which should be read as∫
1

x5 + 1
dx =

1

5
log(x+ 1) +

∑
β|β4+ 1

5
β3+ 1

25
β2+ 1

125
β+ 1

625
=0

log(5 ∗ β + x)β

∫
7x13 + 10x8 + 4x7 − 7x6 − 4x3 − 4x2 + 3x+ 3

x14 − 2x8 − 2x7 − 2x4 − 4x3 − x2 + 2x+ 1
dx =

log_sum(α, α2 − α− 1

4
, 0, log(−2αx2 − 2αx+ x7 + x2 − 1) ∗ α, x),∫

1

x3 + x+ 1
dx = log_sum(β, β3− 3

31
β2− 1

31
, 0, β log(−62

9
β2+

31

9
β+x+

4

9
)).

20.49.4 Options

There are several alternative forms that the answer to the integration problem can
take. One output is the log_sum form shown in the examples above. There is
an option with this package to convert this to a “normal” sum of logarithms in the
case when the degree of eqn in α is two, and α can be expressed in surds. To do
this, use the function convert, which has the following syntax:

convert(〈exp〉)

If 〈exp〉 is free of log_sum terms, then 〈exp〉 itself is returned. If 〈exp〉 contains
log_sum terms, then α is represented as surds, and substituted into the log_sum
expression. For example, using the last example, we have in REDUCE:

2: ratint(a,b,x);

{0,

2 1
log_sum(alpha,alpha - alpha - ---,0,log(

4
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2 7 2
- 2*alpha*x - 2*alpha*x + x + x

- 1)*alpha,x)}

3: convert(ws);

1
---*(sqrt(2)
2

2 7

*log( - sqrt(2)*x - sqrt(2)*x + x - x - 1)

- sqrt(2)

2 7

*log(sqrt(2)*x + sqrt(2)*x + x - x - 1) +

2 7
log( - sqrt(2)*x - sqrt(2)*x + x - x - 1)

2 7
+ log(sqrt(2)*x + sqrt(2)*x + x - x - 1))

20.49.4.1 LogtoAtan function

The user could then combine these to form a more elegant answer, using the switch
combinelogs if one so wished. Another option is to convert complex logarithms to
real arctangents [Bro97], which is recommended if definite integration is the goal.
This is implemented in REDUCE via a function convert_log, which has the
following syntax:

convert_log(〈exp〉)

where 〈exp〉 is any expression containing log_sum terms.

The procedure to convert complex logarithms to real arctangents is based on an
algorithm by Rioboo. Here is what it does:

Given a field K of characteristic 0 such that
√
−1 ̸∈ K and A,B ∈ K[x] with

B ̸= 0, return a sum f of arctangents of polynomials in K[x] such that

df

dx
=

d

dx
i log(

A+ iB

A− iB
)
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Example:∫
x4 − 3 ∗ x2 + 6

x6 − 5 ∗ x4 + 5 ∗ x2 + 4
dx =

∑
α|4α+1=0

α log(x3 + 2αx2 − 3x− 4α)

Substituting α = i/2 and α = −i/2 gives the result

i

2
log(

(x3 − 3x) + i(x2 − 2)

(x3 − 3x)− i(x2 − 2)
)

Applying logtoAtan now with A = x3 − 3x, and B = x2 − 2 we obtain∫
x4 − 3 ∗ x2 + 6

x6 − 5 ∗ x4 + 5 ∗ x2 + 4
dx

= arctan(
x5 − 3x3 + x

2
) + arctan(x3) + arctan(x),

and this is the formula which should be used for definite integration.

Another example in REDUCE is given below:

1: ratint(1,x^2+1,x);

2 1
{0,log_sum(beta,beta + ---,0,log(2*beta*x - 1)*beta)}

4

13: part(ws,2);

2 1
log_sum(beta,beta + ---,0,log(2*beta*x - 1)*beta)

4

14: on combinelogs;

15: convertlog(ws);

1 - i*x + 1
---*log(------------)*i
2 i*x + 1

logtoAtan(-x,1,x);

- 2*atan(x)
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20.49.5 Hermite’s method

The package also implements Hermite’s method to reduce the integral into its poly-
nomial and logarithmic parts, but occasionally, REDUCE returns the incorrect an-
swer when this algorithm is used. This is due to the REDUCE operator pf, which
performs a complete partial fraction expansion when given a rational function as
input. Work is presently being done to give the pf operator a facility which tells
it that the input is already factored. This would then enable REDUCE to perform
a partial fraction decomposition with respect to a square free denominator, which
may not necessarily be fully factored over Q.

For a complete explanation of this and the other algorithms used in this package,
including the theoretical justification and proofs, please consult [GCL92].

20.49.6 Tracing the ratint program

The package includes a facility to trace in some detail the inner workings of the
ratint program. Messages are given at the key stages of the algorithm, to-
gether with the results obtained. These messages are displayed when the switch
traceratint is on, which is done in REDUCE with the command

on traceratint;

This switch is off by default. Here is an example of the output obtained with this
switch on:

1: on traceratint;

2: ratint(1+x,x^2-2*x+1,x);

x + 1
performing Howoritz reduction on --------------

2
x - 2*x + 1

- 2 1
Howoritz gives: {-------,0,-------}

x - 1 x - 1

1
computing Rothstein Trager on -------

x - 1
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integral in Rothstein T is log(x - 1)

- 2
{-------,log(x - 1)}

x - 1

20.49.7 Bugs, suggestions and comments

This package was written when the author was working as a placement student at
ZIB Berlin.
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20.50 REACTEQN: Support for Chemical Reaction Equat-
ion Systems

This package allows a user to transform chemical reaction systems into ordinary
differential equation systems (ODE) corresponding to the laws of pure mass action.

Author: Herbert Melenk

A single reaction equation is an expression of the form

〈n1〉〈s1〉 + 〈n2〉〈s2〉 + . . .-> 〈n3〉〈s3〉 + 〈n4〉〈s4〉 + . . .

or

〈n1〉〈s1〉 + 〈n2〉〈s2〉 + . . .<> 〈n3〉〈s3〉 + 〈n4〉〈s4〉 + . . .

where the 〈si〉 are arbitrary names of species (REDUCE symbols) and the 〈ni〉
are positive integer numbers. The number 1 can be omitted. The connector ->
describes a one way reaction, while <> describes a forward and backward reaction.

A reaction system is a list of reaction equations, each of them optionally followed
by one or two expressions for the rate constants. A rate constant can a number, a
symbol or an arbitrary REDUCE expression. If a rate constant is missing, an auto-
matic constant of the form RATE(n) (where n is an integer counter) is generated.
For double reactions the first constant is used for the forward direction, the second
one for the backward direction.

The names of the species are collected in a list bound to the REDUCE share vari-
able species. This list is automatically filled during the processing of a reaction
system. The species enter in an order corresponding to their appearance in the
reaction system and the resulting ode’s will be ordered in the same manner.

If a list of species is preassigned to the variable species either explicitly or
from previous operations, the given order will be maintained and will dominate the
formatting process. So the ordering of the result can be easily influenced by the
user.

Syntax:

reac2ode {〈reaction〉 [,〈rate〉 [,〈rate〉]] [,〈reaction〉 [,〈rate〉 [,〈rate〉]]] . . .};

where two rates are applicable only for <> reactions.

Result is a system of explicit ordinary differential equations with polynomial right-
hand sides. As side effect the following variables are set:

Lists: rates list of the rates in the system
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species list of the species in the system

Matrices: inputmat matrix of the input coefficients

outputmat matrix of the output coefficients

In the matrices the row number corresponds to the input reaction number, while the
column number corresponds to the species index. Note: if the rates are numerical
values, it will be in most cases appropriate to switch on REDUCE rounded mode
for floating point numbers. That is

on rounded;

Inputmat and outputmat can be used for linear algebra type investigations of the
reaction system. The classical reaction matrix is the difference of these matrices;
however, the two matrices contain more information than their differences because
the appearance of a species on both sides is not reflected by the reaction matrix.

EXAMPLES: This input

% Example taken from Feinberg (Chemical Engineering):

species := {A1,A2,A3,A4,A5};

reac2ode { A1 + A4 <> 2A1, rho, beta,
A1 + A2 <> A3, gamma, epsilon,
A3 <> A2 + A5, theta, mue};

gives the output

{df(a1,t)

2
=rho*a1*a4 - beta*a1 - gamma*a1*a2 + epsilon*a3,

df(a2,t)= - gamma*a1*a2 + epsilon*a3 + theta*a3

- mue*a2*a5,

df(a3,t)

=gamma*a1*a2 - epsilon*a3 - theta*a3 + mue*a2*a5,

2
df(a4,t)= - rho*a1*a4 + beta*a1 ,
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df(a5,t)=theta*a3 - mue*a2*a5}

The corresponding matrices are

inputmat;

[1 0 0 1 0]
[ ]
[1 1 0 0 0]
[ ]
[0 0 1 0 0]

outputmat;

[2 0 0 0 0]
[ ]
[0 0 1 0 0]
[ ]
[0 1 0 0 1]

% computation of the classical reaction matrix as
% difference of output and input matrix:

reactmat := outputmat-inputmat;

[1 0 0 -1 0]
[ ]

reactmat := [-1 -1 1 0 0]
[ ]
[0 1 -1 0 1]

% Example with automatic generation of rate constants
% and automatic extraction of species

species := {};

reac2ode { A1 + A4 <> 2A1,
A1 + A2 <> A3,

a3 <> A2 + A5};

new species: a1
new species: a4
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new species: a2
new species: a3
new species: a5

2
{df(a1,t)= - a1 *rate(2) + a1*a4*rate(1)

- a1*a2*rate(3) + a3*rate(4),

2
df(a4,t)=a1 *rate(2) - a1*a4*rate(1),

df(a2,t)= - a1*a2*rate(3) - a2*a5*rate(6)

+ a3*rate(5) + a3*rate(4),

df(a3,t)=a1*a2*rate(3) + a2*a5*rate(6)

- a3*rate(5) - a3*rate(4),

df(a5,t)= - a2*a5*rate(6) + a3*rate(5)}

% Example with rates computed from numerical expressions

species := {};

reac2ode { A1 + A4 <> 2A1, 17.3* 22.4^1.5,
0.04* 22.4^1.5 };

new species: a1
new species: a4

{df(a1,t)

2
= - 4.24064598853*a1 + 1834.07939004*a1*a4,

2
df(a4,t)=4.24064598853*a1 - 1834.07939004*a1*a4}
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20.51 REDLOG: Extend REDUCE to a Computer Logic
System

The name REDLOG stand for REDuce LOGic system. Redlog implements symb-
olic algorithms on first-order formulas with respect to user-chosen first-order lan-
guages and theories. The available domains include real numbers, integers, com-
plex numbers, p-adic numbers, quantified propositional calculus, term algebras.

Documentation for this package can be found online.

Authors: Andreas Dolzmann and Thomas Sturm

http://redlog.eu/
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20.52 RLFI: REDUCE LATEX Formula Interface

This package adds LATEX syntax to REDUCE. Text generated by REDUCE in this
mode can be directly used in LATEX source documents. Various mathematical con-
structions are supported by the interface including subscripts, superscripts, font
changing, Greek letters, divide-bars, integral and sum signs, derivatives, and so on.

Author: Richard Liska

High quality typesetting of mathematical formulas is a quite tedious task. One of
the most sophisticated typesetting programs for mathematical text TEX [Knu84],
together with its widely used macro package LATEX [Lam86], has a strange syntax
of mathematical formulas, especially of the complicated type. This is the main rea-
son which lead us to designing the formula interface between the computer algebra
system REDUCE and the document preparation system LATEX. The other reason
is that all available syntaxes of the REDUCE formula output are line oriented and
thus not suitable for typesetting in mathematical text. The idea of interfacing a
computer algebra system to a typesetting program has already been used, eg. in
[Fat87] presenting the TEX output of the MACSYMA computer algebra system.

The formula interface presented here adds to REDUCE the new syntax of formula
output, namely LATEX syntax, and can also be named REDUCE - LATEX translator.
Text generated by REDUCE in this syntax can be directly used in LATEX source
documents. Various mathematical constructions are supported by the interface in-
cluding subscripts, superscripts, font changing, Greek letters, divide-bars, integral
and sum signs, derivatives etc.

The interface can be used in two ways:

• for typesetting of results of REDUCE algebraic calculations.

• for typesetting of users formulas.

The latter can even be used by users unfamiliar with the REDUCE system, because
the REDUCE input syntax of formulas is almost the same as the syntax of the ma-
jority of programming languages. We aimed at speeding up the process of formula
typesetting, because we are convinced, that the writing of correct complicated for-
mulas in the REDUCE syntax is a much more simpler task than writing them in
the LATEX syntax full of keywords and special characters \, {, ^, etc. It is clear
that not every formula produced by the interface is typeset in the best format from
an aesthetic point of view. When a user is not satisfied with the result, he can add
some LATEX commands to the REDUCE output - LATEX input.

The interface is connected to REDUCE by three new switches and several state-
ments. To activate the LATEX output mode the switch latex must be set on. this
switch, similar to the switch fort producing FORTRAN output, being on causes
all outputs to be written in the LATEX syntax of formulas. The switch verbatim
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is used for input printing control. If it is on input to REDUCE system is typeset in
LATEX verbatim environment after the line containing the string REDUCE Input:.

The switch lasimp controls the algebraic evaluation of input formulas. If it is on
every formula is evaluated, simplified and written in the form given by ordinary
REDUCE statements and switches such as factor, order, rat etc. In the case
when the lasimp switch is off evaluation, simplification or reordering of formu-
las is not performed and REDUCE acts only as a formula parser and the form of the
formula output is exactly the same as that of the input, the only difference remains
in the syntax. The mode off lasimp is designed especially for typesetting of
formulas for which the user needs preservation of their structure. This switch has
no meaning if the switch Latex is off and thus is working only for LATEX output.

For every identifier used in the typeset REDUCE formula the following properties
can be defined by the statement defid:

• its printing symbol (Greek letters can be used).

• the font in which the symbol will be typeset.

• accent which will be typeset above the symbol.

Symbols with indexes are treated in REDUCE as operators. Each index corre-
sponds to an argument of the operator. The meaning of operator arguments (where
one wants to typeset them) is declared by the statement defindex. This state-
ment causes the arguments to be typeset as subscripts or superscripts (on left or
right-hand side of the operator) or as arguments of the operator.

ttindextype[RLFI]laline"!*variable The statement mathstyle defines the style
of formula typesetting. The variable laline!* defines the length of output lines.

The fractions with horizontal divide bars are typeset by using the new REDUCE
infix operator //. This operator is not algebraically simplified. During typesetting
of powers the checking on the form of the power base and exponent is performed to
determine the form of the typeset expression (eg. sqrt symbol, using parentheses).

Some special forms can be typeset by using REDUCE prefix operators. These are
as follows:

• int - integral of an expression.

• dint - definite integral of an expression.

• df - derivative of an expression.

• pdf - partial derivative of an expression.

• sum - sum of expressions.
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• product - product of expressions.

• sqrt - square root of expression.

There are still some problems unsolved in the present version of the interface as
follows:

• breaking the formulas which do not fit on one line.

• automatic decision where to use divide bars in fractions.

• distinction of two- or more-character identifiers from the product of one-
character symbols.

• typesetting of matrices.

Remark

After finishing presented interface, we have found another work [ASW89], which
solves the same problem. The RLFI package has been described in [DLS90] too.

20.52.1 APPENDIX: Summary and syntax

Warning

The RLFI package can be used only on systems supporting lower case letters with
off raise statement. The package distinquishes the upper and lower case let-
ters, so be carefull in typing them. In REDUCE 3.6 the REDUCE commands have
to be typed in lower-case while the switch latex is on, in previous versions the
commands had to be typed in upper-case.

Switches

latex - If on output is in LATEX format. It turns off the raise switch if it is
set on and on the raise switch if it is set off. By default is off.

lasimp - If on formulas are evaluated (simplified), REDUCE works as usually.
If off no evaluation is performed and the structure of formulas is preserved.
By default is on.

verbatim - If on the REDUCE input, while latex switch being on, is printed
in LATEX verbatim environment. The actual REDUCE input is printed after
the line containing the string "REDUCE Input:". It turns on resp. off
the echo switch when turned on resp. off. by default is off.

Operators
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infix - //

prefix - int,dint,df,pdf,sum,product,sqrt and all REDUCE prefix oper-
ators defined in the REDUCE kernel and the SOLVE module.

〈alg. expression〉 // 〈alg. expression〉
int(〈function〉,〈variable〉)
dint(〈from〉,〈to〉,〈function〉,〈variable〉)
df(〈function〉,〈variables〉)
〈variables〉 ::= 〈o-variable〉 | 〈o-variable〉,〈variables〉
〈o-variable〉 ::= 〈variable〉 | 〈variable〉 〈order〉
〈variable〉 ::= 〈kernel〉
〈order〉 ::= 〈integer〉
〈function〉 ::= 〈alg. expression〉
〈from〉 ::= 〈alg. expression〉
〈to〉 ::= 〈alg. expression〉
pdf(〈function〉,〈variables〉)
sum(〈from〉,〈to〉,〈function〉)
product(〈from〉,〈to〉,〈function〉)
sqrt(〈alg. expression〉)

〈alg. expression〉 is any algebraic expression. Where appropriate, it can include
also relational operators (e.g. argument 〈from〉 of sum or product operators
is usually equation). 〈kernel〉 is an identifier or prefix operator with arguments
as described in section 8.1. The interface supports typesetting lists of algebraic
expressions.
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Statements

mathstyle 〈m-style>〉 ;
〈m-style〉 ::= math | displaymath | equation
defid 〈identifier〉,〈d-equations〉
〈d-equations〉 ::= 〈d-equation〉 | 〈d-equation〉,〈d-equations〉
〈d-equation〉 ::= 〈d-print symbol〉 | 〈d-font〉 | 〈d-accent〉
〈d-print symbol〉 ::= name = 〈print symbol〉
〈d-font〉 ::= font = 〈font〉
〈d-accent〉 ::= accent = 〈accent〉
〈print symbol〉 ::= 〈character〉 | 〈special symbol〉
〈special symbol〉 ::= alpha | beta | gamma | delta | epsilon |

varepsilon | zeta | eta | theta | vartheta |
iota | kappa | lambda | mu | nu | xi | pi |
varpi | rho | varrho | sigma | varsigma |
tau | upsilon | phi | varphi | chi | psi |
omega | Gamma | Delta | Theta | Lambda | Xi |
Pi | Sigma | Upsilon | Phi | Psi | Omega |
infty | hbar

〈font〉 ::= bold | roman
〈accent〉 ::= hat | check | breve | acute | grave | tilde |

bar | vec | dot | ddot

For special symbols and accents see [Lam86], p. 43, 45, 51.

defindex 〈d-operators〉 ;
〈d-operators〉 ::= 〈d-operator〉 | 〈d-operator〉,〈d-operators〉
〈d-operator〉 ::= 〈prefix operator〉(〈descriptions〉)
〈prefix operator〉 ::= 〈identifier〉
〈descriptions〉 ::= 〈description〉 | 〈description〉,〈descriptions〉
〈description〉 ::= arg | up | down | leftup | leftdown

The meaning of the statements is briefly described in the preceding text.
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20.53 SCOPE: REDUCE Source Code Optimization Pack-
age

SCOPE is a package for the production of an optimized form of a set of expres-
sions. It applies an heuristic search for common (sub)expressions to almost any set
of proper REDUCE assignment statements. The output is obtained as a sequence
of assignment statements. GENTRAN is used to facilitate expression output.

Author: J.A. van Hulzen

Further documentation is available at https://reduce-algebra.
sourceforge.io/extra-docs/scope.pdf.

https://reduce-algebra.sourceforge.io/extra-docs/scope.pdf
https://reduce-algebra.sourceforge.io/extra-docs/scope.pdf
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20.54 SETS: A Basic Set Theory Package

Author: Francis Wright

The SETS package for REDUCE provides algebraic-mode support for set opera-
tions on lists regarded as sets (or representing explicit sets) and on implicit sets
represented by identifiers. It provides the set-valued infix operators (with syn-
onyms) union, intersection (intersect) and setdiff (\, minus) and
the Boolean-valued infix operators (predicates) member, subset_eq, subset,
set_eq. The union and intersection operators are n-ary and the rest are binary. A
list can be explicitly converted to the canonical set representation by applying the
operator mkset. (The package also provides an operator not specifically related
to set theory called evalb that allows the value of any Boolean-valued expression
to be displayed in algebraic mode.)

20.54.1 Introduction

REDUCE has no specific representation for a set, neither in algebraic mode nor
internally, and any object that is mathematically a set is represented in REDUCE as
a list. The difference between a set and a list is that in a set the ordering of elements
is not significant and duplicate elements are not allowed (or are ignored). Hence a
list provides a perfectly natural and satisfactory representation for a set (but not vice
versa). Some languages, such as Maple, provide different internal representations
for sets and lists, which may allow sets to be processed more efficiently, but this is
not necessary.

This package supports set theoretic operations on lists and represents the results
as normal algebraic-mode lists, so that all other REDUCE facilities that apply to
lists can still be applied to lists that have been constructed by explicit set opera-
tions. The algebraic-mode set operations provided by this package have all been
available in symbolic mode for a long time, and indeed are used internally by the
rest of REDUCE, so in that sense set theory facilities in REDUCE are far from
new. What this package does is make them available in algebraic mode, generalize
their operation by extending the arity of union and intersection, and allow their
arguments to be implicit sets represented by unbound identifiers. It performs some
simplifications on such symbolic set-valued expressions, but this is currently rather
ad hoc and is probably incomplete.

For examples of the operation of the SETS package see (or run) the test file
sets.tst. This package is experimental and developments are under consider-
ation; if you have suggestions for improvements (or corrections) then please send
them to me (FJW), preferably by email. The package is intended to be run under
REDUCE 3.5 and later versions; it may well run correctly under earlier versions
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although I cannot provide support for such use.

20.54.2 Infix operator precedence

The set operators are currently inserted into the standard REDUCE precedence list
(see page 44, §2.7, of the REDUCE manual) as follows:

or and not member memq = set_eq neq eq >= > <= <
subset_eq subset freeof + - setdiff union intersection

* / ^ .

20.54.3 Explicit set representation and mkset

Explicit sets are represented by lists, and this package does not require any restric-
tions at all on the forms of lists that are regarded as sets. Nevertheless, duplicate
elements in a set correspond by definition to the same element and it is conventional
and convenient to represent them by a single element, i.e. to remove any duplicate
elements. I will call this a normal representation. Since the order of elements in
a set is irrelevant it is also conventional and may be convenient to sort them into
some standard order, and an appropriate ordering of a normal representation gives
a canonical representation. This means that two identical sets have identical rep-
resentations, and therefore the standard REDUCE equality predicate (=) correctly
determines set equality; without a canonical representation this is not the case.

Pre-processing of explicit set-valued arguments of the set-valued operators to re-
move duplicates is always done because of the obvious efficiency advantage if
there were any duplicates, and hence explicit sets appearing in the values of such
operators will never contain any duplicate elements. Such sets are also currently
sorted, mainly because the result looks better. The ordering used satisfies the ordp
predicate used for most sorting within REDUCE, except that explicit integers are

sorted into increasing numerical order rather than the decreasing order that satisfies
ordp.

Hence explicit sets appearing in the result of any set operator are currently returned
in a canonical form. Any explicit set can also be put into this form by applying the
operator mkset to the list representing it. For example

mkset {1,2,y,x*y,x+y};

{x + y,x*y,y,1,2}

The empty set is represented by the empty list {}.
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20.54.4 Union and intersection

The operator intersection (the name used internally) has the shorter synonym
intersect. These operators will probably most commonly be used as binary
infix operators applied to explicit sets, e.g.

{1,2,3} union {2,3,4};

{1,2,3,4}

{1,2,3} intersect {2,3,4};

{2,3}

They can also be used as n-ary operators with any number of arguments, in which
case it saves typing to use them as prefix operators (which is possible with all
REDUCE infix operators), e.g.

{1,2,3} union {2,3,4} union {3,4,5};

{1,2,3,4,5}

intersect({1,2,3}, {2,3,4}, {3,4,5});

{3}

For completeness, they can currently also be used as unary operators, in which
case they just return their arguments (in canonical form), and so act as slightly less
efficient versions of mkset (but this may change), e.g.

union {1,5,3,5,1};

{1,3,5}

20.54.5 Symbolic set expressions

If one or more of the arguments evaluates to an unbound identifier then it is re-
garded as representing a symbolic implicit set, and the union or intersection will
evaluate to an expression that still contains the union or intersection operator.
These two operators are symmetric, and so if they remain symbolic their argu-
ments will be sorted as for any symmetric operator. Such symbolic set expressions
are simplified, but the simplification may not be complete in non-trivial cases. For
example:
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a union b union {} union b union {7,3};

{3,7} union a union b

a intersect {};

{}

In implementations of REDUCE that provide fancy display using mathematical
notation, the empty set, union, intersection and set difference are all displayed
using their conventional mathematical symbols, namely ∅, ∪, ∩, \.

A symbolic set expression is a valid argument for any other set operator, e.g.

a union (b intersect c);

b intersection c union a

Intersection distributes over union, which is not applied by default but is imple-
mented as a rule list assigned to the variable set_distribution_rule, e.g.

a intersect (b union c);

(b union c) intersection a

a intersect (b union c) where set_distribution_rule;

a intersection b union a intersection c

20.54.6 Set difference

The set difference operator is represented by the symbol \ and is always output
using this symbol, although it can also be input using either of the two names
setdiff (the name used internally) or minus (as used in Maple). It is a binary
operator, its operands may be any combination of explicit or implicit sets, and it
may be used in an argument of any other set operator. Here are some examples:

{1,2,3} \ {2,4};

{1,3}

{1,2,3} \ {};
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{1,2,3}

a \ {1,2};

a\{1,2}

a \ a;

{}

a \ {};

a

{} \ a;

{}

20.54.7 Predicates on sets

These are all binary infix operators. Currently, like all REDUCE predicates, they
can only be used within conditional statements if, while, repeat) or within
the argument of the evalb operator provided by this package, and they cannot
remain symbolic – a predicate that cannot be evaluated to a Boolean value causes
a normal REDUCE error.

The evalb operator provides a convenient shorthand for an if statement designed
purely to display the value of any Boolean expression (not only predicates defined
in this package). It has some similarity with the evalb function in Maple, except
that the values returned by evalb in REDUCE (the identifiers true and false)
have no significance to REDUCE itself. Hence, in REDUCE, use of evalb is
never necessary.

if a = a then true else false;

true

evalb(a = a);

true

if a = b then true else false;

false
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evalb(a = b);

false

evalb 1;

true

evalb 0;

false

I will use the evalb operator in preference to an explicit if statement for pur-
poses of illustration.

20.54.7.1 Set membership

Set membership is tested by the predicate member. Its left operand is regarded
as a potential set element and its right operand must evaluate to an explicit set.
There is currently no sense in which the right operand could be an implicit set; this
would require a mechanism for declaring implicit set membership (akin to implicit
variable dependence) which is currently not implemented. Set membership testing
works like this:

evalb(1 member {1,2,3});

true

evalb(2 member {1,2} intersect {2,3});

true

evalb(a member b);

***** b invalid as list

20.54.7.2 Set inclusion

Set inclusion is tested by the predicate subset_eq where a subset_eq b is
true if the set a is either a subset of or equal to the set b; strict inclusion is tested by
the predicate subset where a subset b is true if the set a is strictly a subset
of the set b and is false is a is equal to b. These predicates provide some support
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for symbolic set expressions, but this is not yet correct as indicated below. Here
are some examples:

evalb({1,2} subset_eq {1,2,3});

true

evalb({1,2} subset_eq {1,2});

true

evalb({1,2} subset {1,2});

false

evalb(a subset a union b);

true

evalb(a\b subset a);

true

evalb(a intersect b subset a union b); %%% BUG

false

An undecidable predicate causes a normal REDUCE error, e.g.

evalb(a subset_eq {b});

***** Cannot evaluate a subset_eq {b}
as Boolean-valued set expression

evalb(a subset_eq b); %%% BUG

false

20.54.7.3 Set equality

As explained above, equality of two sets in canonical form can be reliably tested
by the standard REDUCE equality predicate (=). This package also provides the
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predicate set_eq to test equality of two sets not represented canonically. The
two predicates behave identically for operands that are symbolic set expressions
because these are always evaluated to canonical form (although currently this is
probably strictly true only in simple cases). Here are some examples:

evalb({1,2,3} = {1,2,3});

true

evalb({2,1,3} = {1,3,2});

false

evalb(mkset{2,1,3} = mkset{1,3,2});

true

evalb({2,1,3} set_eq {1,3,2});

true

evalb(a union a = a\{});

true

20.54.8 Possible future developments

• Unary union/intersection to implement repeated union/intersection on a set
of sets.

• More symbolic set algebra, canonical forms for set expressions, more com-
plete simplification.

• Better support for Boolean variables via a version (evalb10?) of evalb that
returns 1/0 instead of true/false, or predicates that return 1/0 directly.
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20.55 SPARSE: Sparse Matrix Calculations

Author: Stephen Scowcroft

20.55.1 Introduction

A very powerful feature of REDUCE is the ease with which matrix calculations
can be performed. This package extends the available matrix feature to enable cal-
culations with sparse matrices. This package also provides a selection of functions
that are useful in the world of linear algebra with respect to sparse matrices.

Loading the Package

The package is loaded by: load_package sparse;

20.55.2 Sparse Matrix Calculations

To extend the the syntax to this class of calculations we need to add an expression
type sparse.

20.55.2.1 Sparse Variables

An identifier may be declared a sparse variable by the declaration SPARSE. The
size of the sparse matrix must be declared explicitly in the matrix declaration. For
example,

sparse aa(10,1),bb(200,200);

declares aa to be a 10 x 1 (column) sparse matrix and y to be a 200 x 200 sparse
matrix. The declaration sparse is similar to the declaration matrix. Once a
symbol is declared to name a sparse matrix, it can not also be used to name an
array, operator, procedure, or used as an ordinary variable. For more information
see the Matrix Variables section (14.2).

20.55.2.2 Assigning Sparse Matrix Elements

Once a matix has been declared a sparse matrix all elements of the matrix are
initialized to 0. Thus when a sparse matrix is initially referred to the message

"Empty matrix"
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is returned. When printing out a matrix only the non-zero elements are printed.
This is due to the fact that only the non-zero elements of the matrix are stored. To
assign the elements of the declared matrix we use the following syntax. Assuming
aa and bb have been declared as spasre matrices, we simply write,

aa(1,1):=10;
bb(100,150):=a;

etc. This then sets the element in the first row and first column to 10, or the element
in the 100th row and 150th column to a.

20.55.2.3 Evaluating Sparse Matrix Elements

Once an element of a sparse matrix has been assingned, it may be referred to in
standard array element notation. Thus aa(2,1) refers to the element in the sec-
ond row and first column of the sparse matrix aa.

20.55.3 Sparse Matrix Expressions

These follow the normal rules of matrix algebra. Sums and products must be of
compatible size; otherwise an error will result during evaluation. Similarly, only
square matrices may be raised to a power. A negative power is computed as the
inverse of the matrix raised to the corresponding positive power. For more infor-
mation and the syntax for matrix algebra see the Matrix Expressions section (14.3).

20.55.4 Operators with Sparse Matrix Arguments

The operators in the Sparse Matrix Package are the same as those in the Matrix
Package with the exception that the nullspace operator is not defined. See
section Operators with Matrix Arguments (14.4) for more details.

20.55.4.1 Examples

In the examples the matrix AA will be

AA =


1 0 0 0
0 3 0 0
0 0 5 0
0 0 0 9


det aa;
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135

trace aa;

18

rank aa;

4

spmateigen(aa,eta);

{{eta - 1,1,

spm(1,1) := arbcomplex(1)$
},

{eta - 3,1,

spm(2,1) := arbcomplex(2)$
},

{eta - 5,1,

spm(3,1) := arbcomplex(3)$
},

{eta - 9,1,

spm(4,1) := arbcomplex(4)$
}}

20.55.5 The Linear Algebra Package for Sparse Matrices

This package is an extension of the Linear Algebra Package for REDUCE de-
scribed in section 20.33. These functions are described alphabetically in section
20.55.6. They can be classified into four sections(n.b: the numbers after the dots
signify the function label in section 6).
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20.55.5.1 Basic matrix handling

spadd_columns . . . 20.55.6.1 spadd_rows . . . 20.55.6.2
spadd_to_columns . . . 20.55.6.3 spadd_to_rows . . . 20.55.6.4
spaugment_columns . . . 20.55.6.5 spchar_poly . . . 20.55.6.9
spcol_dim . . . 20.55.6.12 spcopy_into . . . 20.55.6.14
spdiagonal . . . 20.55.6.15 spextend . . . 20.55.6.16
spfind_companion . . . 20.55.6.17 spget_columns . . . 20.55.6.18
spget_rows . . . 20.55.6.19 sphermitian_tp . . . 20.55.6.21
spmatrix_augment . . . 20.55.6.27 spmatrix_stack . . . 20.55.6.29
spminor . . . 20.55.6.30 spmult_columns . . . 20.55.6.31
spmult_rows . . . 20.55.6.32 sppivot . . . 20.55.6.33
spremove_columns . . . 20.55.6.35 spremove_rows . . . 20.55.6.36
sprow_dim . . . 20.55.6.37 sprows_pivot . . . 20.55.6.38
spstack_rows . . . 20.55.6.41 spsub_matrix . . . 20.55.6.42
spswap_columns . . . 20.55.6.44 spswap_entries . . . 20.55.6.45
spswap_rows . . . 20.55.6.46

20.55.5.2 Constructors

Functions that create sparse matrices.

spband_matrix . . . 20.55.6.6 spblock_matrix . . . 20.55.6.7
spchar_matrix . . . 20.55.6.11 spcoeff_matrix . . . 20.55.6.11
spcompanion . . . 20.55.6.13 sphessian . . . 20.55.6.22
spjacobian . . . 20.55.6.23 spjordan_block . . . 20.55.6.24
spmake_identity . . . 20.55.6.26

20.55.5.3 High level algorithms

spchar_poly . . . 20.55.6.9 spcholesky . . . 20.55.6.10
spgram_schmidt . . . 20.55.6.20 splu_decom . . . 20.55.6.25
sppseudo_inverse . . . 20.55.6.34 spsvd . . . 20.55.6.43

20.55.5.4 Predicates

matrixp . . . 20.55.6.28 sparsematp . . . 20.55.6.39
squarep . . . 20.55.6.40 symmetricp . . . 20.55.6.47

Note on examples:

In the examples the matrix A will be
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A =

1 0 0
0 5 0
0 0 9


Unfortunately, due to restrictions of size, it is not practical to use “large” sparse
matrices in the examples. As a result the examples shown may appear trivial, but
they give an idea of how the functions work.

Notation

Throughout I is used to indicate the identity matrix and AT to indicate the trans-
pose of the matrix A.

20.55.6 Available Functions

20.55.6.1 spadd_columns, spadd_rows

Syntax:
spadd_columns(A,c1,c2,expr);
A :- a sparse matrix.
c1, c2 :- positive integers.
expr :- a scalar expression.

Synopsis:
spadd_columns replaces column c2 of A by
expr ∗ column(A,c1)+ column(A,c2).
spadd_rows performs the equivalent task on the rows of A.

Examples:

spadd_columns(A, 1, 2, x) =

1 x 0
0 5 0
0 0 9


spadd_rows(A, 2, 3, 5) =

1 0 0
0 5 0
0 25 9


Related functions:

spadd_to_columns, spadd_to_rows, spmult_columns,
spmult_rows.

20.55.6.2 spadd_rows

See: spadd_columns.



1045

20.55.6.3 spadd_to_columns, spadd_to_rows

Syntax:
spadd_to_columns(A,column_list,expr);
A :- a sparse matrix.
column_list :- a positive integer or a list of positive integers.
expr :- a scalar expression.

Synopsis:
spadd_to_columns adds expr to each column specified in column_list
of A.

spadd_to_rows performs the equivalent task on the rows of A.

Examples:

spadd_to_columns(A, {1, 2}, 10) =

11 10 0
10 15 0
10 10 9


spadd_to_rows(A, 2,−x) =

 1 0 0
−x −x+ 5 −x
0 0 9


Related functions:

spadd_columns, spadd_rows, spmult_rows, spmult_columns.

20.55.6.4 spadd_to_rows

See: spadd_to_columns.

20.55.6.5 spaugment_columns, spstack_rows

Syntax:
spaugment_columns(A,column_list);
A :- a sparse matrix.
column_list :- either a positive integer or a list of positive integers.

Synopsis:
spaugment_columns gets hold of the columns of A specified in col-
umn_list and sticks them together.

spstack_rows performs the same task on rows of A.

Examples:

spaugment_columns(A, {1, 2}) =

1 0
0 5
0 0
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spstack_rows(A, {1, 3}) =
(
1 0 0
0 0 9

)
Related functions:

spget_columns, spget_rows, spsub_matrix.

20.55.6.6 spband_matrix

Syntax:
spband_matrix(expr_list,square_size);

expr_list :- either a single scalar expression or a list of an odd num-
ber of scalar expressions.

square_size :- a positive integer.

Synopsis:
spband_matrix creates a sparse square matrix of dimension square_size.

Examples: spband_matrix({x, y, z}, 6) =



y z 0 0 0 0
x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z
0 0 0 0 x y


Related functions:

spdiagonal.

20.55.6.7 spblock_matrix

Syntax:
spblock_matrix(r,c,matrix_list);

r,c :- positive integers.
matrix_list :- a list of matrices of either sparse or matrix type.

Synopsis:
spblock_matrix creates a sparse matrix that consists of r by c matrices
filled from the matrix_list row wise.

Examples:

B =

(
1 0
0 1

)
, C =

(
5
0

)
, D =

(
22 0
0 0

)

spblock_matrix(2, 3, {B, C,D,D, C,B}) =


1 0 5 22 0
0 1 0 0 0
22 0 5 1 0
0 0 0 0 1
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20.55.6.8 spchar_matrix

Syntax:
spchar_matrix(A, λ);
A :- a square sparse matrix.
λ :- a symbol or algebraic expression.

Synopsis:
spchar_matrix creates the characteristic matrix C of A.

This is C = λ ∗ I − A.

Examples: spchar_matrix(A, x) =

x− 1 0 0
0 x− 5 0
0 0 x− 9


Related functions:

spchar_poly.

20.55.6.9 spchar_poly

Syntax:
spchar_poly(A, λ);
A :- a sparse square matrix.
λ :- a symbol or algebraic expression.

Synopsis:
spchar_poly finds the characteristic polynomial of A.

This is the determinant of λ ∗ I − A.

Examples:
spchar_poly(A,x) = x3 − 15 ∗ x2 − 59 ∗ x− 45

Related functions:
spchar_matrix.

20.55.6.10 spcholesky

Syntax:
spcholesky(A);

A :- a positive definite sparse matrix containing numeric entries.

Synopsis:
spcholesky computes the cholesky decomposition of A.
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It returns {L,U} where L is a lower matrix, U is an upper matrix,
A = LU , and U = LT .

Examples:

F =

1 0 0
0 5 0
0 0 9


cholesky(F) =


1 0 0

0
√
5 0

0 0 3

 ,

1 0 0

0
√
5 0

0 0 3


Related functions:

splu_decom.

20.55.6.11 spcoeff_matrix

Syntax:
spcoeff_matrix({lin_eqn1,lin_eqn2, ...,lin_eqnn});

lin_eqn1,lin_eqn2, . . . ,lin_eqnn :- linear equations. Can be of the
form equation = number or just
equation which is equivalent to
equation = 0.

Synopsis:
spcoeff_matrix creates the coefficient matrix C of the linear equations.

It returns {C,X ,B} such that CX = B.

Examples:
spcoeff_matrix({y− 20 ∗w = 10, y− z = 20, y+4+ 3 ∗ z, w+ x+
50}) =

1 −20 0 0
1 0 −1 0
1 0 3 0
0 1 0 1

 ,


y
w
z
x

 ,


10
20
−4
50




20.55.6.12 spcol_dim, sprow_dim

Syntax:
column_dim(A);

A :- a sparse matrix.
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Synopsis:
spcol_dim finds the column dimension of A.
sprow_dim finds the row dimension of A.

Examples:
spcol_dim(A) = 3

20.55.6.13 spcompanion

Syntax:
spcompanion(poly,x);

poly :- a monic univariate polynomial in x.
x :- the variable.

Synopsis:
spcompanion creates the companion matrix C of poly.

This is the square matrix of dimension n, where n is the degree of poly w.r.t.
x. The entries of C are: C(i, n) = −coeffn(poly, x, i−1) for i = 1 . . . n,
C(i, i− 1) = 1 for i = 2 . . . n and the rest are 0.

Examples:

spcompanion(x4 + 17 ∗ x3 − 9 ∗ x2 + 11, x) =


0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17


Related functions:

spfind_companion.

20.55.6.14 spcopy_into

Syntax:
spcopy_into(A,B,r,c);
A,B :- matrices of type sparse or matrix.
r,c :- positive integers.

Synopsis:
spcopy_into copies matrix A into B with A(1,1) at B(r,c).

Examples:

G =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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spcopy_into(A,G, 1, 2) =


0 1 0 0
0 0 5 0
0 0 0 9
0 0 0 0


Related functions:

spaugment_columns, spextend, spmatrix_augment,
spmatrix_stack, spstack_rows, spsub_matrix.

20.55.6.15 spdiagonal

Syntax:
spdiagonal({mat1,mat2, ...,matn});47

mat1,mat2, . . . ,matn :- each can be either a scalar expr or a square
matrix of sparse or matrix type.

Synopsis:
spdiagonal creates a sparse matrix that contains the input on the diago-
nal.

Examples:

H =

(
66 77
88 99

)

spdiagonal({A, x,H}) =



1 0 0 0 0 0
0 5 0 0 0 0
0 0 9 0 0 0
0 0 0 x 0 0
0 0 0 0 66 77
0 0 0 0 88 99


Related functions:

spjordan_block.

20.55.6.16 spextend

Syntax:
spextend(A,r,c,expr);
A :- a sparse matrix.
r,c :- positive integers.
expr :- algebraic expression or symbol.

47The {}’s can be omitted.
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Synopsis:
spextend returns a copy of A that has been extended by r rows and c
columns. The new entries are made equal to expr.

Examples: spextend(A, 1, 2, 0) =


1 0 0 0 0
0 5 0 0 0
0 0 9 0 0
0 0 0 0 0


Related functions:

spcopy_into, spmatrix_augment, spmatrix_stack,
spremove_columns, spremove_rows.

20.55.6.17 spfind_companion

Syntax:
spfind_companion(A,x);
A :- a sparse matrix.
x :- the variable.

Synopsis:
Given a sparse companion matrix, spfind_companion finds the polyno-
mial from which it was made.

Examples:

C =


0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17


spfind_companion(C, x) = x4 + 17 ∗ x3 − 9 ∗ x2 + 11

Related functions:
spcompanion.

20.55.6.18 spget_columns, spget_rows

Syntax:
spget_columns(A,column_list);
A :- a sparse matrix.
c :- either a positive integer or a list of positive integers.

Synopsis:
spget_columns removes the columns of A specified in column_list and
returns them as a list of column matrices.
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spget_rows performs the same task on the rows of A.

Examples:

spget_columns(A, {1, 3}) =


1
0
0

 ,

0
0
9


spget_rows(A, 2) =

{(
0 5 0

)}
Related functions:

spaugment_columns, spstack_rows, spsub_matrix.

20.55.6.19 spget_rows

See: spget_columns.

20.55.6.20 spgram_schmidt

Syntax:
spgram_schmidt({vec1,vec2, ...,vecn});

vec1,vec2, . . . ,vecn :- linearly independent vectors. Each vector must
be written as a list of predefined sparse (col-
umn) matrices, eg: sparse a(4,1);, a(1,1):=1;

Synopsis:
spgram_schmidt performs the gram_schmidt orthonormalisation on the
input vectors.

It returns a list of orthogonal normalised vectors.

Examples:
Suppose a,b,c,d correspond to sparse matrices representing the following
lists: {{1,0,0,0},{1,1,0,0},{1,1,1,0},{1,1,1,1}}.

spgram_schmidt({{a},{b},{c},{d}}) =
{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

20.55.6.21 sphermitian_tp

Syntax:
sphermitian_tp(A);

A :- a sparse matrix.

Synopsis:
sphermitian_tp computes the hermitian transpose of A.
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Examples:

J =

i+ 1 i+ 2 i+ 3
0 0 0
0 i 0


sphermitian_tp(J ) =

−i+ 1 0 0
−i+ 2 0 −i
−i+ 3 0 0


Related functions:

tp48.

20.55.6.22 sphessian

Syntax:
sphessian(expr,variable_list);

expr :- a scalar expression.
variable_list :- either a single variable or a list of variables.

Synopsis:
sphessian computes the hessian matrix of expr w.r.t. the variables in
variable_list.

Examples: sphessian(x ∗ y ∗ z + x2, {w, x, y, z}) =


0 0 0 0
0 2 z y
0 z 0 x
0 y x 0


20.55.6.23 spjacobian

Syntax:
spjacobian(expr_list,variable_list);

expr_list :- either a single algebraic expression or a list of algebraic
expressions.

variable_list :- either a single variable or a list of variables.

Synopsis:
spjacobian computes the jacobian matrix of expr_list w.r.t. variable_list.

Examples:
spjacobian({x4, x ∗ y2, x ∗ y ∗ z3}, {w, x, y, z}) =0 4 ∗ x3 0 0
0 y2 2 ∗ x ∗ y 0
0 y ∗ z3 x ∗ z3 3 ∗ x ∗ y ∗ z2


48standard reduce call for the transpose of a matrix - see section 14.4.
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Related functions:
sphessian, df49.

20.55.6.24 spjordan_block

Syntax:
spjordan_block(expr,square_size);

expr :- an algebraic expression or symbol.
square_size :- a positive integer.

Synopsis:
spjordan_block computes the square jordan block matrix J of dimen-
sion square_size.

Examples: spjordan_block(x,5) =


x 1 0 0 0
0 x 1 0 0
0 0 x 1 0
0 0 0 x 1
0 0 0 0 x


Related functions:

spdiagonal, spcompanion.

20.55.6.25 splu_decom

Syntax:
splu_decom(A);
A :- a sparse matrix containing either numeric entries or imaginary

entries with numeric coefficients.

Synopsis:
splu_decom performs LU decomposition on A, ie: it returns {L,U}
where L is a lower diagonal matrix, U an upper diagonal matrix and A =
LU .

Caution: The algorithm used can swap the rows of A during the calcula-
tion. This means that LU does not equalA but a row equivalent of it. Due to
this, splu_decom returns {L,U ,vec}. The call spconvert(A,vec)
will return the sparse matrix that has been decomposed, ie: LU =
spconvert(A,vec).

Examples: K =

1 0 0
0 5 0
0 0 9


49standard reduce call for differentiation - see section 7.7.
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lu := splu_decom(K) =


1 0 0
0 5 0
0 0 9

 ,

1 0 0
0 1 0
0 0 1

 , [ 1 2 3 ]


first lu * second lu =

1 0 0
0 5 0
0 0 9


convert(K,third lu) =

1 0 0
0 5 0
0 0 9


Related functions:

spcholesky.

20.55.6.26 spmake_identity

Syntax:
spmake_identity(square_size);

square_size :- a positive integer.

Synopsis:
spmake_identity creates the identity matrix of dimension square_size.

Examples: spmake_identity(4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Related functions:

spdiagonal.

20.55.6.27 spmatrix_augment, spmatrix_stack

Syntax:
spmatrix_augment({mat1,mat2, ...,matn});50

mat1,mat2, . . . ,matn :- matrices.

Synopsis:
spmatrix_augment joins the matrices in matrix_list together horizon-
tally.

spmatrix_stack joins the matrices in matrix_list together vertically.
50The {}’s can be omitted.
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Examples:

spmatrix_augment({A,A}) =

1 0 0 1 0 0
0 5 0 0 5 0
0 0 9 0 0 9



spmatrix_stack({A,A}) =



1 0 0
0 5 0
0 0 9
1 0 0
0 5 0
0 0 9


Related functions:

spaugment_columns, spstack_rows, spsub_matrix.

20.55.6.28 matrixp

Syntax:
matrixp(test_input);

test_input :- anything you like.

Synopsis:
matrixp is a boolean function that returns t if the input is a matrix of type
sparse or matrix and nil otherwise.

Examples:
matrixp(A) = t

matrixp(doodlesackbanana) = nil

Related functions:
squarep, symmetricp, sparsematp.

20.55.6.29 spmatrix_stack

See: spmatrix_augment.

20.55.6.30 spminor

Syntax:
spminor(A,r,c);
A :- a sparse matrix.
r,c :- positive integers.
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Synopsis:
spminor computes the (r,c)’th minor of A.

Examples: spminor(A, 1, 3) =
(
0 5
0 0

)
Related functions:

spremove_columns, spremove_rows.

20.55.6.31 spmult_columns, spmult_rows

Syntax:
spmult_columns(A,column_list,expr);
A :- a sparse matrix.
column_list :- a positive integer or a list of positive integers.
expr :- an algebraic expression.

Synopsis:
spmult_columns returns a copy of A in which the columns specified in
column_list have been multiplied by expr.

spmult_rows performs the same task on the rows of A.

Examples:

spmult_columns(A, {1, 3}, x) =

x 0 0
0 5 0
0 0 9 ∗ x


spmult_rows(A, 2, 10) =

1 0 0
0 50 0
0 0 9


Related functions:

spadd_to_columns, spadd_to_rows.

20.55.6.32 spmult_rows

See: spmult_columns.

20.55.6.33 sppivot

Syntax:
sppivot(A,r,c);
A :- a sparse matrix.
r,c :- positive integers such that A(r,c) neq 0.
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Synopsis:
sppivot pivots A about it’s (r,c)’th entry.

To do this, multiples of the r’th row are added to every other row in the
matrix.

This means that the c’th column will be 0 except for the (r,c)’th entry.

Related functions:
sprows_pivot.

20.55.6.34 sppseudo_inverse

Syntax:
sppseudo_inverse(A);

A :- a sparse matrix containing only real numeric entries.

Synopsis:
sppseudo_inverse, also known as the Moore-Penrose inverse, com-
putes the pseudo inverse of A.

Given the singular value decomposition of A, i.e: A = UΣVT , then the
pseudo inverse A† is defined by A† = VΣ†UT . For the diagonal matrix
Σ, the pseudoinverse Σ† is computed by taking the reciprocal of only the
nonzero diagonal elements.

If A is square and non-singular, then A† = A. In general, however,
AA†A = A, and A†AA† = A†.

Perhaps more importantly, A† solves the following least-squares problem:
given a rectangular matrixA and a vector b, find the xminimizing ∥Ax−b∥2,
and which, in addition, has minimum ℓ2 (euclidean) Norm, ∥x∥2. This x is
A†b.

Examples:

R =

(
0 0 3 0
9 0 7 0

)

sppseudo_inverse(R) =


−0.26 0.11

0 0
0.33 0
0.25 −0.05


Related functions:

spsvd.
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20.55.6.35 spremove_columns, spremove_rows

Syntax:
spremove_columns(A,column_list);
A :- a sparse matrix.
column_list :- either a positive integer or a list of positive integers.

Synopsis:
spremove_columns removes the columns specified in column_list from
A.

spremove_rows performs the same task on the rows of A.

Examples:

spremove_columns(A, 2) =

1 0
0 0
0 9


spremove_rows(A, {1, 3}) =

(
0 5 0

)
Related functions:

spminor.

20.55.6.36 spremove_rows

See: spremove_columns.

20.55.6.37 sprow_dim

See: spcolumn_dim.

20.55.6.38 sprows_pivot

Syntax:
sprows_pivot(A,r,c,{row_list});
A :- a sparse matrix.
r,c :- positive integers such that A(r,c) neq 0.
row_list :- positive integer or a list of positive integers.

Synopsis:
sprows_pivot performs the same task as sppivot but applies the pivot
only to the rows specified in row_list.

Related functions:
sppivot.
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20.55.6.39 sparsematp

Syntax:
sparsematp(A);

A :- a matrix.

Synopsis:
sparsematp is a boolean function that returns t if the matrix is declared
sparse and nil otherwise.

Examples:
L := mat((1,2,3),(4,5,6),(7,8,9));

sparsematp(A) = t

sparsematp(L) = nil

Related functions:
matrixp, symmetricp, squarep.

20.55.6.40 squarep

Syntax:
squarep(A);

A :- a matrix.

Synopsis:
squarep is a boolean function that returns t if the matrix is square and nil
otherwise.

Examples:
L =

(
1 3 5

)
squarep(A) = t

squarep(L) = nil

Related functions:
matrixp, symmetricp, sparsematp.

20.55.6.41 spstack_rows

See: spaugment_columns.
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20.55.6.42 spsub_matrix

Syntax:
spsub_matrix(A,row_list,column_list);
A :- a sparse matrix.
row_list, column_list :- either a positive integer or a list of positive in-

tegers.

Synopsis:
spsub_matrix produces the matrix consisting of the intersection of the
rows specified in row_list and the columns specified in column_list.

Examples: spsub_matrix(A, {1, 3}, {2, 3}) =
(
5 0
0 9

)
Related functions:

spaugment_columns, spstack_rows.

20.55.6.43 spsvd (singular value decomposition)

Syntax:
spsvd(A);

A :- a sparse matrix containing only real numeric entries.

Synopsis:
spsvd computes the singular value decomposition of A.

If A is an m× n real matrix of (column) rank r, svd returns the 3-element
list {U ,Σ,V} where A = UΣVT .

Let k = min(m,n). Then U is m × k, V is n × k, and and Σ =
diag(σ1, . . . , σk), where σi ≥ 0 are the singular values of A; only r of
these are non-zero. The singular values are the non-negative square roots of
the eigenvalues of ATA.

U and V are such that UUT = VVT = VTV = Ik.

Note: there are a number of different definitions of SVD in the literature, in
some of which Σ is square and U and V rectangular, as here, but in others U
and V are square, and Σ is rectangular.

Examples:

Q =

(
1 0
0 3

)
svd(Q) =

{(
−1 0
0 0

)
,

(
1.0 0
0 5.0

)
,

(
−1 0
0 −1

)}
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20.55.6.44 spswap_columns, spswap_rows

Syntax:
spswap_columns(A,c1,c2);
A :- a sparse matrix.
c1,c1 :- positive integers.

Synopsis:
spswap_columns swaps column c1 of A with column c2.

spswap_rows performs the same task on 2 rows of A.

Examples: spswap_columns(A, 2, 3) =

1 0 0
0 0 5
0 9 0


Related functions:

spswap_entries.

20.55.6.45 swap_entries

Syntax:
spswap_entries(A,{r1,c1},{r2,c2});
A :- a sparse matrix.
r1,c1,r2,c2 :- positive integers.

Synopsis:
spswap_entries swaps A(r1,c1) with A(r2,c2).

Examples: spswap_entries(A, {1, 1}, {3, 3}) =

9 0 0
0 5 0
0 0 1


Related functions:

spswap_columns, spswap_rows.

20.55.6.46 spswap_rows

See: spswap_columns.

20.55.6.47 symmetricp

Syntax:
symmetricp(A);

A :- a matrix.
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Synopsis:
symmetricp is a boolean function that returns t if the matrix is symmetric
and nil otherwise.

Examples:

M =

(
1 2
2 1

)
symmetricp(A) = nil

symmetricp(M) = t

Related functions:
matrixp, squarep, sparsematp.

20.55.7 Fast Linear Algebra

By turning the fast_la switch on, the speed of the following functions will be
increased:

spadd_columns spadd_rows spaugment_columns spcol_dim
spcopy_into spmake_identity spmatrix_augment spmatrix_stack
spminor spmult_column spmult_row sppivot
spremove_columns spremove_rows sprows_pivot squarep
spstack_rows spsub_matrix spswap_columns spswap_entries
spswap_rows symmetricp

The increase in speed will be insignificant unless you are making a significant num-
ber(i.e: thousands) of calls. When using this switch, error checking is minimised.
This means that illegal input may give strange error messages. Beware.
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20.56 SPDE: Finding Symmetry Groups of PDEs

The package SPDE provides a set of functions which may be used to determine
the symmetry group of Lie- or point-symmetries of a given system of partial dif-
ferential equations. In many cases the determining system is solved completely
automatically. In other cases the user has to provide additional input information
for the solution algorithm to terminate.

Author: Fritz Schwarz

The package SPDE provides a set of functions which may be applied to determine
the symmetry group of Lie- or point-symmetries of a given system of partial dif-
ferential equations. Preferably it is used interactively on a computer terminal. In
many cases the determining system is solved completely automatically. In some
other cases the user has to provide some additional input information for the solu-
tion algorithm to terminate. The package should only be used in compiled form.

For all theoretical questions, a description of the algorithm and numerous examples
the following articles should be consulted: [Sch85c, Sch88, Sch87].

20.56.1 Description of the System Functions and Variables

The symmetry analysis of partial differential equations logically falls into three
parts. Accordingly the most important functions provided by the package are:

Function name Operation
cresys(〈 arguments 〉) Constructs determining system

simpsys() Solves determining system
result() Prints infinitesimal generators

and commutator table

Table 20.22: SPDE Functions

Some other useful functions for obtaining various kinds of output are:
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Function name Operation
prsys() Prints determining system
prgen() Prints infinitesimal generators
comm(U,V) Prints commutator of generators U and V

Table 20.23: SPDE Useful Output Functions

There are several global variables defined by the system which should not be used
for any other purpose than that given in Table 20.24 and 20.25. The three globals
of the type integer are:

Variable name Meaning
nn Number of independent variables
mm Number of dependent variables

pclass=0, 1 or 2 Controls amount of output

Table 20.24: SPDE Integer valued globals

In addition there are the following global variables of type operator:

Variable name Meaning
X(I) Independent variable xi

U(ALFA) Dependent variable ualfa

U(ALFA,I) Derivative of ualfa w.r.t. xi
DEQ(I) i-th differential equation

SDER(I) Derivative w.r.t. which DEQ(I) is resolved
GL(I) i-th equation of determining system

GEN(I) i-th infinitesimal generator
XI(I), ETA(ALFA) See definition given in the
ZETA(ALFA,I) references quoted in the introduction.

C(I) i-th function used for substitution

Table 20.25: SPDE Operator type global variables

The differential equations of the system at issue have to be assigned as values
to the operator deq i applying the notation which is defined in Table 20.25. The
entries in the third and the last line of that Table have obvious extensions to higher
derivatives.

The derivative w.r.t. which the i-th differential equation deq i is resolved has to
be assigned to sder i. Exception: If there is a single differential equation and no
assignment has been made by the user, the highest derivative is taken by default.
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When the appropriate assignments are made to the variable deq, the values of nn
and mm (Table 20.23) are determined automatically, i.e. they have not to be as-
signed by the user.

The function CRESYS may be called with any number of arguments, i.e.

cresys(); or cresys(deq 1,deq 2,... );

are legal calls. If it is called without any argument, all current assignments to deq
are taken into account. Example: If deq 1, deq 2 and deq 3 have been assigned
a differential equation and the symmetry group of the full system comprising all
three equations is desired, equivalent calls are

cresys(); or cresys(deq 1,deq 2,deq 3);

The first alternative saves some typing. If later in the session the symmetry group
of deq 1 alone has to be determined, the correct call is

cresys deq 1;

after the determining system has bee created, simpsys which has no arguments
may be called for solving it. The amount of intermediate output produced by
simpsys is controlled by the global variable pclass with the default value 0.
With pclass equal to 0, no intermediate steps are shown. With pclass equal
to 1, all intermediate steps are displayed so that the solution algorithm may be
followed through in detail. Each time the algorithm passes through the top of the
main solution loop the message

Entering main loop

is written. pclass equal 2 produces a lot of LISP output and is of no interest for
the normal user.

If with pclass=0 the procedure simpsys terminates without any response, the
determining system is completely solved. In some cases simpsys does not solve
the determining system completely in a single run. In general this is true if there
are only genuine differential equations left which the algorithm cannot handle at
present. If a case like this occurs, simpsys returns the remaining equations of the
determining system. To proceed with the solution algorithm, appropriate assign-
ments have to be transmitted by the user, e.g. the explicit solution for one of the
returned differential equations. Any new functions which are introduced thereby
must be operators of the form c(k) with the correct dependencies generated by a
depend statement (see section 7.27). Its enumeration has to be chosen in agree-
ment with the current number of functions which have alreday been introduced.
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This value is returned by simpsys too.

After the determining system has been solved, the procedure result, which has
no arguments, may be called. It displays the infinitesimal generators and its non-
vanishing commutators.

20.56.2 How to Use the Package

In this Section it is explained by way of several examples how the package SPDE

is used interactively to determine the symmetry group of partial differential equat-
ions. Consider first the diffusion equation which in the notation given above may
be written as

deq 1:=u(1,1)+u(1,2,2);

It has been assigned as the value of deq 1 by this statement. There is no need to
assign a value to sder 1 here because the system comprises only a single equation.

The determining system is constructed by calling

cresys(); or cresys deq 1;

The latter call is compulsory if there are other assignments to the operator deq i
than for i=1.

The error message

***** Differential equations not defined

appears if there are no differential equations assigned to any deq.

If the user wants the determining system displayed for inspection before starting
the solution algorithm he may call

prsys();

and gets the answer

GL(1):=2*df(eta(1),u(1),x(2)) - df(xi(2),x(2),2)

- df(xi(2),x(1))

GL(2):=df(eta(1),u(1),2) - 2*df(xi(2),u(1),x(2))
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GL(3):=df(eta(1),x(2),2) + df(eta(1),x(1))

GL(4):=df(xi(2),u(1),2)

GL(5):=df(xi(2),u(1)) - df(xi(1),u(1),x(2))

GL(6):=2*df(xi(2),x(2)) - df(xi(1),x(2),2)

- df(xi(1),x(1))

GL(7):=df(xi(1),u(1),2)

GL(8):=df(xi(1),u(1))

GL(9):=df(xi(1),x(2))

The remaining dependencies

xi(2) depends on u(1),x(2),x(1)

xi(1) depends on u(1),x(2),x(1)

eta(1) depends on u(1),x(2),x(1)

The last message means that all three functions xi(1), xi(2) and eta(1) depend on
x(1), x(2) and u(1). Without this information the nine equations gl(1) to gl(9)
forming the determining system are meaningless. Now the solution algorithm may
be activated by calling

simpsys();

If the print flag pclass has its default value which is 0 no intermediate output is
produced and the answer is

Determining system is not completely solved

The remaining equations are

gl(1):=df(c(1),x(2),2) + df(c(1),x(1))

Number of functions is 16
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The remaining dependencies

c(1) depends on x(2),x(1)

With pclass equal to 1 about 6 pages of intermediate output are obtained. It
allows the user to follow through each step of the solution algorithm.

In this example the algorithm did not solve the determining system completely
as it is shown by the last message. This was to be expected because the diffusion
equation is linear and therefore the symmetry group contains a generator depending
on a function which solves the original differential equation. In cases like this the
user has to provide some additional information to the system so that the solution
algorithm may continue. In the example under consideration the appropriate input
is

df(c(1),x(1)) := - df(c(1),x(2),2);

If now the solution algorithm is activated again by

simpsys();

the solution algorithm terminates without any further message, i.e. there are no
equations of the determining system left unsolved. To obtain the symmetry gener-
ators one has to say finally

result();

and obtains the answer

The differential equation

DEQ(1):=u(1,2,2) + u(1,1)

The symmetry generators are

GEN(1):= dx(1)

GEN(2):= dx(2)

GEN(3):= 2*dx(2)*x(1) + du(1)*u(1)*x(2)

GEN(4):= du(1)*u(1)
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GEN(5):= 2*dx(1)*x(1) + dx(2)*x(2)

2
GEN(6):= 4*dx(1)*x(1)

+ 4*dx(2)*x(2)*x(1)

2
+ du(1)*u(1)*(x(2) - 2*x(1))

GEN(7):= du(1)*c(1)

The remaining dependencies

c(1) depends on x(2),x(1)

Constraint

df(c(1),x(1)):= - df(c(1),x(2),2)

The non-vanishing commutators of the finite subgroup

COMM(1,3):= 2*dx(2)

COMM(1,5):= 2*dx(1)

COMM(1,6):= 8*dx(1)*x(1) + 4*dx(2)*x(2) - 2*du(1)*u(1)

COMM(2,3):= du(1)*u(1)

COMM(2,5):= dx(2)

COMM(2,6):= 4*dx(2)*x(1) + 2*du(1)*u(1)*x(2)

COMM(3,5):= - (2*dx(2)*x(1) + du(1)*u(1)*x(2))

2
COMM(5,6):= 8*dx(1)*x(1)

+ 8*dx(2)*x(2)*x(1)
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2
+ 2*du(1)*u(1)*(x(2) - 2*x(1))

The message “Constraint” which appears after the symmetry generators are dis-
played means that the function c(1) depends on x(1) and x(2) and satisfies the
diffusion equation.

More examples which may used for test runs are given in the final section.

If the user wants to test a certain ansatz of a symmetry generator for given dif-
ferential equations, the correct proceeding is as follows. Create the determining
system as described above. Make the appropriate assignments for the generator
and call PRSYS() after that. The determining system with this ansatz substituted
is returned. Example: Assume again that the determining system for the diffusion
equation has been created. To check the correctness for example of generator GEN
3 which has been obtained above, the assignments

xi(1):=0; xi(2):=2*x(1); eta(1):=x(2)*u(1);

have to be made. If now prsys() is called all gl(k) are zero proving the correct-
ness of this generator.

Sometimes a user only wants to know some of the functions zeta for for various
values of its possible arguments and given values of mm and nn. In these cases the
user has to assign the desired values of mm and nn and may call the ZETAs after
that. Example:

mm:=1; nn:=2;

factor u(1,2),u(1,1),u(1,1,2),u(1,1,1);

on list;

zeta(1,1);

-u(1,2)*u(1,1)*df(xi(2),u(1))

-u(1,2)*df(xi(2),x(1))

2
-u(1,1) *df(xi(1),u(1))

+u(1,1)*(df(eta(1),u(1)) -df(xi(1),x(1)))

+df(eta(1),x(1))
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zeta(1,1,1);

-2*u(1,1,2)*u(1,1)*df(xi(2),u(1))

-2*u(1,1,2)*df(xi(2),x(1))

-u(1,1,1)*u(1,2)*df(xi(2),u(1))

-3*u(1,1,1)*u(1,1)*df(xi(1),u(1))

+u(1,1,1)*(df(eta(1),u(1)) -2*df(xi(1),x(1)))

2
-u(1,2)*u(1,1) *df(xi(2),u(1),2)

-2*u(1,2)*u(1,1)*df(xi(2),u(1),x(1))

-u(1,2)*df(xi(2),x(1),2)

3
-u(1,1) *df(xi(1),u(1),2)

2
+u(1,1) *(df(eta(1),u(1),2) -2*df(xi(1),u(1),x(1)))

+u(1,1)*(2*df(eta(1),u(1),x(1)) -df(xi(1),x(1),2))

+df(eta(1),x(1),2)

If by error no values to mm or nn and have been assigned the message

***** Number of variables not defined

is returned. Often the functions zeta are desired for special values of its arguments
eta(alfa) and xi(k). To this end they have to be assigned first to some other variable.
After that they may be evaluated for the special arguments. In the previous example
this may be achieved by

z11:=zeta(1,1)$ z111:=zeta(1,1,1)$

Now assign the following values to xi 1, xi 2 and eta 1:
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xi 1:=4*x(1)**2; xi 2:=4*x(2)*x(1);

eta 1:=u(1)*(x(2)**2 - 2*x(1));

They correspond to the generator gen 6 of the diffusion equation which has been
obtained above. Now the desired expressions are obtained by calling

z11;

2
- (4*u(1,2)*x(2) - u(1,1)*x(2) + 10*u(1,1)*x(1)

+ 2*u(1))

z111;

2
- (8*u(1,1,2)*x(2) - u(1,1,1)*x(2) + 18*u(1,1,1)*x(1)

+ 12*u(1,1))

20.56.3 Test File

This appendix is a test file. The symmetry groups for various equations or systems
of equations are determined. The variable pclass has the default value 0 and
may be changed by the user before running it. The output may be compared with
the results which are given in the references.

%The Burgers equations

deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$

cresys deq 1$ simpsys()$ result()$

%The Kadomtsev-Petviashvili equation

deq 1:=3*u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1

+6*u(1,2)**2+4*u(1,1,2)$

cresys deq 1$ simpsys()$ result()$

%The modified Kadomtsev-Petviashvili equation
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deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3)

+6*u(1,2)**2*u(1,2,2)+6*u(1,3)*u(1,2,2)$

cresys deq 1$ simpsys()$ result()$

%The real- and the imaginary part of the nonlinear
%Schroedinger equation

deq 1:= u(1,1)+u(2,2,2)+2*u 1**2*u 2+2*u 2**3$

deq 2:=-u(2,1)+u(1,2,2)+2*u 1*u 2**2+2*u 1**3$

%Because this is not a single equation
% the two assignments

sder 1:=u(2,2,2)$ sder 2:=u(1,2,2)$

%are necessary.

cresys()$ simpsys()$ result()$

%The symmetries of the system comprising
% the four equations

deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$

deq 2:=u(2,1)+u(2,2,2)$

deq 3:=u 1*u 2-2*u(2,2)$

deq 4:=4*u(2,1)+u 2*(u 1**2+2*u(1,2))$

sder 1:=u(1,2,2)$ sder 2:=u(2,2,2)$ sder 3:=u(2,2)$
sder 4:=u(2,1)$

%is obtained by calling

cresys()$ simpsys()$

df(c 5,x 1):=-df(c 5,x 2,2)$

df(c 5,x 2,x 1):=-df(c 5,x 2,3)$
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simpsys()$ result()$

% The symmetries of the subsystem comprising equation 1
% and 3 are obtained by

cresys(deq 1,deq 3)$ simpsys()$ result()$

% The result for all possible subsystems is discussed in
% detail in ‘‘Symmetries and Involution Systems: Some
% Experiments in Computer Algebra’’, contribution to the
% Proceedings of the Oberwolfach Meeting on Nonlinear
% Evolution Equations, Summer 1986, to appear.
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20.57 SPECFN: Package for Special Functions

This special function package is separated into two portions to make it easier to
handle. The packages are called SPECFN and SPECFN2. The first one is more
general in nature, whereas the second is devoted to special special functions. Ad-
ditional examples can be found in the files specfn.tst and specfn2.tst in
the packages/specfn directory.

Authors: Chris Cannam, with contributions from Winfried Neun, Herbert Melenk,
Victor Adamchik, Francis Wright, Alan Barnes and several others

20.57.1 Special Functions: Introduction

The package SPECFN is designed to provide algebraic and numeric manipulations
of many common special functions, namely:

• The Exponential Integral, Sine & Cosine Integrals;

• The Hyperbolic Sine & Cosine Integrals;

• The Fresnel Integrals & Error function;

• The Gamma function;

• The Beta function;

• The psi function & its derivatives;

• The Bessel functions J and Y of the first and second kinds;

• The modified Bessel functions I and K;

• The Hankel functions H(1) and H(2);

• The Airy functions;

• The Kummer hypergeometric functions M and U;

• The Struve, Lommel and Whittaker functions;

• The Riemann Zeta function;

• The Dilog function;

• The Polylog and Lerch Phi functions;

• Lambert’s W function;

• Associated Legendre Functions (Spherical and Solid Harmonics);
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• 3j and 6j symbols, Clebsch-Gordan coefficients;

• Stirling Numbers;

• and some well-known constants.

All of the above functions (except Stirling numbers) are autoloading.

More information on all these functions may be found on the website DLMF:NIST
although currently not all functions may conform to these standards.

All algorithms whose sources are uncredited are culled from series or expressions
found in the Dover Handbook of Mathematical Functions[AS72].

A nice collection of example plots for special functions can be found in the file
specplot.tst in the subfolder plot of the packages folder. These examples
will reproduce a number of well-known pictures from [AS72].

20.57.2 Polynomial Functions: Introduction

Most of these polynomial functions are not autoloading. This package needs to be
loaded before they may be used with the command:

load_package specfn;

20.57.2.1 Orthogonal Polynomial Functions

The polynomial function sets available are:

• Hermite Polynomials;

• Legendre Polynomials;

• Laguerre Polynomials;

• Chebyshev Polynomials;

• Jacobi Polynomials;

• Gegenbauer Polynomials;

20.57.2.2 Other Polynomial Functions

• Bernoulli Numbers & Polynomials;

• Euler Numbers & Polynomials;

• Fibonnacci Numbers & Polynomials;

https://dlmf.nist.gov/
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20.57.3 Simplification and Approximation

All of the operators supported by this package have certain algebraic simplification
rules to handle special cases, poles, derivatives and so on. Such rules are applied
whenever they are appropriate. However, if the rounded switch is on, numeric
evaluation is also carried out. Unless otherwise stated below, the result of an ap-
plication of a special function operator to real or complex numeric arguments in
rounded mode will be approximated numerically whenever it is possible to do so.
All approximations are to the current precision.

Most algebraic simplifications within the special function package are defined in
the form of a REDUCE ruleset. Therefore, in order to get a quick insight into the
simplification rules one can use the ShowRules operator, e.g.

ShowRules BesselI;

1 ~z - ~z
{besseli(~n,~z) => ---------------*(e - e )

sqrt(pi*2*~z)

1
when numberp(~n) and ~n=---,

2

1 ~z - ~z
besseli(~n,~z) => ---------------*(e + e )

sqrt(pi*2*~z)

1
when numberp(~n) and ~n= - ---,

2

besseli(~n,~z) => 0

when numberp(~z) and ~z=0
and numberp(~n) and ~n neq 0,

besseli(~n,~z) => besseli( - ~n,~z) when numberp(~n)

and impart(~n)=0 and ~n=floor(~n) and ~n<0,

besseli(~n,~z) => do*i(~n,~z)

when numberp(~n) and numberp(~z) and *rounded,
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df(besseli(~n,~z),~z)

besseli(~n - 1,~z) + besseli(~n + 1,~z)
=> -----------------------------------------,

2

df(besseli(~n,~z),~z)

=> besseli(1,~z) when numberp(~n) and ~n=0}

Several REDUCE packages (such as Sum or Limits) obtain different (hopefully
better) results for the algebraic simplifications when the SPECFN package is loaded,
because the latter package contains some information which may be useful and
directly applicable for other packages, e.g.:

sum(1/k^s,k,1,infinity); % evaluates to zeta(s)

A record is kept of all values previously approximated, so that should a value be
required which has already been computed to the current precision or greater, it
can be simply looked up. This can result in some storage overheads, particularly if
many values are computed which will not be needed again. In this case, the switch
savesfs may be turned off in order to inhibit the storage of approximated values.
The switch is on by default.

20.57.4 Integral Functions

The SPECFN package includes manipulation and limited numerical evaluation for
some integral functions, namely

erf, erfc, Si, Shi, si, Ci, Chi, Ei, Li, Fresnel_C, and Fresnel_S.

The error function, its complement and the two Fresnel integrals are defined by:

erf(z) =
2√
π

∫ z

0
e−t2 dt

erfc(z) =
2√
π

∫ ∞

z
e−t2 dt = 1− erf(z)

C(z) =

∫ z

0
cos
(π
2
t2
)
dt

S(z) =

∫ z

0
sin
(π
2
t2
)
dt

respectively.
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The exponential and related integrals are defined by the following:

Ei(z) = e−z

∫ ∞

z

e−t

t+ z
dt

Li(z) =

∫ z

0

dt

log t

Si(z) =

∫ z

0

sin t

t
dt

si(z) = −
∫ ∞

z

sin t

t
dt = Si(z)− π

2

Ci(z) = −
∫ ∞

z

cos t

t
dt =

∫ z

0

cos t− 1

t
dt+ log z + γ

Shi(z) =

∫ z

0

sinh t

t
dt

Chi(z) =

∫ z

0

cosh t− 1

t
dt+ log z + γ

where γ is Euler’s constant (Euler_gamma).

The definitions of the exponential and related integrals, the derviatives and some
limits are known, together with some simple properties such as symmetry condi-
tions.

The numerical approximations for the integral functions suffer from the fact that
the precision is not set correctly for values of the argument above 10.0 (approx.)
and from the usage of summations even for large arguments.

Li(z) is simplified to Ei(ln(z)) .

20.57.5 The Γ Function and Related Functions

20.57.5.1 The Γ Function

This is represented by the unary operator Gamma. The Gamma function is defined
by the integral:

Γ(a) =

∫ ∞

0
e−tta−1 dt.

Initial transformations applied with rounded off are: Γ(n) for integral n is com-
puted, Γ(n+ 1/2) for integral n is rewritten to an expression in

√
π, Γ(n+ 1/m)

for natural n and m a positive integral power of 2 less than or equal to 64 is rewrit-
ten to an expression in Γ(1/m), expressions with arguments at which there is a
pole are replaced by infinity, and those with a negative (real) argument are
rewritten so as to have positive arguments.
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The algorithm used for numerical approximation is an implementation of an
asymptotic series for ln(Γ), with a scaling factor obtained from the Pochhammer
symbols.

An expression for Γ′(z) in terms of Γ and ψ is included.

20.57.5.2 Incomplete Gamma Functions

There are two incomplete gamma functions defined in the literature, see the
DLMF:NIST chapter on Incomplete Gamma functions:

γ(a, z) =

∫ z

0
e−tta−1 dt,

Γ(a, z) =

∫ ∞

z
e−tta−1 dt.

called (unnormalised) lower and upper incomplete gamma function, respectively.
γ(a, z) is provided by the binary function m_gamma, Γ(a, z) by the two argument
version of the function Gamma.

The normalised incomplete gamma function P (a, z) is provided by the binary
function iGamma and is defined as

P (a, z) =
γ(a, z)

Γ(a)
.

20.57.5.3 The Beta Functions

The binary function B(a, b) is related to the Γ function[AS72] and is defined by

B(a, b) =

∫ 1

0
ta(1− t)b dt = Γ(a)Γ(b)

Γ(a+ b)
.

It is represented by the binary function Beta.

The unnormalised and nomalised incomplete Beta funtions are defined by

Bx(a, b) =

∫ x

0
ta(1− t)b dt,

Ix(a, b) =
Bx(a, b)

B(a, b)

respectively. Ix(a, b) is represented by the ternary function ibeta(a,b,x).

https://dlmf.nist.gov/8.2#i
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20.57.5.4 The Digamma Function, ψ

This is represented by the unary operator psi. It is defined as the logarithmic
derivative of the Γ function:

ψ(z) =
Γ′(z)

Γ(z)
.

Initial transformations for ψ are applied on a similar basis to those for Γ; where
possible, ψ(x) is rewritten in terms of ψ(1) and ψ(12), and expressions with nega-
tive arguments are rewritten to have positive ones.

The algorithm for numerical evaluation of ψ is based upon an asymptotic series,
with a suitable scaling.

Relations for the derivative and integral of ψ are included.

20.57.5.5 The Polygamma Functions, ψ(n)

The nth derivative of the ψ function is represented by the binary operator
Polygamma, whose first argument is n.

Initial manipulations on ψ(n) are few; where the second argument is 1 or 3/2, the
expression is rewritten to one involving the Riemann ζ function, and when the first
is zero it is rewritten to ψ; poles are also handled.

Numerical evaluation is available for real and complex arguments. The algorithm
used is again an asymptotic series with a scaling factor; for negative (second) ar-
guments, a Reflection Formula is used, introducing a term in the nth derivative of
cot(zπ).

Simple relations for derivatives and integrals are provided.

20.57.6 Bessel Functions

Support is provided for the Bessel functions J and Y , the modified Bessel functions
I andK, and the Hankel functions of the first and second kinds. The relevant oper-
ators are, respectively, BesselJ, BesselY, BesselI, BesselK, Hankel1
and Hankel2, which are all binary operators.

The Bessel functions Jν(z) and Yν(z) are solutions of the Bessel equation:

z2
d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0.

Bessel’s function of the first kind, Jν(z), has the series expansion:

Jν(z) =
(z
2

)ν ∞∑
k=0

(−1)k (z/2)2k

k!Γ(ν + k + 1)
.



1083

Bessel’s function of the second kind, Yν(z), (for non-integral ν) is defined by:

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)

or by its limiting value:

Yν(z) =
1

π

∂Jν(z)

∂ν

∣∣∣∣
ν=n

+
(−1)n

π

∂Jν(z)

∂ν

∣∣∣∣
ν=−n

.

It is sometimes known as Weber’s function.

The Hankel functions are alternative solutions of the Bessel equation distinguished
by their asymptotic behaviour as z →∞:

H(1)
ν (z) ∼

√
2

πz
exp

(
i
(
z − νπ

2
− π

4

))
,

H(2)
ν (z) ∼

√
2

πz
exp

(
−i
(
z − νπ

2
− π

4

))
.

The modified Bessel functions Iν(z) and Kν(z) are solutions of the modified
Bessel equation:

z2
d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0 .

Since they may be obtained by replacing z by ±iz the modified Bessel functions
are sometimes called Bessel functions of imaginary argument. Iν(z) has the series
expansion:

Iν(z) =
(z
2

)ν ∞∑
k=0

(z/2)2k

k!Γ(ν + k + 1)
,

whereas Kν(z) is distinguished by its asymptotic behaviour:

Kν(z) ∼
√

π

2z
e−z

as z → ∞. For more information, see the DLMF:NIST chapters on Hankel &
Bessel functions and Modified Bessel functions.

The following initial transformations are performed:

• trivial cases or poles of J , Y , I and K are handled;

• J , Y , I and K with negative first argument are transformed to have positive
first argument;

• J with negative second argument is transformed to have positive second
argument;

https://dlmf.nist.gov/10.2
https://dlmf.nist.gov/10.2
https://dlmf.nist.gov/10.25
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• Y or K with non-integral or complex second argument is transformed into
an expression in J or I respectively;

• derivatives of J , Y and I are carried out;

• derivatives of K with zero first argument are carried out;

• derivatives of Hankel functions are carried out.

Also, if the complex switch is on and rounded is off, expressions in Hankel
functions are rewritten in terms of Bessel functions.

No numerical approximation is provided for the BesselK function, or for the Han-
kel functions for anything other than special cases. The algorithms used for the
other Bessel functions are generally implementations of standard ascending series
for J , Y and I , together with asymptotic series for J and Y ; usually, the asymptotic
series are tried first, and if the argument is too small for them to attain the current
precision, the standard series are applied. An obvious optimization prevents an
attempt with the asymptotic series if it is clear from the outset that it will fail.

There are no rules for the integration of Bessel and Hankel functions.

20.57.7 Airy Functions

Support is provided for the Airy Functions Ai and Bi and for their derivatives
Ai′ and Bi′. The relevant operators are respectively Airy_Ai, Airy_Bi,
Airy_Aiprime and Airy_Biprime, which are all unary.

Airy functions are solutions of the differential equation:

d2w

dz2
= zw.

Trivial cases of Airy_Ai and Airy_Bi and their primes are evaluated, and all funct-
ions accept both real and complex arguments.

The Airy Functions can also be represented in terms of Bessel Functions by acti-
vating an inactive rule set:

let Airy2Bessel_rules;

As a result the Airy_Ai function will be evaluated using the formula:

Ai(z) =
1

3

√
z
[
I−1/3(ζ)− I1/3(ζ)

]
, where ζ =

2

3
z

2
3 .

Note: In order to obtain satisfactory approximations to numerical values both the
complex and rounded switches must be on.
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The algorithms used for the Airy Functions are implementations of standard as-
cending series, together with asymptotic series. At some point it is better to use
the asymptotic rather than the ascending series, which is calculated by the program
and depends on the given precision.

There are no rules for the integration of Airy Functions.

20.57.8 Hypergeometric and Other Functions

This package also provides some support for other functions, in the form of alge-
braic simplifications:

• The Struve H and L functions, through the binary operators StruveH and
StruveL, for which manipulations are provided to handle special cases,
simplify to more readily handled functions where appropriate, and differen-
tiate with respect to the second argument. These functions with arguments ν
and x are solutions of the differential equation:

d2w

dx2
+

1

x

dw

dx
+

(
1− ν2

x2

)
w =

(z/2)ν−1

√
πΓ(ν + 1/2)

.

• The Lommel functions of the first and second kinds, through the ternary
operators Lommel1 and Lommel2 with arguments ν, µ and x may be
considered generalisations of the Struve functions satisfying the differential
equation:

d2w

dx2
+

1

x

dw

dx
+

(
1− ν2

x2

)
w = zµ−1 .

Manipulations are provided to handle special cases and simplify where ap-
propriate.

• The Kummer confluent hypergeometric functions M and U (the hyper-
geometric 1F1 or Φ, and z−a

2F0 or Ψ, respectively), represented by the
ternary operators KummerM and KummerU with arguments a, b and x, are
solutions of the differential equation:

d2w

dx2
+ (b− x)dw

dx
− aw = 0 .

There are manipulations for special cases and simplifications, derivatives
and, for the M function, numerical approximations for real arguments.

• The Whittaker M and W functions are variations upon the Kummer func-
tions, which are represented by the ternary operators WhittakerM and
WhittakerW with arguments κ, µ and x. They satisfy the Whittaker dif-
ferential equation:

d2W

dx2
+

(
1− 4µ2

4x2
+
κ

x
− 1

4

)
W = 0 ,
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which is obtained from the Kummer differential equation via the substituions

W = ez/2zµ+1/2w, κ = b/2− a µ = (b− 1)/2 .

The Whittaker M and W functions with non-numeric arguments are simpli-
fied to expressions involving the Kummer M and U functions respectively.

20.57.9 The Riemann Zeta Function

This is represented by the unary operator Zeta and defined by the formula:

ζ(s) =
∞∑
n=1

1

ns
.

With rounded off, ζ(z) is evaluated numerically for even integral arguments in
the range −31 < z < 31, and for odd integral arguments in the range −30 < z <
16. Outside this range the values become a little unwieldy.

Numerical evaluation of ζ is only carried out if the argument is real. The algo-
rithms used for ζ are: for odd integral arguments, an expression relating ζ(n) with
ψn−1(3); for even arguments, a trivial relationship with the Bernoulli numbers; and
for other arguments the approach is either (for larger arguments) to take the first
few primes in the standard over-all-primes expansion, and then continue with the
defining series with natural numbers not divisible by these primes, or (for smaller
arguments) to use a fast-converging series obtained from [BO78].

There are no rules for differentiation or integration of ζ.

20.57.10 Polylogarithm and Related Functions

The dilogarithm function Li2(z) is defined by

Li2(z) ≡
∞∑
n=1

zn

n2
= −

∫ z

0

log(1− t)
t

dt

and represented by the unary function dilog.

The polylogarithm function Lis(z) is defined by

Lis(z) ≡
∞∑
n=1

zn

ns
=

z

Γ(s)

∫ ∞

0

ts−1

et − z
dt.

and represented by the binary function Polylog. The case s = 2 is, of course,
the dilogarithm function and the special case when z = 1 gives the Riemann zeta
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function ζ(s). For s = 1, the polylogarithm reduces to the elementary function:
− log(1− t).

Lerch’s transcendent or Lerch Phi function is defined by

Φ(z, s, a) =
∞∑
n=0

zn

(n+ a)s
.

It is represented by the ternary function Lerch_Phi(z,s,a). For the special
case a = 1, Lerch’s function is related to a polylogarithm: zLis(z) = Φ(z, s, 1).

20.57.11 Lambert’s W Function

Lambert’s function ω(x), represented by the unary operator Lambert_W, is the
inverse of the function x = wew. Therefore it is an important contribution for the
solve package.

For real-valued arguments ω(x) is only real-valued in the interval (−1/e,∞). In
the interval (−1/e, 0), it is double-valued with a branch point at the point (-1/e, -1)
where ω′(x) is singular. The positive branch is defined on the interval (−1/e,∞)
where it is monotonically increasing with ω(x) > −1. The negative branch is
defined on the interval (−1/e, 0) where it is monotonically decreasing with ω(x) <
−1.

Simplification rules for ω(x) are provided for the special arguments 0 and −1/e
and for its logarithm, derivative and integral. A previous rule for its exponential
caused problems with power series expansions about zero and has been deactivated.
This does not seem to impact on the SOLVE package. However, this rule may be
reactivated if required by

let lambert_exp_rule;
% and deactivated again by

clear lambert_exp_rule;

The function is studied extensively in [HCGJ92]. The current implementation
will compute values on the principal branch for all complex numerical arguments
only if the switch rounded is on. However, since the numerical computations
are carried out in complex-rounded mode, it is also better to turn the switch
complex to on to avoid repeated irritating mode change warnings.

The real positive branch is part of the principal branch and currently there is no
way of computing values on the real negative branch or indeed any non-principal
values.



1088 CHAPTER 20. USER CONTRIBUTED PACKAGES

20.57.12 Spherical and Solid Harmonics

The relevant operators are, respectively,
SolidHarmonicY and SphericalHarmonicY.

The SolidHarmonicY operator implements the Solid Harmonics described be-
low. It expects 6 parameter, namely n, m, x, y, z and r2 and returns a polynomial
in x, y, z and r2.

The operator SphericalHarmonicY is a special case of SolidHarmonicY
with the usual definition:

algebraic procedure SphericalHarmonicY(n,m,theta,phi);
SolidHarmonicY(n,m,sin(theta)*cos(phi),

sin(theta)*sin(phi),cos(theta),1)$

Solid Harmonics of order n (Laplace polynomials) are homogeneous polynomials
of degree n in x, y, z which are solutions of the Laplace equation:-

df(P,x,2) + df(P,y,2) + df(P,z,2) = 0.

There are 2n+ 1 independent such polynomials for any given n ≥ 0 and with:-

w!0 = z, w!+ = i*(x-i*y)/2, w!- = i*(x+i*y)/2,

they are given by the Fourier integral:-

S(n,m,w!-,w!0,w!+) =
(1/(2*pi)) *
for u:=-pi:pi integrate(w!0 + w!+ * exp(i*u)

+ w!- * exp(-i*u))^n * exp(i*m*u) * du;

which is obviously zero if |m| > n since then all terms in the expanded integrand
contain the factor eiku with k ̸= 0.

S(n,m, x, y, z) is proportional to

r^n * Legendre(n,m,cos theta) * exp(i*phi)

where r2 = x2 + y2 + z2.

The spherical harmonics are simply the restriction of the solid harmonics to the
surface of the unit sphere and the set of all spherical harmonics with n ≥ 0,−n ≤
m ≤ n form a complete orthogonal basis on it, i.e. ⟨n,m|n′,m′⟩ = δn,n′δm,m′

using ⟨. . . | . . .⟩ to designate the scalar product of functions over the spherical sur-
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face.

The coefficients of the solid harmonics are normalised in what follows to yield an
orthonormal system of spherical harmonics.

Given their polynomial nature, there are many recursions formulae for the solid
harmonics and any recursion valid for Legendre functions can be ‘translated’ into
solid harmonics. However the direct proof is usually far simpler using Laplace’s
definition.

It is also clear that all differentiations of solid harmonics are trivial, qua polynom-
ials.

Some substantial reduction in the symbolic form would occur if one maintained
throughout the recursions the symbol r2 (r cannot occur as it is not rational in
x, y, z). Formally the solid harmonics appear in this guise as more compact poly-
nomials in x, y, z, r2.

Only two recursions are needed:-

(i) along the diagonal (n, n);

(ii) along a line of constant n: (m,m), (m+ 1,m), . . . , (n,m).

Numerically these recursions are stable.

For m < 0 one has:-

S(n,m, x, y, z) = (−1)mS(n,−m,x,−y, z).

20.57.13 3j symbols and Clebsch-Gordan Coefficients

The operators ThreeJSymbol and Clebsch_Gordan are defined as in [LB68]
or [Edm57] and expect as arguments three lists of values {ji,mi}, e.g.

ThreeJSymbol({J+1,M},{J,-M},{1,0});
Clebsch_Gordan({2,0},{2,0},{2,0});

20.57.14 6j symbols

The operator SixJSymbol is defined as in [LB68] or [Edm57] and expects two
lists of values {j1, j2, j3} and {l1, l2, l3} as arguments, e.g.

SixJSymbol({7,6,3},{2,4,6});

In the current implementation of SixJSymbol there is only limited reasoning
about the minima and maxima of the summation using the INEQ package, such
that in most cases the special 6j-symbols (see e.g. [LB68]) will not be found.
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20.57.15 Stirling Numbers

The Stirling numbers of the first and second kind are computed by calling the
binary operators Stirling1 and Stirling2 respectively.

Stirling numbers of the first kind have the generating function:

n∑
m=0

smn x
m = (x− n+ 1)n

where (x−n+1)n is the Pochhammer symbol. This provides a convenient way of
calculating these Stirling numbers by extracting coefficients of the polynomial ob-
tained by evaluating the Pochhammer symbol. REDUCE however uses an explicit
summation.

Stirling numbers of the second kind are defined by the formula:

Sm
n =

1

m!

m∑
k=0

(−1)m−k

(
m

k

)
kn.

REDUCE uses this explicit summation to evaluate Stirling numbers of the second
kind.

20.57.16 Constants

The following well-known constants are defined in the REDUCE core, but the code
for computing their numerical value when the switch ROUNDED is on is contained
in the special function package.

• Euler_Gamma : Euler’s constant, also available as −ψ(1);

• Catalan : Catalan’s constant;

• Khinchin : Khinchin’s constant, defined in [Khi64] (which takes a lot of
time to compute);

• Golden_Ratio :
1 +
√
5

2

20.57.17 Orthogonal Polynomials

All the polynomials in this section take two or more parameters; the first is the de-
gree of the polynomial and the last is its argument. Any remaining arguments are
parameters which in the literature are normally rendered as subscripts and super-
scripts. First, the definitions appropriate to all the sets of orthogonal polynomials
in the following subsections are listed.
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A set of polynomials {pn(x)}, n = 0, 1, . . . are said to be orthogonal on open
interval (a, b) (where a and/or b may be infinite) with positive weight function
w(x) if ∫ b

a
pn(x)pm(x)w(x)dx = 0 when m ̸= n.

This defines each polynomial pn(x) up to a constant factor cn which is usually
fixed by normalisation. If these factors are chosen so that

hn =

∫ b

a
(pn(x))

2w(x)dx = 1 i.e. cn =
√
hn

then the polynomial set is said to be orthonormal. An alternative normalisation,
that is sometimes used, is to set the leading term of each polynomial kn = 1. The
polynomial set is then said to be monic.

In REDUCE the normalisation is chosen so that the polynomial sets are orthonor-
mal and hence kn ̸= 1 in general. In the subsections below on each of the polyno-
mial sets, the interval (a, b) over which the polynomials are orthogonal, the weight
function w(x) and the leading coefficient kn of the polynomial of degree n are
given together with any constraints on any additional parameters. Also given are
what might be called the ‘first moment’ h̃n of the nth polynomial defined by:

h̃n =

∫ b

a
x(pn(x))

2w(x) dx

and the ratio

rn =
k̃n
kn

where pn(x) = knx
n + k̃nx

n−1 . . .

These quantities may be used in recurrence relations when generating the poly-
nomials.

20.57.17.1 Legendre Polynomials

The function call LegendreP(n,x) will return the nth Legendre polynomial if
n is a non-negative integer; otherwise the result will involve the original operator
LegendreP or on graphical interfaces Pn(x) will be output.

The interval of definition is (−1, 1), the weight function w(x) = 1 and, for the
orthonormal case, the leading coefficients are given by kn = 2n(12)n/n! where
(12)n is the Pochhammer symbol. Also h̃n = 2

2n+1 and rn = 0.

20.57.17.2 Associated Legendre Functions

The function call LegendreP(n,m,x) will return the nth associated Legendre
function if n and m are integers with 0 ≤ m ≤ n; otherwise the result will in-

https://dlmf.nist.gov/18.2#iv
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volve the original operator LegendreP or on graphical interfaces P (m)
n (x) will

be output.

They are defined by

P (m)
n (x) = (−1)m(1− x2)m/2d

mPn(x)

dxm
;

it should be noted that they are only polynomials if m is even. Currently the exten-
sion of these functions to negative n and m is not implemented in REDUCE.

For fixed m these functions are orthogonal over the interval (−1, 1); the weight
function being w(x) = 1. However, unlike the polynomials in the rest of this
section, they are not orthonormal:∫ 1

−1

(
P (m)
n (x)

)2
dx = hn =

2(l +m)!

(2l + 1)!(l −m)!
.

20.57.17.3 Chebyshev Polynomials

The function call ChebyshevT(n,x) will return the nth Chebyshev polynomial
of the first kind if n is a non-negative integer; otherwise the result will involve the
original operator ChebyshevT or on graphical interfaces Tn(x) will be output.

The interval of definition is (−1, 1), the weight function w(x) = (1−x2)−1/2 and,
for the orthonormal case, the leading coefficients are given by kn = 2n−1 for n >
0; k0 = 1. Also h̃n = π/2 for n > 0; h̃0 = π and rn = 0.

The function call ChebyshevU(n,x) will return the nth Chebyshev polynomial
of the second kind if n is a non-negative integer; otherwise the result will involve
the original operator ChebyshevU or on graphical interfaces Un(x) will be out-
put.

The interval of definition is (−1, 1), the weight function w(x) = (1−x2)−1/2 and,
for the orthonormal case, the leading coefficients are given by kn = 2n, h̃n = π/2
and rn = 0.

20.57.17.4 Gegenbauer Polynomials

The function call GegenbauerP(n,a,x) will return the Gegenbauer polyno-
mial of degree n and parameter a if n is a non-negative integer and a is numerical;
otherwise the result will involve the original operator GegenbauerP or on graph-
ical interfaces C(a)

n (x) will be output.

The interval of definition is (−1, 1), the weight functionw(x) = (1−x2)a−1/2 and,
for the orthonormal case, the leading coefficients are given by kn = 2n(a)n/n!
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where (a)n is the Pochhammer symbol. The parameter a should satisfy a >
−1/2, a ̸= 0. Also

h̃n =
21−2aπΓ(n+ 2a)

(n+ a)(Γ(a))2n!
and rn = 0 .

20.57.17.5 Jacobi Polynomials

The function call JacobiP(n,a,b,x) will return the Jacobi polynomial of de-
gree n and parameters a and b if n is a non-negative integer and a and b are nu-
merical; otherwise the result will involve the original operator JacobiP or on
graphical interfaces P (a,b)

n (x) will be output.

The interval of definition is (−1, 1), the weight function w(x) = (1− x)a(1 + x)b

and, for the orthonormal case, the leading coefficients are given by

h̃n =
(n+ a+ b+ 1)n

2nn!

where (n+a+ b+1)n is the Pochhammer symbol. The parameters a and b should
satisfy a > −1, b > −1. Also

h̃0 = 2a+b+1Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

h̃n = 2a+b+1 Γ(n+ a+ 1)Γ(n+ b+ 1)

(2n+ a+ b+ 1)Γ(n+ a+ b+ 1)n!
for n > 0

rn =
n(a− b)
2n+ a+ b

.

The Legendre, Chebyshev and Gegenbauer polynomials are all, in fact, special
cases of the Jacobi polynomials.

20.57.17.6 Laguerre Polynomials

The function call LaguerreP(n,x) will return the nth Laguerre polynomial if
n is a non-negative integer; otherwise the result will involve the original operator
LaguerreP or on graphical interfaces Ln(x) will be output.

The interval of definition is (0,∞), the weight function w(x) = e−x and, for the
orthonormal case, the leading coefficients are given by kn = (−1)n/n!, h̃n = 1
and rn = −n2.

20.57.17.7 Generalised Laguerre Polynomials

If used with three arguments LaguerreP(n,a,x) returns the nth generalised
(or associated) Laguerre polynomial if n is a non-negative integer and a is nu-
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meric; otherwise the result will involve the original operator LaguerreP or on
graphical interfaces L(a)

n (x) will be output. These are more properly called Sonin
polynomials after their discoverer N. Y. Sonin.

The interval of definition is (0,∞), the weight function w(x) = e−xxa and, for
the orthonormal case, the leading coefficients are given by kn = (−1)n/n!, h̃n =
Γ(n+ a+ 1)/n! and rn = −n(n+ a). The parameter a should satisfy a > −1.

20.57.17.8 Hermite Polynomials

The function call HermiteP(n,x) will return the nth Hermite polynomial if n
is a non-negative integer; otherwise the result will involve the original operator
HermiteP or on graphical interfaces Hn(x) will be output.

The interval of definition is (−∞,+∞), the weight function w(x) = e−x2
and, for

the orthonormal case, the leading coefficients are given by kn = 2n, h̃n =
√
π2nn!

and rn = 0.

20.57.18 Other Polynomials and Related Numbers

20.57.18.1 Fibonacci Polynomials

FibonacciP(n,x) returns the nth Fibonacci polynomial in the variable x. If n
is an integer, it will be evaluated using the recursive definition:

F0(x) = 0; F1(x) = 1; Fn(x) = xFn−1(x) + Fn−2(x) .

The recursion is, of course, optimised as a simple loop to avoid repeated computa-
tion of lower-order polynomials.

20.57.18.2 Euler Numbers and Polynomials

Euler numbers are computed by the unary operator Euler; the call Euler(n)
returns the nth Euler number; all the odd Euler numbers are zero. The computation
is derived directly from Pascal’s triangle of binomial coefficients.

The Euler numbers and polynomials have the following generating functions:

2et

1 + e2t
=

∞∑
n=0

Ent
n

n!
,

ext

1 + et
=

∞∑
n=0

En(x)t
n

n!

respectively. ThusE0 = 1 andE1 = 0. Furthermore the numbers and polynomials



1095

are related by the equations:

En = 2nEn

(
1

2

)
, En(x) =

n∑
k=0

(
n

k

)
Ek

2k

(
x− 1

2

)n−k

.

The Euler polynomials are evaluated for non-negative integer n by using the sum-
mation immediately above.

20.57.18.3 Bernoulli Numbers & Polynomials

The call Bernoulli(n) evaluates to the nth Bernoulli number; all of the odd
Bernoulli numbers, except Bernoulli(1), are zero.

The algorithms for Bernoulli numbers used are based upon those by Herbert Wilf,
presented by Sandra Fillebrown [Fil92]. If the rounded switch is off, the algo-
rithms are exactly those; if it is on, some further rounding may be done to prevent
computation of redundant digits. Hence, these functions are particularly fast when
used to approximate the Bernoulli numbers in rounded mode.

The Bernoulli numbers and polynomials have the following generating functions:

t

et − 1
=

∞∑
n=0

Bnt
n

n!
,

text

et − 1
=

∞∑
n=0

Bn(x)t
n

n!

respectively. Thus B0 = 1 and B1 = −1
2 . Furthermore the numbers and polynom-

ials are related by the equations:

Bn = Bn(0), Bn(x) =

n∑
k=0

(
n

k

)
Bkx

n−k.

The Bernoulli polynomials are evaluated for non-negative integer n by using the
summation immediately above.

Both the Bernoulli and Euler numbers and polynomials may also be calculated
directly by expanding the corresponding generating function as a power series in t
using either the TPS or TAYLOR package, extracting the nth term and multiplying
by n!. The use of the TPS package is probably preferable here as the series for
the generating function is extendible and need only be calculated once; it will be
extended automatically if higher order numbers or polynomials are required.

20.57.19 Function Bases

The following procedures compute sets of functions e.g. to be used for approxima-
tion. All procedures have two parameters, the expression to be used as variable
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(an identifier in most cases) and the order of the desired system. The functions are
not scaled to a specific interval, but the variable can be accompanied by a scale
factor and/or a translation in order to map the generic interval of orthogonality to
another (e.g. (x − 1/2) ∗ 2pi). The result is a function list with ascending order,
such that the first element is the function of order zero and (for the polynomial
systems) the function of order n is the n+ 1-th element.

monomial_base(x,n) {1,x,...,x**n}
trigonometric_base(x,n) {1,sin x,cos x,

sin(2x),cos(2x)...}
Bernstein_base(x,n) Bernstein polynomials
Legendre_base(x,n,a,b) Legendre polynomials
Laguerre_base(x,n,a) Laguerre polynomials
Hermite_base(x,n) Hermite polynomials
Chebyshev_base_T(x,n) Chebyshev polynomials

of the first kind
Chebyshev_base_U(x,n) Chebyshev polynomials

of the second kind
Gegenbauer_base(x,n,a) Gegenbauer polynomials

Example:

Bernstein_base(x,5);

5 4 3 2
{ - X + 5*X - 10*X + 10*X - 5*X + 1,

4 3 2
5*X*(X - 4*X + 6*X - 4*X + 1),

2 3 2
10*X *( - X + 3*X - 3*X + 1),

3 2
10*X *(X - 2*X + 1),

4
5*X *( - X + 1),

5
X }
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20.57.21 Tables of Operators and Constants

Special Functions
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Function Operator

Si(z) Si(z)
Si(z)− π/2 s_i(z)

Ci(z) Ci(z)
Shi(z) Shi(z)
Chi(z) Chi(z)
erf(z) Erf(z)

1− erf(z) erfc(z)
Ei(z) Ei(z)

Ei(log(z)) Li(z)
C(x) Fresnel_C(x)
S(x) Fresnel_S(x)

B(a, b) Beta(a,b)
Γ(a) Gamma(a)

normalized incomplete Beta Ix(a, b) =
Bx(a, b)
B(a, b)

iBeta(a,b,x)

normalized (lower)

incomplete Gamma P (a, z) = γ(a, z)
Γ(a)

iGamma(a,z)

incomplete (lower) Gamma γ(a, z) m_gamma(a,z)
incomplete (upper) Gamma Γ(a, z) Gamma(a,z)

(a)k Pochhammer(a,k)
ψ(z) Psi(z)

ψ(n)(z) Polygamma(n,z)

Jν(z) BesselJ(nu,z)
Yν(z) BesselY(nu,z)
Iν(z) BesselI(nu,z)
Kν(z) BesselK(nu,z)

H
(1)
n (z) Hankel1(n,z)

H
(2)
n (z) Hankel2(n,z)
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More Special Functions

Function Operator

Ai(z) Airy_Ai(z)
Bi(z) Airy_Bi(z)
Ai′(z) Airy_Aiprime(z)
Bi′(z) Airy_Biprime(z)
Hν(z) StruveH(nu,z)
Lν(z) StruveL(nu,z)
sa,b(z) Lommel1(a,b,z)
Sa,b(z) Lommel2(a,b,z)

M(a, b, z) or 1F1(a, b; z) or Φ(a, b; z) KummerM(a,b,z)
U(a, b, z) or z−a

2F0(a, b; z) or Ψ(a, b; z) KummerU(a,b,z)

Expression in Kummer_M WhittakerM(kappa,mu,z)
Expression in Kummer_U WhittakerW(kappa,mu,z)

Riemann’s ζ(z) zeta(z)
Lambert ω(z) Lambert_W(z)

Li2(z) dilog(z)
Lin(z) Polylog(n,z)

Lerch’s transcendent Φ(z, s, a) Lerch_Phi(z,s,a)

Function Operator

Y m
n (x, y, z, r2) SolidHarmonicY(n,m,x,y,z,r2)

Y m
n (θ, ϕ) SphericalHarmonicY(n,m,theta,phi)(

j1 j2 j3
m1 m2 m3

)
ThreeJSymbol({j1,m1},{j2,m2},
{j3,m3})

(j1m1j2m2 | j1j2j3 −m3)
Clebsch_Gordan({j1,m1},{j2,m2},
{j3,m3}){

j1 j2 j3
m1 m2 m3

}
SixJSymbol({j1,j2,j3},{l1,l2,l3})
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Polynomial Functions

Function Operator

Fibonacci Polynomials Fn(x) FibonacciP(n,x)
Bn(x) BernoulliP(n,x)
En(x) EulerP(n,x)
Hn(x) HermiteP(n,x)
Ln(x) LaguerreP(n,x)

Generalised Laguerre L(m)
n (x) LaguerreP(n,m,x)
Pn(x) LegendreP(n,x)

Associated Legendre P (m)
n (x) LegendreP(n,m,x)
Un(x) ChebyshevU(n,x)
Tn(x) ChebyshevT(n,x)

C
(α)
n (x) GegenbauerP(n,alpha,x)

P
(α,β)
n (x) JacobiP(n,alpha,beta,x)

Well-known Numbers and Reserved Constants

Function Operator(
n

m

)
Binomial(n,m)

Fibonacci Numbers Fn Fibonacci(n)
smn Stirling1(n,m)
Smn Stirling2(n,m)

Bernoulli(n) or Bn Bernoulli(n)
Euler(n) or En Euler(n)

Motzkin(n) or Mn Motzkin(n)

Constant REDUCE name

Square root of (−1) i
π pi

Base of natural logarithms e
Euler’s γ constant Euler_gamma
Catalan’s constant Catalan

Khinchin’s constant Khinchin
Golden ratio Golden_ratio



1101

20.58 SPECFN2: Package for Special Special Functions

This package provides algebraic manipulations of generalized hypergeometric
functions and Meijer’s G function. Generalized hypergeometric functions are sim-
plified towards special functions and Meijer’s G function is simplified towards spe-
cial functions or generalized hypergeometric functions.

Author: Victor Adamchik, with major updates by Winfried Neun

The package SPECFN2 is designed to provide algebraic and numeric manipula-
tions for some less commonly used special functions:

• Hypergeometric function;

• Meijer’s G function.

These functions are from the non-core package SPECFN2, which needs to be
loaded before use with the command:

load_package specfn2;

More information on the functions provided may be found on the website
DLMF:NIST although currently not all functions may conform to these standards.

20.58.1 Hypergeometric Functions: Introduction

The (generalised) hypergeometric functions

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣z
)

are defined in textbooks on special functions as

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣z
)

=
∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!

where (a)n is the Pochhammer symbol

(a)n =
n−1∏
k=0

(a+ k).

The function

Gmn
pq

(
z

∣∣∣∣∣ (ap)(bq)

)

https://dlmf.nist.gov/
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has been studied by C. S. Meijer beginning in 1936 and has been called Meijer’s
G function later on. The complete definition of Meijer’s G function can be found
in [PBM89]. Many well-known functions can be written as G functions, e.g. expo-
nentials, logarithms, trigonometric functions, Bessel functions and hypergeometric
functions.

Several hundreds of particular values can be found in [PBM89].

20.58.2 The Hypergeometric Operator

The operator hypergeometric expects 3 arguments, namely the list of upper
parameters (which may be empty), the list of lower parameters (which may be
empty too), and the argument, e.g. the input:

hypergeometric ({},{},z);

yields the output

z
e

and the input

hypergeometric ({1/2,1},{3/2},-x^2);

gives

atan(abs(x))
--------------

abs(x)

Since hundreds of particular cases for the generalised hypergeometric functions
can be found in the literature, one cannot expect that all cases are known to the
hypergeometric operator. Nevertheless the set of special cases can be aug-
mented by adding rules to the REDUCE system, e.g.

let {hypergeometric({1/2,1/2},{3/2},-(~x)^2)
=> asinh(x)/x};

20.58.3 Meijer’s G Function

The operator MeijerG expects 3 arguments, namely the list of upper parameters
(which may be empty), the list of lower parameters (which may be empty too), and
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the argument.

The first element of the lists has to be the list of the first n or m respective param-
eters, e.g. to describe

G10
11

(
x

∣∣∣∣∣ 10
)

one has to write

MeijerG({{},1},{{0}},x); % and the result is:

sign( - x + 1) + sign(x + 1)
------------------------------

2

and for

G10
02

(
x2

4

∣∣∣∣∣ 1 + 1
4 , 1−

1
4

)

MeijerG({{}},{{1+1/4},1-1/4},(x^2)/4) * sqrt pi;

2 2
sqrt(pi)*sqrt(-----------)*sin(abs(x))*x

abs(x)*pi
-------------------------------------------

4
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20.59 SSTOOLS: Computations with Supersymmetric Al-
gebraic and Differential Expressions

Authors: Thomas Wolf and Eberhard Schruefer

A detailed description is available after loading SSTOOLS and issuing the com-
mand

sshelp()$

The correct functioning of all procedures is tested through reading in and running
sstools.tst. This test also illustrates the commutator rules for products of
the different fields and their derivatives with respect to bosonic and fermionic vari-
ables.

The topics in sshelp()$ are:

• Purpose

• Interactive Session

• Loading Files

• Notation

• Initializations

• The command coeffn

• The procedure SSym

• The procedure SSConL

• The procedure FindSSWeights

• The procedure Linearize

• The procedure GenSSPoly

• The procedure ToCoo

• The procedure ToField

• Discovery of recursion operators

• Verification of symmetries

SSTOOLS has a results page at https://lie.ac.brocku.ca/twolf/bl/
susy/.

https://lie.ac.brocku.ca/twolf/bl/susy/
https://lie.ac.brocku.ca/twolf/bl/susy/
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20.60 SUM: A Package for Series Summation

This package implements the Gosper algorithm for the summation of series. It
defines operators SUM and PROD. The operator SUM returns the indefinite or defi-
nite summation of a given expression, and PROD returns the product of the given
expression.

This package loads automatically.

Author: Fujio Kako

This package implements the Gosper algorithm for the summation of series. It de-
fines operators sum and prod. The operator sum returns the indefinite or definite
summation of a given expression, and the operator prod returns the product of the
given expression. These are used with the syntax:

sum(〈expr:expression〉,〈k:kernel〉[,〈lolim:expression〉[,〈uplim:expression〉]])
prod(〈expr:expression〉,〈k:kernel〉[,〈lolim:expression〉[,〈uplim:expression〉]])

If there is no closed form solution, these operators return the input unchanged.
〈lolim〉 and 〈uplim〉 are optional parameters specifying the lower limit and upper
limit of the summation (or product), respectively. If 〈uplim〉 is not supplied, the
upper limit is taken as 〈k〉 (the summation variable itself).

For example:

sum(n**3,n);

sum(a+k*r,k,0,n-1);

sum(1/((p+(k-1)*q)*(p+k*q)),k,1,n+1);

prod(k/(k-2),k);

Gosper’s algorithm succeeds whenever the ratio∑n
k=n0

f(k)∑n−1
k=n0

f(k)

is a rational function of n. The function sum!-sq handles basic functions such as
polynomials, rational functions and exponentials.

The trigonometric functions sin, cos, etc. are converted to exponentials and then
Gosper’s algorithm is applied. The result is converted back into sin, cos, sinh and
cosh.
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Summations of logarithms or products of exponentials are treated by the formula:

n∑
k=n0

log f(k) = log
n∏

k=n0

f(k)

n∏
k=n0

exp f(k) = exp
n∑

k=n0

f(k)

Other functions, as shown in the test file for the case of binomials and formal
products, can be summed by providing LET rules which must relate the functions
evaluated at k and k − 1 (k being the summation variable).

There is a switch trsum (default off). If this switch is on, trace messages are
printed out during the course of Gosper’s algorithm.
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20.61 SUSY2: Supersymmetric Functions and Algebra of
Supersymmetric Operators

This package deals with supersymmetric functions and with the algebra of super-
symmetric operators in the extended N = 2 as well as in the non-extended N = 1
supersymmetry (SuSy). It allows us to realize the SuSy algebra of differential
operators, compute the gradients of given SuSy Hamiltonians and obtain the SuSy
version of soliton equations using the SuSy Lax approach. There are also many
additional procedures encountered in the SuSy soliton approach, as for example:
conjugation of a given SuSy operator, computation of the general form of SuSy
Hamiltonians (up to SuSy divergence equivalence), and checking the validity of
the Jacobi identity for SuSy Hamiltonian operators.

Author: Ziemowit Popowicz

20.61.1 Introduction

The main idea of supersymmetry (SuSy) is to treat boson and fermion operators
equally [1,2]. This has been realised by introducing so-called supermultiplets con-
structed from the boson and fermion operators and additionally from the Mayorana
spinors. Such supermultiplets possess the proper transformation property under the
transformation of the Lorentz group. At the moment we have no experimental con-
firmation that supersymmetry appears in nature.

The idea of using supersymmetry for the generalization of the soliton equations [3–
7] appeared almost in parallel to the usage of SuSy in the quantum field theory. The
first results, concerning the construction of classical field theories with fermionic
and bosonic fields depending on time and one space variable can be found in [8–
12]. In many cases, the addition of fermion fields does not guarantee that the final
theory becomes SuSy invariant and therefore this method was named the fermionic
extension in order to distinguish it from the fully SuSy method.

In order to get a SuSy theory we have to add to a system of k bosonic equations
kN fermion and k(N − 1) boson fields (k = 1, 2, . . . , N = 1, 2, . . .) in such
a way that the final theory becomes SuSy invariant. From the soliton point of
view we can distinguish two important classes of the supersymmetric equations:
the non-extended (N = 1) and extended (N > 1) cases. Consideration of the
extended case may imply new bosonic equations whose properties need further
investigation. This may be viewed as a bonus, but this extended case is no more
fundamental than the non-extended one. The problem of the supersymmetrization
of the nonlinear partial differential equations has its own history, and at the moment
we have no unique solution [13–40]. We can distinguish three different methods of
supersymmetrization: algebraic, geometric and direct.

In the first two cases we are looking for the symmetry group of the given equat-
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ion and then we replace this group by the corresponding SuSy group. As a final
product we are able to obtain a SuSy generalization of the given equation. The
classification into the algebraic or geometric approach is connected with the kind
of symmetry which appears in the classical case. For example, if our classical
equation could be described in terms of the geometrical object then the simple
exchange of the classical symmetry group of this object with its SuSy partner jus-
tifies the name geometric. In the algebraic case we are looking for the symmetry
group of the equation without any reference to its geometrical origin. This strategy
could be applied to the so-called hidden symmetry as for example in the case of
the Toda lattice. These methods each have advantages and disadvantages. For ex-
ample, sometimes we obtain the fermionic extensions. In the case of the extended
supersymmetric Korteweg-de Vries equation we have three different fully SuSy
extensions; however only one of them fits these two classifications.

In the direct approach we simply replace all objects which appear in the evolution
equation by all possible combinations of the supermultiplets and their superderiva-
tives so as to conserve the conformal dimensions. This is non-unique and yields
many different possibilities. However, the arbitrariness is reduced if we addition-
ally investigate super-bi-hamiltonian structure or try to find its supersymmetric Lax
pair. In many cases this approach is successful.

The utilization of the above methods can be helped by symbolic computer algebraic
and for this reason we developed the package SuSy2 in the symbolic language
REDUCE [41].

We have implemented and ordered the superfunctions in our program, extensively
using the concept of “noncom operator” in order to implement the supersymmet-
ric integro-differential operators. The program is meant to perform the symbolic
calculations using either fully supersymmetric supermultiplets or the component
version of our supersymmetry. We have constructed 25 different commands to
allow us to compute almost all objects encountered in the supersymmetrization
procedure of the soliton equation.

20.61.2 Supersymmetry

The basic object in the supersymmetric analysis is the superfield and the su-
persymmetric derivative. The superfields are the superfermions or the super-
bosons [1]. These fields, in the case of extended N = 2 supersymmetry, depend,
in addition to x and t, upon two anticommuting variables, θ1 and θ2 (such that
θ2θ1 = −θ1θ2, θ21 = θ22 = 0). Their Taylor expansion with respect to θ1, θ2 is

b(x, t, θ1, θ2) := w + θ1ζ1 + θ2ζ2 + θ2θ1u

for superbosons and

f(x, t, θ1, θ2) := ζ1 + θ1w + θ2u+ θ2θ1ζ2
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for superfermions, where w and u are classical (commuting) functions depending
on x and t, and ζ1 and ζ2 are odd Grassmann-valued functions depending on x and
t.

On the set of these superfunctions we can define the usual derivative and the su-
perderivative. Usually, we encounter two different realizations of the superderiva-
tive: the first we call “traditional” and the second “chiral”.

The traditional realization can be defined by introducing two superderivatives D1

and D2:

D1 = ∂θ1 + θ1∂,

D2 = ∂θ2 + θ2∂,

with the properties:

D1D1 = D2D2 = ∂,

D1D2 +D2D1 = 0.

The chiral realization is defined by

D1 = ∂θ1 −
1

2
θ2∂,

D2 = ∂θ2 −
1

2
θ1∂,

with the properties:

D1D1 = D2D2 = 0,

D1D2 +D2D1 = −∂.

Below we shall use the names “traditional”, “chiral” or “chiral1” algebras to denote
the kind of commutation relations assumed for the superderivatives. The chiral1
algebras possess, additionally to the chiral algebra, the commutator of D1 and D2

defined by
D3 = D1D2 −D2D1.

In the SUSY2 package we have implemented the superfunctions and the algebra
of superderivatives. Moreover, we have defined many additional procedures which
are useful in the supersymmetrization of the classical nonlinear system of partial
differential equation. Different applications of this package to physical problems
can be found in the papers [34–38].

20.61.3 Superfunctions

In this manual entry, REDUCE procedure (function) and let-rule names are usu-
ally displayed in a bold font, while all other input and output is usually displayed
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as normal typeset mathematics. The value returned by a procedure (function) is
indicated by the notation

function(arguments)⇒ function value.

However, REDUCE input without corresponding output and REDUCE command
names are usually displayed in a typewriter font.

Superfunctions are represented in this package by

bos(f, 0, 0) (20.99)

for superbosons and
fer(g, 0, 0)

for superfermions.

The first argument denotes the name of the given superobject, the second denotes
the value of the SuSy derivative, and the last denotes the value of the usual deriva-
tive. The bos and fer objects are declared as noncom operators in REDUCE. The
first argument can take an arbitrary value but with the following restrictions:

bos(0,m, n) = 0,

fer(0,m, n) = 0,

for all values of m,n.

The program has the capability to compute the coordinates of arbitrary SuSy ex-
pressions, using expansions in powers of θ. We have here four commands:

1. In order to have the given expression in components use

fpart(expression).

The output is in the form of a list, in which the first element is the zero-order
term in θ, the second is the first-order term in θ1, the third is the first-order
term in θ2 and the fourth is the term in θ2θ1. For example, the superfunction
(20.99) has the representation

fpart(bos(f, 0, 0))⇒ {fun(f0, 0),gras(ff 1, 0),gras(ff 2, 0), fun(f1, 0)},

where fun denotes the classical function and gras denotes the Grassmann
function. The first argument in fun or gras denotes the name of the given
object, while the second denotes the usual derivative.

2. In order to have the bosonic sector only, in which all odd Grassmann funct-
ions disappear, use

bpart(expression).

Example:

bpart(fer(g, 0, 0))⇒ {0, fun(g0, 0), fun(g1, 0), 0}
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3. In order to have the given coordinates use

bf_part(expression, n),

where n = 0, 1, 2, 3.

Example:
bf_part(bos(f, 0, 0), 3)⇒ fun(f1, 0)

4. In order to have the given coordinates in the bosonic sector use

b_part(expression, n),

where n = 0, 1, 2, 3.

Example:
b_part(fer(g, 0, 0), 1)⇒ fun(g0, 0)

Notice that the program switches on factoring of fer,bos,gras, fun. If you re-
move this factoring then many commands give wrong results (for example the com-
mands lyst, lyst1 and lyst2).

20.61.4 The Inverse and Exponentials of Superfunctions

In addition to our definitions of the superfunctions we can also define the inverse
and exponential of the superboson.

The inverse of the given bos function (not to be confused with the “inverse func-
tion” encountered in the usual analysis) is defined as

bos(f, n,m,−1),

for arbitrary f, n,m with the property bos(f, n,m,−1)bos(f, n,m, 1) = 1. The
object bos(f, n,m, k), in general, denotes the k-th power of the bos(f, n,m) su-
perfunction. If we use the command let inverse then three-index bos objects
are transformed into four-index bos objects.

The exponential of the superboson function is

axp(bos(f, 0, 0)).

It is also possible to use axp(f), but then we should specify what is f .

We have the following representation in components for the inverse and axp su-
perfunctions:

fpart(bos(f, 0, 0,−1)) = {fun(f0, 0,−1),−fun(f0, 0,−1)gras(ff 1, 0),

− fun(f0, 0,−1)gras(ff 2, 0),−fun(f0, 0,−2) fun(f1, 0, 1)
+ 2 fun(f0, 0,−3)gras(ff 1, 0)gras(ff 2, 0)},
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fpart(axp(f)) = {axx(bf_part(f, 0)),axx(bf_part(f, 0))bf_part(f, 1),

axx(bf_part(f, 0))bf_part(f, 2),axx(bf_part(f, 0))

(bf_part(f, 3) + 2bf_part(f, 1)bf_part(f, 2))},

where axx(f) denotes the exponentiation of the given classical function while
fun(f,m, n) denotes the n-th power of the function fun(f,m).

20.61.5 Ordering

The three different superfunctions fer,bos,axp are ordered among themselves as

fer(f, n,m)bos(h, j, k)axp(g),

fer(f, n,m)bos(h, j, k, l)axp(g),

independently of the arguments. The superfunctions bos and axp commute with
themselves, while the superfunctions fer anticommute with themselves. For these
superfunctions we introduce the following ordering.

• The bos objects with three and four arguments are ordered as follows: the
first argument anti-lexicographically, the second and third by decreasing or-
der of natural numbers; the last (fourth) is not ordered because

bos(f, n,m, k) ∗ bos(f, n,m, l)⇒ bos(f, n,m, k + l)

• The anticommuting fer objects are ordered as follows: the first argument
anti-lexicographically, the second and third by decreasing order of natural
numbers.

Example:

fer(f, n,m) ∗ fer(g, k, l)⇒ −fer(g, k, l) fer(f, n,m)

for arbitrary n,m, k, l.

fer(f, n,m) ∗ fer(f, n,m)⇒ 0

for arbitrary f, n,m.

bos(f, 2, 3, 7) ∗ bos(a, 0, 3) ∗ bos(f, 2, 3,−7) ⇒ bos(a, 0, 3),

bos(f, 2, 3, 2) ∗ bos(z, 0, 3, 2) ∗ bos(f, 2, 3,−2) ⇒ bos(z, 0, 3, 2).

• For all exponential functions we have

axp(f) ∗ axp(g)⇒ axp(f + g).



1113

20.61.6 (Super)Differential Operators

We have implemented three different realizations of the supersymmetric deriva-
tives. In order to select the traditional realization declare let trad. In order to
select the chiral or chiral1 algebra declare let chiral or let chiral1. By
default we have the traditional algebra.

We have introduced three different types of SuSy operators which act on the super-
functions and are considered as noncommuting operators in REDUCE.

For the usual differentiation we introduced two types of operators:

• right differentations

d(1) ∗ bos(f, 0, 0)⇒ bos(f, 0, 1) + bos(f, 0, 0)d(1);

• left differentations

fer(f, 0, 0) ∗ d(2)⇒ −fer(f, 0, 1) + d(2) fer(f, 0, 0).

This example illustrates that the third argument in the bos and fer objects can take
an arbitrary integer value.

We denote SuSy derivatives as der and del, which represent the right and left op-
erations respectively, and are one-argument operators. The action of these objects
on the superfunctions depends on the choice of the supersymmetric algebra.

Explicitly, we have for the traditional algebra:

right SuSy derivative

der(1) ∗ bos(f, 0, 0) ⇒ fer(f, 1, 0) + bos(f, 0, 0)der(1),

der(2) ∗ fer(g, 0, 0) ⇒ bos(g, 2, 0)− fer(g, 0, 0)der(2),

der(1) ∗ fer(f, 2, 0) ⇒ bos(f, 3, 0)− fer(f, 2, 0)der(1),

der(2) ∗ bos(f, 3, 0) ⇒ −fer(f, 1, 1) + bos(f, 3, 0)der(2),

der(1) ∗ bos(f, 0, 0,−1) ⇒ −fer(f, 1, 0)bos(f, 0, 0,−2) +
bos(f, 0, 0,−1)der(1),

der(2) ∗ axp(bos(f, 0, 0)) ⇒ fer(f, 2, 0)axp(bos(f, 0, 0)) +

axp(bos(f, 0, 0))der(2).
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left SuSy derivative

bos(f, 0, 0) ∗ del(1) ⇒ −fer(f, 1, 0) + del(1)bos(f, 0, 0),

fer(g, 0, 0) ∗ del(2) ⇒ bos(g, 2, 0)− del(2) fer(g, 0, 0),

fer(f, 2, 0) ∗ del(2) ⇒ bos(f, 3, 0)− del(1) fer(f, 2, 0),

bos(f, 3, 0) ∗ del(2) ⇒ fer(f, 1, 1) + del(2)bos(f, 3, 0),

bos(f, 0, 0,−1) ∗ del(1) ⇒ fer(f, 1, 0)bos(f, 0, 0,−2) +
del(1)bos(f, 0, 0,−1),

axp(bos(f, 0, 0)) ∗ del(2) ⇒ −fer(f, 2, 0)axp(bos(f, 0, 0)) +
del(2)axp(bos(f, 0, 0)).

These examples illustrate that the second argument in the fer and bos objects can
take values 0, 1, 2, 3 only with the following meaning: 0 – no SuSy derivatives,
1 – first SuSy derivative, 2 – second SuSy derivative, 3 – first and second SuSy
derivative.

Using the results above we obtain

der(1) ∗ der(2) ∗ bos(f, 0, 0)⇒
bos(f, 3, 0) + bos(f, 0, 0)der(1)der(2) +

fer(f, 1, 0)der(2)− fer(f, 2, 0)der(1).

For the chiral representation, the meaning of the second argument in the bos or
fer object is the same as for the traditional representation while the actions of
SuSy operators on the superfunctions are different. For example, we have

der(1) ∗ fer(f, 1, 0) ⇒ −fer(f, 1, 0)der(1),
der(1) ∗ fer(f, 2, 0) ⇒ bos(g, 3, 0)− fer(f, 2, 0)der(1),

der(2) ∗ bos(g, 3, 0) ⇒ −fer(g, 2, 1) + bos(g, 3, 0)der(2),

bos(g, 2, 0) ∗ del(2) ⇒ del(2)bos(g, 2, ).

For the chiral1 representation we have a different meaning of the second argument
in the bos and fer objects: the values 0, 1, 2 for this second argument denote
the values of the SuSy derivatives while 3 denotes the value of the commutator.
Explicitly, we have

der(3) ∗ bos(f, 0, 0) ⇒ bos(f, 3, 0) + 2 fer(f, 1, 0, 0)der(2)

− 2 fer(f, 2, 0)der(1) + bos(f, 0, 0)der(3),

der(1) ∗ fer(f, 2, 0) ⇒ (bos(f, 3, 0)− bos(f, 0, 1))/2− fer(f, 2, 0)der(1).

The supersymmetric operators are always ordered in the case of traditional algebra
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as

der(2) ∗ der(1) ⇒ −der(1)der(2),
del(2) ∗ del(1) ⇒ −del(1)del(2),
der(1) ∗ del(1) ⇒ d(1),

der(1) ∗ del(2) ⇒ −del(2)der(1);

for the chiral algebra we have

der(2) ∗ der(1) ⇒ −d(1)− der(1)der(2),

del(2) ∗ del(1) ⇒ −d(1)− del(1)del(2),

der(1) ∗ del(1) ⇒ 0,

der(1) ∗ del(2) ⇒ −d(1)− del(2)der(1);

while for chiral1 additionally we have

der(3) ∗ der(1) ⇒ −der(1)d(1),
der(1) ∗ der(3) ⇒ der(1)d(1),

der(3) ∗ der(2) ⇒ der(2)d(1),

der(2) ∗ der(3) ⇒ −der(2)d(1).

Please notice that if we would like to have the components of some bos(f, 3, 0,−1)
superfunction in the chiral representation then new objects appear:

b_part(bos(f, 3, 0,−1), 1)⇒ fun(f1, 0, f0, 1,−1),

We should consider the five-argument object fun as

fun(f, n, g,m,−k)⇒ (fun(f, n)− fun(g,m)/2)−k.

Similar interpretation is valid for other commands containing objects like
bos(f, 3, n,−k).

20.61.7 Action of the Operators

In order to have the value of the action of the given operator on some superfunction
we introduce two operators pr and pg. The operator

pr(n, expression)

where n = 0, 1, 2, 3 denotes the value itself of the action of the SuSy derivatives
on the given expression. For n = 0 there is no SuSy derivative, n = 1 corresponds
to der(1), n = 2 to der(2), and n = 3 to der(1) ∗ der(2).
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Example:

pr(1,bos(f, 0, 0))⇒ fer(f, 1, 0),

pr(3, fer(g, 0, 0))⇒ fer(f, 3, 0).

For the usual derivative we reserve the command

pg(n, expression)

where n = 0, 1, 2, . . . denotes the value of the usual derivative on the expression.

Example:
pg(2,bos(f, 0, 0))⇒ bos(f, 0, 2)

20.61.8 Supersymmetric Integration

There is one command s_int(number , expression, list) only. This allows us to
compute the supersymmetric integral of arbitrary polynomial expressions con-
structed from fer and bos objects. It is valid in the traditional representation of
supersymmetry. The argument number takes the following values: 0 corresponds
to the usual x integration, 1 or 2 to integration over the first or second supersym-
metric argument, while 3 corresponds to integration over both the first and second
arguments. The argument list is a list of the names of the superfunctions over
which we would like to integrate. The output of this command is in the form of
the integrated part and non-integrated part. The non-integrated part is denoted by
del(−number) for number = 1, 2, 3 and by d(−3) for number = 0.

Example:

s_int(0, 2 ∗ bos(f, 0, 1) ∗ bos(f, 0, 1), {f})⇒ bos(f, 0, 0)2,

s_int(1, 2 ∗ fer(f, 1, 0) ∗ bos(f, 0, 0), {f})⇒ bos(f, 0, 0)2,

s_int(3,bos(f, 3, 0) ∗ bos(g, 0, 0) + bos(f, 0, 0) ∗ bos(g, 3, 0), {f, g})⇒
bos(f, 0, 0)bos(g, 0, 0)−

del(−3)
(
fer(f, 1, 0) fer(g, 2, 0)− fer(f, 2, 0)bos(g, 1, 0)

)
.

20.61.9 Integration Operators

We introduced four different types of integration operators: right and left denoted
by d(−1) and d(−2) respectively and moreover two different types of neutral
integration operators d(−3) and d(−4). In the first two cases they act according
to the formula

d(−1)bos(f, 0, 0) =
∞∑
i=1

(−1)i bos(f, 0, i− 1)d(−1)i
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for the right integration and

bos(f, 0, 0)d(−2) =
∞∑
i=1

d(−2)i bos(f, 0, i− 1)

for the left integration.

Before using these operators the precision of the integration must be specified by
an assignment of the form ww := number, which sets the actual upper limit to
be used on the sums above instead of infinity. If required this precision can be
changed by reassignment. Both operators are defined by their action and by the
properties

d(1)d(−1) = d(−1)d(1) = d(2)d(−1) = d(2)d(−1) = 1,

der(1)d(−1) = d(−1)der(1),
d(−1)del(1) = del(1)d(−1),

and analogously for d(−2) and der(2),del(2).

The neutral operator does not show any action on an expression but has several
properties. More precisely

d(1)d(−3) = d(−3)d(1) = d(2)d(−3) = d(−3)d(2) = 1,

der(k)d(−3) = d(−3)der(k),
d(−3)del(k) = del(k)d(−3),

while for d(−4)

d(1)d(−4) = d(−4)d(1) = d(2)d(−4) = d(−4)d(2) = 1,

der(k)d(−4) = d(−4)der(k),

where k = 1, 2.

From the last two formulas we see that the d(−3) operator is transparent under del
operators while the d(−4) operator stops the del action.

Similarly to d(−3) or d(−4) it is also possible to use the neutral differentiation
operator denoted by d(3). It has the properties

d(3)d(−4) = d(−4)d(3) = d(3)d(−3) = d(−3)d(3) = 1,

der(k)d(3) = d(3)der(k),

d(3)del(k) = del(k)d(3),

where k = 1, 2.

We can have also “accelerated” integration operators denoted by dr(−n) where n
is a natural number. The action of these operators is exactly the same as d(−1)n but
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instead of using the integration formulas n times in the case of d(−1)n, dr(−n)
uses the following formula only once:

dr(−n)bos(f, 0, 0) =
ww∑
s=0

(−1)s
(
n+ s− 1
n− 1

)
bos(f, 0, s)dr(−n− s).

Similarly to the d(−1) case, we have to declare also the “precision” of integration
if we would like to use the accelerated integration operators. The command let
cutoff and assignment of the form cut := number allow us to annihilate the
higher-order terms in the dr integration procedure. Moreover, the command let
drr automatically changes the usual integration d(−1) into accelerated integra-
tion dr. The command let nodrr changes dr integration into d(−1).

20.61.10 Useful Commands

Combinations

We encounter, in many practical applications, the problem of constructing differ-
ent possible combinations of superfunction and super-pseudo-differential elements
with given conformal dimensions. We provide three different procedures in order
to realize this requirement:

w_comb(list , n,m, x),

fcomb(list , n,m, x),

pse_ele(n, list ,m).

All these commands are based on the gradations trick, to associate with super-
functions and superderivatives the scaling parameter conformal dimension. We
consider here k/2 and k (k a positive integer) gradation only.

The command w_comb gives the most general form of superfunction combina-
tions of given gradation. It is a four-argument procedure in which:

1. the first argument is a list in which each element is a three-element list in
which the first element is the name of the superfunction from which we
would like to construct our combinations, the second denotes its gradation,
and the last can take two values: f or b to indicate that the superfunction is
respectively superfermionic or superbosonic;

2. the second argument is a number, the desired gradation;

3. the third argument is an arbitrary non-numerical value which enumerates the
free parameters in our combinations;

4. the fourth argument takes one of two values: f or b to indicate that whole
combinations should be respectively fermionic or bosonic.
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Examples:

w_comb({{f, 1, b}, {g, 1, b}}, 2, z, b) ⇒ z1bos(f, 3, 0) + z2bos(f, 0, 1) +

z3bos(f, 0, 0)2

w_comb({{f, 1, b}}, 3/2, g, f) ⇒ g1 fer(f, 1, 0) + g2 fer(f, 2, 0)

The command fcomb, similarly to w_comb, gives the general form of an ar-
bitrary combination of superfunctions modulo divergence terms. It is a four-
argument command with the same meaning of arguments as for w_comb. This
command first calls w_comb, then eliminates in the canonical way SuSy deriva-
tives by integration by parts of w_comb. By canonical we understand that (SuSy)
derivatives are removed first from the superfunction which is first in the list of
superfunctions in the fcomb command, next from the second, etc.

In order to illustrate the canonical manner of elimination of (SuSy) derivatives let
us consider some expression which is constructed from f, g and h superfunctions
and their (SuSy) derivatives. This expression is first split into three sub-expressions
called the f-expression, g-expression and h-expression. The f-expression contains
only combinations of f with f or g or (and) h, while the g-expression contains
only combinations of g with g or h and the h-expression contains only combina-
tions of h with h. The command fcomb removes first (SuSy) derivatives from f
in f-expression, then from g in g-expression, and finally from h in h-expression.
Consider this example:

fer(f, 1, 0) fer(g, 2, 0) + bos(g, 0, 0)bos(g, 3, 0).

Let us now assume that we have f, g order; then the f-expression is
fer(f, 1, 0) fer(g, 2, 0), while the g-expression is bos(g, 0, 1)bos(g, 3, 0). Now
canonical elimination gives

−bos(f, 0, 0)bos(g, 3, 0) + 2bos(g, 0, 0)bos(g, 3, 1),

while assuming g, f order gives

−bos(f, 3, 0)bos(g, 0, 0) + 2bos(g, 0, 0)bos(g, 3, 1).

Example:

fcomb({{u, 1}}, 4, h)⇒
h(1) fer(u, 2, 0) fer(u, 1, 0)bos(u, 0, 0) + h(2)bos(u, 3, 0)bos(u, 0, 0)2 +

h(3)bos(u, 0, 2)bos(u, 0, 0) + h(4)bos(u, 0, 0)4

Finally, the command pse_ele gives the general form of an element of the pseudo-
SuSy derivative algebra [3]. Such an element can be written down symbolically as

(bos+ fer der(1) + fer der(2) + bosder(1)der(2))d(1)n
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for the traditional and chiral representations, or

(bos+ fer der(1) + fer der(2) + bosder(3))d(1)n

for the chiral1 representation, where bos and fer denote arbitrary superfunctions.
The mentioned command allows us to obtain such an element of the given grada-
tion which is constructed from some set of superfunctions of given gradation. This
command takes three arguments:

pse_ele(wx ,wy ,wz ).

The first argument denotes the gradation of the SuSy-pseudo-element, and the sec-
ond denotes the names and gradations of the superfunctions from which we would
like to construct our element. This second argument wy is in the form of a list ex-
actly the same as in the w_comb command. The last argument denotes the names
which enumerate the free parameters in our combination.

Parts of the pseudo-SuSy-differential elements

In order to obtain the components of the (pseudo)-SuSy element we have three
different commands:

s_part(expression,m),

d_part(expression, n),

sd_part(expression,m, n),

where m,n = 0, 1, 2, 3, . . ..

The s_part command gives the coefficient standing in the m-th SuSy derivative.
However, notice that for m = 3 we should consider the coefficients standing in
the der(1)der(2) operator for the traditional or chiral representations while for
the chiral1 representation the terms standing in the der(3) operator. The d_part
command give the coefficients standing in the same power of d(1), while sd_part
gives the term standing in the m-th SuSy derivative and n-th power of the usual
derivative.

Example: Given the REDUCE input

ala := bos(g,0,0) + fer(f,3,0)*der(1) +
(fer(h,2,0)*der(2) + bos(r,0,0)*der(1)*der(2))*d(1);

we have

s_part(ala, 3) ⇒ fer(f, 3, 0)

d_part(ala, 1) ⇒ fer(h, 2, 0)der(2) + bos(r, 0, 0)der(1)der(2)

sd_part(ala, 0, 0) ⇒ bos(g, 0, 0)
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Adjoint

The adjoint PP∗ of some SuSy operator PP is defined in standard form by

⟨α,PP β⟩ = ⟨β,PP∗ α⟩

where α and β are test superboson functions and the scalar product is defined by

⟨α, β⟩ =
∫
αβ dθ1 dθ2,

where we use the Berezin integral definition [1]∫
θi dθj = δi,j ,∫
dθi = 0.

For this operation we have the command

cp(expression).

Examples:

cp(der(1)) ⇒ −der(1),
cp(del(1) ∗ fer(r, 1, 0) ∗ der(1)) ⇒ fer(r, 1, 1) + fer(r, 1, 0)d(1)−

del(1)bos(r, 0, 1),

The last example illustrates that it is possible to define cp(del(1) fer(r, 1, 0)der(1))
in the different but equivalent manner as fer(r, 1, 0)d(1)− bos(r, 0, 1)der(1).

From a practical point of view, we do not define conjugation for the d(−1) and
d(−2) operators, because then we should define the precision of the action of the
operators d(−1) and d(−2), and even then we would obtain very complicated
formulas. However, if somebody decides to apply this conjugation to d(−1) or
d(−2), it is recommended first to change by hand these operators into d(−3), next
to compute cp and change d(−3) back into d(−1) or d(−2) together with the
declaration of the precision.

Projection

In many cases, especially in the SuSy approach to soliton theory, we have to ob-
tain the projection onto the invariant subspace (with respect to the commutator) of
the pseudo-SuSy-differential algebra. There are three different subspaces [4] and
hence we have the two-argument command

rzut(expression, n)



1122 CHAPTER 20. USER CONTRIBUTED PACKAGES

in which n = 0, 1, 2.

Example: Given the REDUCE input

ewa := bos(f,0,0) + bos(f3,0,0)*der(1)*der(2) +
bos(g,0,0)*d(1) + bos(g3,0,0)*d(1)*der(1)*der(2) +
fer(f1,1,0)*der(1) + fer(f2,2,0)*der(2) +
fer(g1,1,0)*d(1)*der(1) + fer(g2,2,0)*d(1)*der(2);

we have
rzut(ewa, 0)⇒ ewa,

rzut(ewa, 1)⇒ ewa − bos(f, 0, 0),

rzut(ewa, 2)⇒ bos(f3, 0, 0)der(1)der(2) +(
fer(g1, 1, 0)der(1)+fer(g2, 2, 0)der(2)+bos(g3, 0, 0)der(1)der(2)

)
d(1).

Analogue of coeff

Motivated by practical applications, we constructed for our supersymmetric func-
tions three commands, which allow us to obtain a list of the same combinations
of some superfunctions and (SuSy) derivatives from some given operator-valued
expression. Each command takes one argument and returns a list. We use the
following REDUCE input to illustrate each command:

magda := fer(f,1,0)*fer(f,2,0)*a1 + der(1);

The first command is
lyst(expression).

For example

lyst(magda)⇒ {fer(f, 1, 0) fer(f, 2, 0) a1,der(1)}.

The second command is
lyst1(expression)

with the output in the form of a list in which each element is constructed from the
coefficients and (SuSy) operators of the corresponding element in the lyst list. For
example

lyst1(magda)⇒ {a1,der(1)}.

The third command is
lyst2(expression)
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with the output in the form of a list in which each element is constructed from
coefficients in the given expression. For example

lyst2(magda)⇒ {a1, 1}.

Simplification

If we encounter during the process of computation an expression such as

fer(f, 1, 0)d(−3) fer(f, 2, 0)d(1),

it is not reduced further. To facilitate simplification, we can replace d(1) with d(2),
or vice versa. In order to do this replacement we have the command

chan(expression)

Example:

chan(fer(f, 1, 0) ∗ d(−3) ∗ fer(f, 2, 0) ∗ d(1))⇒
− fer(f, 2, 0) fer(f, 1, 0)− fer(f, 1, 0)d(−3) fer(f, 2, 1).

Notice that as a result we remove the d(1) operator.

O(2) Invariance

In many cases in supersymmetric theories we deal with the O(2) invariance of
SuSy indices. This invariance follows from the physical assumption of nonpriv-
ileging the “fermionic” coordinates in the superspace. In order to check whether
our formula possesses such invariance we can use

odwa(expression)

This procedure replaces in the given expression der(1) with −der(2) and der(2)
with der(1). Next, it changes, in the same manner, the values of the action of these
operators on the superfunctions.

Macierz

We can define the supercomponent form for the pse_ele objects similarly to the
representation of the superfunctions. Usually we can consider such an object as
the matrix which acts on the components of the superfunction. It is realized in our
program using the command

macierz(expression, x, y),
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where expression is the formula under consideration. The argument x can take
two values, b or f, depending on whether we would like to consider the bosonic (b)
part or fermionic (f) part of the expression. The last argument denotes the option
in which we act on the bosonic or fermionic superfunction. It takes two values: f
for fermionic test superfunction or b for bosonic. More explicitly, we obtain

macierz(der(1) ∗ der(2), b, f)⇒


0 0 0 0
0 0 d(1) 0
0 −d(1) 0 0

−d(1)2 0 0 0

 ,

macierz(der(1) ∗ der(2), f, b)⇒


0 0 0 0
0 0 0 d(1)

−d(1) 0 0 0
0 0 0 0

 .

20.61.11 Functional Gradients

In the SuSy soliton approach we very frequently encounter the problem of com-
puting the gradient of the given functional. The usual definition of the gradient [2]
is adopted in the supersymmetry also:

H ′[v] = ⟨gradH, v⟩ = ∂

∂ϵ
H(u+ ϵv) |ϵ=0,

where H denotes some functional which depends on u, v denotes a vector along
which we compute the gradient, and ⟨·, ·⟩ denotes the relevant scalar product.

We implemented all that in our package for the traditional algebra only. In order to
compute the gradient with respect to some superfunction use

gra(expression, f),

where expression is the given density of the functional and f denotes the first
argument in the superfunction operator (name of the superfunction).

Example:

gra(bos(f, 3, 0) ∗ fer(f, 1, 0), f)⇒ −2 fer(f, 2, 1)

For practical use we provide two additional commands:

dyw(expression, f),

war(expression, f).

The first computes the variation of expression with respect to superfunction f ; the
second removes (via integration by parts) SuSy derivatives from various functions
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and finally produces a list of factorized fer and bos superfunctions. When the
given expression is a full (SuSy) derivative, the result of the dyw command is 0
and hence this command is very useful in verifications of (SuSy) divergences of
expressions.

When the result of applications of the dyw command is not zero then we would
like to have the system of equations on the coefficients standing in the same fac-
torized fer and bos superfunction. We can quickly obtain such a list using the
command war(expression, f) with the same meaning for the arguments as in the
dyw command.

Examples: Given the REDUCE input

xxx := fer(f,1,0)*fer(f,2,0) + x*bos(f,3,0)^2;

we obtain

dyw(xxx , f)⇒ {−2bos(f, 3, 0)bos(f, 0, 0),−2xbos(f, 0, 2)bos(f, 0, 0)},
war(xxx , f)⇒ {−2,−2x}.

20.61.12 Conservation Laws

In many cases we would like to know whether a given expression is a conservation
law for some Hamiltonian equation. We can quickly check it using

dot_ham(equation, expression)

where equation is a list of two-element lists in which the first element denotes the
function while the second denotes its flow. The second argument should be under-
stood as the density of some conserved current. For example, for the SuSy version
of the Nonlinear Schrödinger Equation [7] we could use the following REDUCE
input:

ew := {{q, -bos(q,0,2) + bos(q,0,0)^3*bos(r,0,0)^2
2*bos(q,0,0)*pr(3,bos(q,0,0)*bos(r,0,0))},

{r, bos(r,0,2) - bos(q,0,0)^2*bos(r,0,0)^3 +
2*bos(r,0,0)*pr(3,bos(q,0,0)*bos(r,0,0))}};

ham := bos(q,0,1)*bos(r,0,0) +
x*bos(q,0,0)^2*bos(r,0,0)^2;

yyy := dot_ham(ew,ham);

The result of the previous computation is a complicated expression that is not zero.
We would like to interpret it as a full (SuSy) divergence and we can quickly verify
it by using the command war. We can solve the resulting list of equations using
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known techniques. For example, in our previous case we obtain

war(yyy, q)⇒ {−4x,−8x,−4x},
war(yyy, r)⇒ {4x, 8x, 4x},

and we conclude that ham is a constant of motion if x = 0.

It is also possible to apply the command dot_ham to the pseudo-SuSy-differential
element. This is very useful in the SuSy approach to the Lax operator in which we
would like to check the validity of the formula

∂tL := [L,A],

where A is some (SuSy) operator.

20.61.13 Jacobi Identity

The Jacobi identity for some SuSy Hamiltonian operators is verified using the re-
lation

⟨α, P ′
P (β)γ⟩+ all cyclic permutations of α, β, γ = 0,

where P ′ denotes the directional derivative along the P (β) vector and ⟨·, ·⟩ denotes
the scalar product. The directional derivative is defined in the standard manner
as [44]:

F
′
(u)[v] =

∂

∂ϵ
F (u+ ϵv) |ϵ=0,

where F is some functional depending on u, and v is a directional vector.

In this package we have several commands that allow us to verify the Jacobi iden-
tity. We have the possibility to compute, independently of verifying the Jacobi
identity, the directional derivative for the given Hamiltonian operator along the
given vector using

n_gat(pp,wim),

where pp is a scalar or matrix Hamiltonian operator and wim denotes the compo-
nents of a vector along which we compute the derivative. It has the form of a list
in which each element has the representation

bos(f)⇒ expression.

The expression bos(f) above denotes the shift of the bos(f, 0, 0) superfunction
according to the definition of the directional derivative.

In order to compute the Jacobi identity we use the command

fjacob(pp,wim)

with the same meaning for pp and wim as in the n_gat command.
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Notice that the ordering of the components in the wim list is important and is
connected with the interpretation of the components of the Hamiltonian operator
pp as a set of Poisson brackets constructed just from elements of the wim list. For
example, in our scheme, the first component of wim is always connected with the
element from which we create the Poisson bracket and which corresponds to the
first element on the diagonal of pp, the second element of wim with the second
element on the diagonal of pp, etc.

As the result of the application of the fjacob command to some Hamiltonian op-
erator we obtain a complicated formula, not necessarily equal to zero but which
should be expressed as a (SuSy) divergence. However, we can quickly verify it
using the same method as for the dot_ham command, which was described in the
previous subsection.

Usually, after the application of the fjacob command to some matrix Hamilto-
nian operator we obtain a huge expression, which is too complicated to analyze
even when we would like to check its (SuSy) divergence. In this case we could
extract from the fjacob expression terms containing given components of vector
test functions fixed by us. We can use the command

jacob(pp,wim,mm)

where pp and wim have the same meaning as for the fjacob command while mm
is a three-element list denoting the components: {α, β, γ}.

This command is not prepared to compute in full the Jacobi identity, which contains
the integration operators. We do not implement here the symbolic integration of
superfunctions in order to simplify the final results.

20.61.14 Objects, Commands and Let Rules

Objects

bos(f, n,m) bos(f, n,m, k) fer(f, n,m) axp(f) fun(f, n)
fun(f, n,m) gras(f, n) axx(f) d(1) d(2)
d(3) d(−1) d(−2) d(−3) d(−4)
dr(−n) der(1) der(2) del(1) del(2)
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Commands

fpart(expression) bpart(expression)
bf_part(expression, n) b_part(expression, n)
pr(n, expression) pg(n, expression)
w_comb({{f, n, x}, . . .},m, z, y) fcomb({{f, n, x}, . . .},m, z, y)
pse_ele(n, {{f, n}, . . .}, z) s_part(expression, n)
d_part(expression, n) sd_(expression, n,m)
cp(expression) rzut(expression, n)
lyst(expression) lyst1(expression)
lyst2(expression) chan(expression)
odwa(expression) gra(expression, f )
dyw(expression, f ) war(expression, f )
dot_ham(equations, expression) n_gat(operator, list)
fjacob(operator, list) jacob(operator, list, {α, β, γ})
macierz(expression, x, y) s_int(numbers, expression, list)

Let Rules

trad chiral chiral1 inverse drr nodrr
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20.62 SYMMETRY: Operations on Symmetric Matrices

This package computes symmetry-adapted bases and block diagonal forms of ma-
trices which have the symmetry of a group. The package is the implementation
of the theory of linear representations for small finite groups such as the dihedral
groups.

Author: Karin Gatermann

20.62.1 Introduction

The exploitation of symmetry is a very important principle in mathematics, physics
and engineering sciences. The aim of the SYMMETRY package is to give an easy
access to the underlying theory of linear representations for small groups. For
example the dihedral groups D3, D4, D5, D6 are included. For an introduction
to the theory see SERRE [Ser77] or STIEFEL and FÄSSLER [SF79]. For a given
orthogonal (or unitarian) linear representation

ϑ : G −→ GL(Kn), K = R,C.

the character ψ → K, the canonical decomposition or the bases of the isotypic
components are computed. A matrix A having the symmetry of a linear represen-
tation,e.g.

ϑtA = Aϑt ∀ t ∈ G,

is transformed to block diagonal form by a coordinate transformation. The depen-
dence of the algorithm on the field of real or complex numbers is controled by the
switch complex. An example for this is given in the testfile symmetry.tst.

As the algorithm needs information concerning the irreducible representations this
information is stored for some groups (see the operators in Section 3). It is assumed
that only orthogonal (unitar) representations are given.

The package is loaded by

load symmetry;

20.62.2 Operators for linear representations

First the data structure for a linear representation has to be explained. representa-
tion is a list consisting of the group identifier and equations which assign matrices
to the generators of the group.

Example:

rr:=mat((0,1,0,0),
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(0,0,1,0),
(0,0,0,1),
(1,0,0,0));

sp:=mat((0,1,0,0),
(1,0,0,0),
(0,0,0,1),
(0,0,1,0));

representation:={D4,rD4=rr,sD4=sp};

For orthogonal (unitarian) representations the following operators are available.

canonicaldecomposition(representation);

returns an equation giving the canonical decomposition of the linear representation.

character(representation);

computes the character of the linear representation. The result is a list of the group
identifier and of lists consisting of a list of group elements in one equivalence class
and a real or complex number.

symmetrybasis(representation,nr);

computes the basis of the isotypic component corresponding to the irreducible rep-
resentation of type nr. If the nr-th irreducible representation is multidimensional,
the basis is symmetry adapted. The output is a matrix.

symmetrybasispart(representation,nr);

is similar as symmetrybasis, but for multidimensional irreducible representa-
tions only the first part of the symmetry adapted basis is computed.

allsymmetrybases(representation);

is similar as symmetrybasis and symmetrybasispart, but the bases of all
isotypic components are computed and thus a complete coordinate transformation
is returned.

diagonalize(matrix,representation);

returns the block diagonal form of matrix which has the symmetry of the given
linear representation. Otherwise an error message occurs.

on complex;

Of course the property of irreducibility depends on the field K of real or complex
numbers. This is why the algorithm depends on K. The type of computation is set
by the switch complex.
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20.62.3 Display Operators

In this section the operators are described which give access to the stored informa-
tion for a group. First the operators for the abstract groups are given. Then it is
described how to get the irreducible representations for a group.

availablegroups();

returns the list of all groups for which the information such as irreducible represen-
tations is stored. In the following group is always one of these group identifiers.

printgroup(group);

returns the list of all group elements;

generators(group);

returns a list of group elements which generates the group. For the definition of a
linear representation matrices for these generators have to be defined.

charactertable(group);

returns a list of the characters corresponding to the irreducible representations of
this group.

charactern(group,nr);

returns the character corresponding to the nr-th irreducible representation of this
group as a list (see also character).

irreduciblereptable(group);

returns the list of irreducible representations of the group.

irreduciblerepnr(group,nr);

returns an irreducible representation of the group. The output is a list of the group
identifier and equations assigning the representation matrices to group elements.

20.62.4 Storing a new group

If the user wants to do computations for a group for which information is not pre-
defined, the package SYMMETRY offers the possibility to supply information for
this group.

For this the following data structures are used.

elemlist = list of identifiers.

relationlist = list of equations with identifiers and operators @ and ∗∗.

grouptable = matrix with the (1,1)-entry grouptable.

filename = "myfilename.new".



1132 CHAPTER 20. USER CONTRIBUTED PACKAGES

The following operators have to be used in this order.

setgenerators(group,elemlist,relationlist);

Example:

setgenerators(K4,{s1K4,s2K4},
{s1K4^2=id,s2K4^2=id,s1K4@s2K4=s2K4@s1K4});

setelements(group,relationlist);

The group elements except the neutral element are given as product of the defined
generators. The neutral element is always called id.

Example:

setelements(K4,
{s1K4=s1K4,s2K4=s2K4,rK4=s1K4@s2K4});

setgrouptable(group,grouptable);

installs the group table.

Example:

tab:=
mat((grouptable, id, s1K4, s2K4, rK4),

(id , id, s1K4, s2K4, rK4),
(s1K4 , s1K4, id, rK4,s2K4),
(s2K4 , s2K4, rK4, id,s1K4),
(rK4 , rK4, s2K4, s1K4, id));

setgrouptable(K4,tab);

Rsetrepresentation(representation,type);

is used to define the real irreducible representations of the group. The variable
type is either realtype or complextype which indicates the type of the real irre-
ducible representation.

Example:

eins:=mat((1));
mineins:=mat((-1));
rep3:={K4,s1K4=eins,s2K4=mineins};
Rsetrepresentation(rep3,realtype);

Csetrepresentation(representation);
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This defines the complex irreducible representations.

setavailable(group);

terminates the installation of the group203. It checks some properties of the irre-
ducible representations and makes the group available for the operators in Sections
2 and 3.

storegroup(group,filename);

writes the information concerning the group to the file with name filename.

loadgroups(filename);

loads a user defined group from the file filename into the system.
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20.63 TRI: TeX REDUCE Interface

This package provides facilities written in REDUCE-Lisp for typesetting RE-
DUCE formulas using TEX. The TEX-REDUCE-Interface incorporates three levels
of TEXoutput: without line breaking, with line breaking, and with line breaking
plus indentation.

Author: Werner Antweiler

Further documentation is available at https://reduce-algebra.
sourceforge.io/extra-docs/tri.pdf.

https://reduce-algebra.sourceforge.io/extra-docs/tri.pdf
https://reduce-algebra.sourceforge.io/extra-docs/tri.pdf
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20.64 TRIGD: Trigonometrical Functions with Degree
Arguments

This module provides facilities for the numerical evaluation and algebraic simpli-
fication of expressions involving trigonometrical functions with arguments given
in degrees rather than in radians. The degree-valued inverse functions are also
provided.

Author: Alan Barnes

20.64.1 Introduction

This module provides facilities for the numerical evaluation and algebraic simpli-
fication of expressions involving trigonometrical functions with arguments given
in degrees rather than in radians. The degree-valued inverse functions are also
provided.

Any user at all familiar with the normal trig functions in REDUCE should have
no trouble in using the facilities of this module. The names of the degree-based
functions are those of the normal trig functions with the letter d appended, for
example sind, cosd and tand denote the sine, cosine and tangent repectively
and their corresponding inverse functions are asind, acosd and atand. The
secant, cosecant and cotangent functions and their inverses are also supported and,
indeed, are treated more as first class objects than their corresponding radian-based
functions which are often converted to expressions involving sine and cosine by
some of the standard REDUCE simplifications rules.

Below I give a brief description of the facilities available together with a few ex-
amples of their use. More examples and the output that they should produce may
be found in the test files trigd-num.tst and trigd-simp.tst and their
corresponding log files with extension .rlg which may be found in the directory
packages/misc of the REDUCE distribution along with the source code of the
module.

These degree-based functions are probably best regarded as functions defined for
real values only, but complex arguments are supported for completeness. The nu-
merical evaluation routines are fairly comprehensive for both real and complex
arguments. However, few simplifications occur for trigd functions with complex
arguments.

The range of the principal values returned by the inverse functions is consistent
with those of the corresponding radian-valued functions. More precisely, for
asind, atand and acscd the (closure of the) range is [−90, 90] whilst for
acosd, acotd and asecd the (closure of the) range is [0, 180]. In addition the
operator atan2d is the degree valued version of the two argument inverse tangent
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function which returns an angle in the half-open interval (−180, 180] in the correct
quadrant depending on the signs of its two arguments. For x > 0, atan2d(y,
x) returns the same numerical value as atand(y/x). If x = 0 then ±90 is
returned depending on the sign of y.

It might be thought that the facilities provided in this module could be easily pro-
vided by defining suitable rule lists to convert between the radian and degree-based
versions of the trig functions. For example:

1: operator sind, asind$
2: d2r_list := {sind(~x) =>

sin(x*pi/180), asind(~x) => 180*asin(x)/pi}$
3: r2d_list := {sin(~x) =>

sind(180x/pi), asin(~x) => pi*sind(x)/180}$
4: sind(x+360) where d2r_list$
5: ws where r2d_list;

sind(x)
6: sind(360) where d2r_list;

0

However, this approach seldom works — try it! The result produced by step 4
defeats the current rule51 used to simplify expressions of the form sin(x + 2π)
although it does manage step 6. The rule list approach is more reliable if differen-
tiation, integration or numerical evaluation of expressions involving sind etc. is
required. However it is not particularly convenient even if the rules and operator
declarations are stored in a file so that they may be loaded at will.

This module aims to overcome these deficiences by providing the degree-based trig
functions as first class objects of the system just like their radian-based cousins.
The aim is to provide facilities for numerical evaluation, symbolic simplification
and differentiation totally analgous to those for the the basic trig functions and their
inverses. It is hoped that the module will be of value to students and teachers at
secondary school level as well as being sufficiently powerful and flexible to be of
genuine utility in fields where angles measured in degrees (and arc minutes and
seconds) are in common usage. For more advanced situations (involving integra-
tion, complex arguments and values etc.), users are urged to use the standard trig
functions already provided by the system.

20.64.2 Simplification

As in other parts of REDUCE, basic simplification of expressions involving the
trigd functions takes place automatically (bracketted terms are multiplied out,
like terms are gathered together, zero terms removed from sums and so on). The

51These rules may be improved in the next version of REDUCE.
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system knows and automatically applies the basic properties of the functions to
simplify the input. For example sind(0) is replaced by 0 and sind(-X) by
sind(X). If the switch rounded is off all arithmetic is exact and transcenden-
tal functions such as sind are not evaluated numerically even if their arguments
are purely numerical.

The built-in simplification rules are totally analogous to those of the standard trig
functions namely:

• Replacement of a function application by its value if a simple analytical
value is known. For example cosd(60) => 1/2 and acscd(1) =>
90. Currently the only argument values where simplification takes place
correspond to angles that are integral multiples of 15◦.

• Use of the odd and even properties of the trig. functions so that for example
sind(-x) => -sind(x), cosd(-x) => cosd(x) and
acosd(-x) => 180 - acosd(x).

• Argument shifts by integral multiples of 180◦ so that any residual numerical
argument lies in the range −90◦ . . . 90◦. Thus

sind(x+540) => -sind(x),
cosd(x+350) => cosd(x-10).

• Removal of argument shifts of ±90◦ so that for example
sind(x-90) => -cosd(x) and cotd(x+90) => -tand(x).

• Replacement of tand(x) by sind(x)/cosd(x) and e.g., secd(x) by
1/cosd(x) and the like, but only when the final result is simpler than the
original.

• Basic properties relating a function and it inverse so that for example
sind(asind(x)) => x.

• A few basic rules for atan2d when the signs of its arguments can be deter-
mined. For example atan2d(y, 0) is replaced by ±90 depending on the
sign of y.

Extra rules can be added by the user for example addition formulae, double an-
gle rules and tangent half-angle formulae as and when required as described in
chapter 11.

Rules are provided for the symbolic differentiation of all the trig functions and
their inverses. These rules are sufficient fot the power series of the trig functions
and their inverses to be found using either the TPS or TAYLOR packages in the
standard way.
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20.64.3 Numerical Evaluation

When the switch rounded is on and the arguments of the operators evaluate
to numbers, then the floating point value of the expression is calculated to the
currently specified precision in the normal way. The bigfloat capabilities are
the same as for the standard trig functions.

If these functions are supplied with complex numerical arguments, numerical eval-
uation will NOT be performed when the switch rounded is on, but the switch
complex is off — the input expression will be returned basically unaltered.
Similarly inputs such as asind(2) or asecd(0.5) are not evaluated numeri-
cally. The values of these expressions are, of course, complex.

If the switch complex is also on , numerical evaluation is performed. For exam-
ple:

1: load_package trigd$

2: on rounded;

3: asecd(2);

60.0

4: asecd(0.5);

asecd(0.5)

5: on complex;

*** Domain mode rounded changed to complex-rounded

6: asecd(0.5);

75.4561292902*i

The function atan2d (like atan2) is only defined if BOTH its arguments are real.
If they are also numerical, it will be evaluated whenever rounded is on. Attempt-
ing to evaluate it with complex numerical arguments will cause either the unaltered
expression to be returned or an error to be raised when the switch complex is off
or on respectively.

Note the sine of an angle specified in degrees, minutes and seconds cannot be
calculated by calling sind directly with a dms list (i.e. as a list of length 3).
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Instead one must first convert the dms values to degrees using a call to dms2deg
and then call sind on the result. Applied directly to a list (of any length) any
trigd function wil be applied to each member of the list separately just like most
other REDUCE operators. Here is an example illustrating tese points:

1: load_package trigd$

2: on rounded;

3: sind dms2deg {60, 45, 30};

0.872567064923

4: sind {60,45, 30};

{0.866025403784,0.707106781187,0.5}

5: off rounded;

6: sind{60, 45, 30};

sqrt(3) sqrt(2) 1
{---------,---------,---}

2 2 2

Of course the results will be formatted much more attractively on a terminal sup-
porting nice graphics.

20.64.4 Bugs, Restrictions and Planned Extensions

The behaviour of the numerical evaluation routines for inverse trig functions with
complex arguments at branch points could be improved; these values are undefined
and attempting to evaluate such a function at one of its branch points ought to raise
an error, however sometimes the input expression will be returned unaltered. It is
hoped to improve this behaviour in due course.

Currently there are no facilities analogous to those provided in the module
TRIGSIMP for the standard trig. functions. There users have a wide range of
standard simplification formulae available for use and can control which are to
be used depending on the requirements of their particular application: whether to
eliminate sin in favour of cos or vice-versa or to get rid of both in favour of
tan of half-angles; or whether to use the trigonometrical addition formulae in or-
der to transform trig functions whose arguments are sums into a form where the
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arguments are single terms or whether to perform the inverse transformations. It is
hoped to make the TRIGSIMP faciliites available for use with the TRIGD funct-
ions in the near future.

Integration is not directly supported although the approach using rule-lists to con-
vert the TRIGD functions to standard trig ones should work well. Introducing
direct supp<ort for integration will not therefore be a priority.

For the standard sine function there is a rule for imaginary arguments namely:
sin(i*x) => i*sinh(x). The corresponding rule for the degree version
is sind(i*x) => i*sinh(x*pi/180). However, currently such rules are
NOT implemented by the system. They may be implemented in future, but it is not
a high priority as it is felt that the radian-based trig functions are best suited for
such symbolic calculations.

There are NO D versions of the hyperbolic functions — that would be a step too far!
And should the new functions be called sinhd and so on? Or perhaps sindh52

etc?

52One is perhaps reminded here of the (in)famous bilingual pun: peccavi attributed to Charles
James Napier — apparently no relation to his logarithmic namesake – see Wikipedia for details!
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20.65 TRIGINT: Weierstraß Substitution in REDUCE

Author: Neil Langmead

This package was written when the author was a placement student at ZIB Berlin.

20.65.1 Introduction

This package is an implementation of a new algorithm proposed by D. J. Jeffrey
and A. D. Rich [JR94] to remove "spurious" discontinuities from integrals. Their
paper focuses on the Weierstraß substitution, u = tan(x/2), currently used in
conjunction with the Risch algorithm in most computer algebra systems to eval-
uate trigonometric integrals. Expressions obtained using this substitution some-
times contain discontinuities, which limit the domain over which the expression is
correct. The algorithm presented finds a better expression, in the sense that it is
continous on wider intervals whilst still being an anti derivative of the integrand.

20.65.1.1 Example

Consider the following problem:∫
3

5− 4 cos(x)
dx

REDUCE computes an anti derivative to the given function using the Weierstraß
substitution u = tan(x2 ), and then the Risch algorithm is used, returning:

2 arctan(3 tan(x2 ))

3
,

which is discontinuous at all odd multiples of π. Yet our original function is con-
tinuous everywhere on the real line, and so by the Fundamental Theorem of Cal-
culus, any anti-derivative should also be everywhere continuous. The problem
arises from the substitution used to transform the given trigonometric function to
a rational function: often, the substituted function is discontinuous, and spurious
discontinuities are introduced as a result.

Jeffery and Richs’ algorithm returns the following to the given problem:∫
3

5− 4 cos(x)
dx = 2arctan

(
3 tan

(x
2

))
+ 2π

⌊
x− π
2π

⌋
which differs from (2) by the constant 2π, and this is the correct way of removing
the discontinuity.
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20.65.2 Statement of the Algorithm

We define a Weierstraß substitution to be one that uses a function u = Φ(x) ap-
pearing in the following table:

Choice Φ(x) sin(x) cos(x) dx b p

(a) tan(x/2) 2u
1+u2

1−u2

1+u2
2du
1+u2 π 2π

(b) tan(x2 + π
4 )

u2−1
u2+1

2u
u2+1

2du
1+u2

π
2 2π

(c) cot(x/2) 2u
1+u2

u2−1
1+u2

−2du
1+u2 0 2π

(d) tan(x) u√
1+u2

1√
1+u2

du
1+u2

π
2 π

Table 20.26: Functions u = Φ used in the Weierstraß Alg. and their corresponding
substitutions

There are of course, other trigonometric substitutions, used by REDUCE, such as
sin and cos, but since these are never singular, they cannot lead to problems with
discontinuities.

Given an integrable function f(sinx, cosx) whose indefinite integral is required,
select one of the substitutions listed in the table. The choice is based on the fol-
lowing heuristics: choice (a) is used for integrands not containing sinx, choice (b)
for integrands not containing cosx; (c) is useful in cases when (a) gives an integral
that cannot be evaluated by REDUCE, and (d) is good for conditions described in
Gradshteyn and Ryzhik (1979, sect 2.50). The integral is then transformed using
the entries in the table,; for example, with choice (c), we have:∫

f(sinx, cosx) dx =

∫
f

(
2u

1 + u2
,
u2 − 1

1 + u2

)
−2 du
1 + u2

.

The integral in u is now evaluated using the standard routines of the system, then
u is substituted for. Call the result ĝ(x). Next we calculate

K = lim
x→b−

ĝ(x)− lim
x→b+

ĝ(x),

where the point b is given in the table. the corrected integral is then

g(x) =

∫
f(sinx, cosx) dx = ĝ(x) +K

⌊
x− b
p

⌋
,

where the period p is taken from the table, and ⌊x⌋ is the floor function.
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20.65.3 REDUCE implementation

The name of the function used in REDUCE to implement these ideas is trigint,
which has the following syntax:

trigint(〈exp〉, 〈var〉)

where 〈exp〉 is the expression to be integrated, and 〈var〉 is the variable of integra-
tion.

If trigint is used to calculate the integrals of trigonometric functions for which no
substitution is necessary, then non standard results may occur. For example, if we
calculate trigint(cos(x), x), we obtain

2 tan x
2

tan2 x
2 + 1

which, by using simple trigonometric identities, simplifies to:

2 tan x
2

tan2 x
2 + 1

→
2 tan x

2

sec2 x
2

→ 2 sin
x

2
cos

x

2
→ sin

(
2
x

2

)
→ sinx,

which is the answer we would normally expect. In the absence of a normal form
for trigonometric functions though, both answers are equally valid, although most
would prefer the simpler answer sinx. Thus, some interesting trigonometric iden-
tities could be derived from the program if one so wished.

20.65.3.1 Examples

Using our example in (1), we compute the corrected result, and show a few other
examples as well:

REDUCE Development Version, 4-Nov-96 ...

1: trigint(3/(5-4*cos(x)),x);

x - pi + x
2*(atan(3*tan(---)) + floor(-----------)*pi)

2 2*pi

2: trigint(3/(5+4*sin(x)),x);

pi + 2*x
2*(atan(3*tan(----------))

4
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- pi + 2*x
+ floor(-------------)*pi)

4*pi

3: trigint(15/(cos(x)*(5-4*cos(x))),x);

x - pi + x
8*atan(3*tan(---)) + 8*floor(-----------)*pi

2 2*pi

x x
- 3*log(tan(---) - 1) + 3*log(tan(---) + 1)

2 2

20.65.4 Definite Integration

The corrected expressions can now be used to calculate some definite integrals,
provided the region of integration lies between adjacent singularities. For example,
using our earlier function, we can use the corrected primitive to calculate∫ 4π

0

1

2 + cosx
dx (20.100)

trigint returns the answer below to give an indefinite integral, F (x):

x
tan(---)

2 - pi + x
2*sqrt(3)*(atan(----------) + floor(-----------)*pi)

sqrt(3) 2*pi
------------------------------------------------------

3

And now, we can apply the Fundamental Theorem of Calculus to give∫ 4π

0

1

2 + cosx
dx = F (4π)− F (0) (20.101)

sub(x=4*pi,F)-sub(x=0,F);

4*sqrt(3)*pi
-----------------

3
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and this is the correct value of the definite integral. Note that although the expres-
sion in (*) is continuous, the functions value at the points x = π, 3π etc. must be
intepreted as a limit, and these values cannot substituted directly into the formula
given in (*). Hence care should be taken to ensure that the definite integral is well
defined, and that singularities are dealt with appropriately. For more details of this
in REDUCE, please see the documentation for the cwi addition to the DEFINT
package.

20.65.5 Tracing the trigint function

The package includes a facility to trace in some detail the inner workings of
the trigint program. Messages are given at key points of the algorithm, to-
gether with the results obtained. These messages are displayed whenever the
switch tracetrig is on, which is done in REDUCE with the command on
tracetrig; This switch is off by default. In particular, the messages inform
the user which substitution is being tried, and the result of that substitution. The
error message

***** system cannot integrate after subs

means that REDUCE has tried all four of the Weierstraß substitutions, and the
system’s standard integrator is unable to integrate after the substitution has been
completed.

20.65.6 Bugs, comments, suggestions

This program was written whilst the author was a placement student at ZIB Berlin.
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20.66 V3TOOLS: Computations with Polynomials of
Scalar Vector Products

A scalar vector product of 3-component vectors is a generalization of the scalar
triple product in which the vector product becomes a repeated vector product of an
arbitrary number of vectors.

Author: Thomas Wolf

20.66.1 Purpose

Procedures in this package perform computationally expensive and non-trivial
computations with polynomials of scalar vector products of 3-component vectors.
The individual procedures can be grouped into the following categories:

• initialization of the package,

• generation of scalar vector expressions according to a multiple weighting
scheme where each vector has multiple weights,

• conversions of scalar vector expressions between different representations,

• the computation of Poisson brackets between vector expressions,

• a computation determining whether a given scalar vector expression is func-
tionally dependent on a list of other scalar vector expressions.

A possible application of these procedures is the classification of integrable ‘vec-
torial’ Hamiltonians, the study whether obtained expressions are functionally inde-
pendent of known expressions and the compactification of results for publication.

These routines were designed and implemented to support the classification of in-
tegrable Hamiltonians. Examples are chosen from this application. More details
are given in [SW06].

20.66.2 Notation

The chosen conventions aim to display large scalar vector expressions as compactly
as possible. All vectors have 3 components and are represented by a single letter,
like A or B. In this manual we use capital letters in mathematical formulas and
lower case letters for REDUCE input and output. REDUCE is not case sensitive
but output (normally) displays lower case letters. Vector components have an extra
digit 1, 2 or 3, likeA2, B3. Products of vectors are represented by a single identifier
where the following convention is used: ABCD . . . stands for (A , B×(C×(D×
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. . .))) where ( , ) denotes the symmetric scalar product and× the skew-symmetric
vector product. For example, we have AB = (A,B), which is the normal scalar
product A ·B, and ABC = (A,B × C), which is the normal scalar triple product
A · B × C. In the following we distinguish between three forms of scalar vector
expressions:

• the component form involving only the components A1, A2, A3, B1, . . .,

• the standard vector form involving only scalar products AB (= (A,B))
and triple products ABC (= (A,B × C)),

• the extended vector form involving any product ABCD . . ..

Because of the commutativity of the scalar product (A,B) = (B,A) there seem
to be two identifiers AB and BA suited to represent the same product. Sim-
ilarly for triple products we have the relation ABC = BCA = CAB =
−ACB = −CBA = −BAC . In order to have an unambiguous notation such
that vanishing rational expressions simplify to zero we adopt the convention that
for scalar products and triple products only identifiers are used in which letters
are sorted alphabetically. For example, the program uses AB ,AV ,ABV ,BUV
but not BA,VA,BVA,VBU . In order to simplify manual input one can assign
expressions using identifiers, like BA,BUA, and afterwards convert them into
proper notation using the procedure e2s (see below or the beginning of the file
packages/crack/v3tools.tst).

In order to use non-vectorial parameters, like ALPHA or BETA2 every non-
vectorial parameter is preceded by !&, e.g. one would input !&alpha or
!&beta2.

20.66.3 Initialization

Scalar products and scalar triple products of 3-component vectors satisfy identities,
for example, the four vectors A,B,U, V satisfy

0 = AB BUV −ABU BV +ABV BU −AUV BB.

Therefore, scalar vector expressions, i.e. polynomials of scalar vector products,
usually do not have a unique form. They can be re-written using these identities,
for example, in order to minimize the number of terms in the polynomial or to
bring the expression into a canonical form. Sometimes computations have to be
done modulo these identities, more precisely, modulo a Gröbner basis of these
identities. The computation of the identities and their Gröbner basis has to be done
only once with the procedure vinit which initializes the global variables v_,
gbase_, heads_. The procedure vinit takes as argument a list of all vectors
that occur in the computation, for example, vinit({u,v,w,z}). In the default
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case of vectors a, b, u, v the global variables v_, gbase_, heads_ are already
assigned and vinit does not have to be called initially. But if some of the vectors
satisfy a special relation, like AB = 0, then this relation should be assigned (like
ab:=0;) and vinit should be run afterwards. Here is an overview of the three
global variables:

v_ : a list of vectors involved in all the computations. The global vari-
able v_ is needed in the procedure poisson_v. The default value is
v_={a,b,u,v}.

gbase_ : a list of polynomials which are a Gröbner basis for all identities be-
tween scalar products AB and triple products ABC of any vectors in the list
v_.

heads_ : a list of leading terms of the polynomials in gbase_.

20.66.4 Main Routines

Which routines work only for homogeneous vectorial expressions and which for
any vectorial expressions?

vinit : initializes all three global variables vl_, gbase_, heads_ for a given
list of vectors. This procedure is not necessary if the list of vectors is
A,B,U, V . The procedure is necessary if some of the vectors satisfy ex-
tra conditions, like AB = 0. Example:

vinit({a,b,c,d});

e2s : converts a vectorial polynomial from extended vector form into standard
vector form by replacing products ABCD . . . through scalar and triple prod-
ucts. Example:

e2s(buuav); −→ abv*uu - auv*bu

It is also useful to convert from standard vector form into standard vector
form if one wants to sort factors in scalar and triple products lexicographi-
cally. This is useful for working with this package on expressions that have
been generated outside this package and that do not obey the lexicographical
ordering of factors. Example:

e2s(avb*uu + uva*bu); −→ - abv*uu + auv*bu

v2c : converts an expression from any vector form (extended or standard) into
component form. Example:

v2c(abu); −→

a1*b2*u3 - a1*b3*u2 - a2*b1*u3 + a2*b3*u1 +
a3*b1*u2 - a3*b2*u1
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c2sl : converts an expression from component form into standard vector form.
The resulting vector expression is returned partitioned as a list of sublists.
Each sublist contains expressions with the same multiplicity of each vector
(the same homogeneity). The first expression of each list is the vector equiv-
alent of the corresponding input terms in component form. All other expres-
sions in each sublist are identically vanishing vector expressions, i.e. vector
identities with the same multiplicity as the first expression in each sublist.
That means that the second, third, . . . expression in each sublist multiplied
with a constant could be added to the first expression of each sublist in order
to change its form but not its value. Example:

c2sl(a1*b2*u3 - a1*b3*u2 - a2*b1*u3 +
a2*b3*u1 + a3*b1*u2 - a3*b2*u1 +
a1*b1*b2*u3*v1 - a1*b1*b2*u1*v3 + a1*b1*b3*u1*v2 -
a1*b1*b3*u2*v1 - a1*b2**2*u2*v3 + a1*b2**2*u3*v2 -
a1*b3**2*u2*v3 + a1*b3**2*u3*v2 + a2*b1**2*u1*v3 -
a2*b1**2*u3*v1 + a2*b1*b2*u2*v3 - a2*b1*b2*u3*v2 +
a2*b2*b3*u1*v2 - a2*b2*b3*u2*v1 + a2*b3**2*u1*v3 -
a2*b3**2*u3*v1 - a3*b1**2*u1*v2 + a3*b1**2*u2*v1 +
a3*b1*b3*u2*v3 - a3*b1*b3*u3*v2 - a3*b2**2*u1*v2 +
a3*b2**2*u2*v1 - a3*b2*b3*u1*v3 + a3*b2*b3*u3*v1);

−→

{{abu},{abu*bv - abv*bu,
ab*buv - abu*bv + abv*bu - auv*bb}}

The input expression is equal to the sum of the first expressions of all sub-
lists, i.e. equal to ABU +ABUBV −ABVBU . The second expression of
the second sublist is an identity, i.e. 0 = ABBUV−ABUBV+ABVBU−
AUVBB , where each vector occurs in each term equally often as in each
term of the first expression in the second sublist.

c2s : is equivalent to c2sl with the difference that all expressions of all sub-
lists are added up with all identity expressions obtaining coefficients !&c1,
!&c2,. . . . Example:

c2s( same input as for c2sl above ); −→

abu + abu*bv - abv*bu +
!&c1*(ab*buv - abu*bv + abv*bu - auv*bb)

s2s : generates and uses vector identities to reduce the length of an expression in
standard vector form. Example:

s2s( - abu*vv + abv*uv + av*buv); −→ auv*bv
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s2e : like s2s but also uses identities involving products ABCD . . . and thus
transforms standard vector form into extended vector form. Example:

s2e(abv*uu - auv*bu); −→ buuav

In its current form it only uses products that involve all the vectors involved
in each term of the standard vector form. In the above example it would not
try to use products with 4 factors but only with 5 factors, like buuav.

genpro : generation of all scalar and triple products for a given vector list. Ex-
ample:

genpro({a,b,u,v}); −→
{aa,ab,au,av,bb,bu,bv,uu,uv,vv,abu,abv,auv,buv}

genpro_wg : similar to genpro with the difference that each vector is accom-
panied by a list of weights and the resulting scalar and triple products also
come with a list of weights. Example:

genpro_wg({{a,1,0,0},{b,0,1,0},{u,0,0,1},
{v,1,0,1}});

−→

{{aa,2,0,0},{ab,1,1,0},{au,1,0,1},{av,2,0,1},
{bb,0,2,0},{bu,0,1,1},{bv,1,1,1},{uu,0,0,2},
{uv,1,0,2},{vv,2,0,2},{abu,1,1,1},{abv,2,1,1},
{auv,2,0,2},{buv,1,1,2}}

poisson_c : computes the poisson bracket of two arbitrary expressions. This
procedure needs as input the Poisson structure matrix which we call
struc_cons below. This is encoded as a list of lists, specifying all
non-vanishing Poisson brackets between any two dynamical variables, here
u1,u2,u3,v1,v2,v3. For example, the first sublist {u1,u2,u3} of
struc_cons below, encodes the Poisson bracket relation {U1, U2} =
−{U2, U1} = U3. Poisson brackets associated to other Lie-algebras are
appended to the file packages/crack/v3tools.red. The structure
matrix below encodes the Lie-Poisson bracket e(3) for !&kap=0, so(4) for
!&kap=1 and so(3, 1) for !&kap=-1. poisson_c needs all of its argu-
ments in component form. Example:

ham:=v2c(ab*uu-2*au*bu+buv)$
fi :=v2c(bu*(2*auv-!&kap*uu+vv))$
!&kap:=-a1**2-a2**2-a3**2$
struc_cons:={{u1,u2, u3}, {u2,u3, u1}, {u3,u1, u2},

{u1,v2, v3}, {u2,v3, v1}, {u3,v1, v2},
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{u1,v3,-v2}, {u2,v1,-v3}, {u3,v2,-v1},
{v1,v2, !&kap*u3}, {v2,v3, !&kap*u1},
{v3,v1, !&kap*u2}}$

poisson_c(ham,fi,struc_cons); −→ 0

The example shows that fi is a first integral of ham under the assumption
!&kap = - aa. Note that !&kap could not have been expressed in terms
of components of vectors before assigning fi as then the argument to v2c
would not be a purely vectorial expression.

poisson_v : computes the Poisson bracket for two vector expressions. It uses the
global variable gbase_. When poisson_v is called the first time it com-
putes the Poisson bracket between any scalar and triple product once using
the procedure poisson_c and stores these elementary Poisson brackets un-
der the global operator poi_. Therefore, the third argument to poisson_v
(the Poisson structure matrix) has to be given in component form. Example:
Compare the following with the example for the call of poisson_c.

ham:=ab*uu-2*au*bu+buv$
fi :=bu*(2*auv-!&kap*uu+vv)$
!&kap:=-a1**2-a2**2-a3**2$
struc_cons:={{u1,u2, u3}, {u2,u3, u1}, {u3,u1, u2},

{u1,v2, v3}, {u2,v3, v1}, {u3,v1, v2},
{u1,v3,-v2}, {u2,v1,-v3}, {u3,v2,-v1},
{v1,v2, !&kap*u3}, {v2,v3, !&kap*u1},
{v3,v1, !&kap*u2}}$

!&kap:=-aa$

poisson_v(ham,fi,struc_cons); −→ 0

When calling poisson_v a second time the computation proceeds much
faster as the Poisson brackets between scalar and triple products had been
stored with the operator poi_. Note that at first !&kap is expressed in
component form to have struc_cons in component form but afterwards
!&kap is expressed in vector form to have ham,fi in vector form at the
time of calling poisson_v.

gfi : generates a vector expression with unknown coefficients according to a spe-
cific list of weights {w1, w2, . . .}. The number of weights is arbitrary but
fixed. For example, the vector V could be given weights {w1, w2, w3} =
{1, 0, 1} which will be input as {v,1,0,1} in the second argument to
gfi. In the following example vectors A,B,U, V are each given 3 weights
{w1, w2, w3} and the most general polynomial is generated where the sums
of all {w1, w2, w3} values of all vectors in each term are equal to {2, 1, 3}.
Example:



1152 CHAPTER 20. USER CONTRIBUTED PACKAGES

gfi({2,1,3},
{{a,1,0,0},{b,0,1,0},{u,0,0,1},{v,1,0,1}},
{aa, ab, bb, bu, uv, -aa*uu + vv,
ab*uu - 2*au*bu + buv},
heads_);

−→

{&r1*abu*uv + &r2*abv*uu + &r3*bv*uv +
&r4*auv*bu + &r5*bu*vv +

2
&r6*au *bu + &r7*ab*au*uu,
&r7,&r6,&r5,&r4,&r3,&r2,&r1}

The meaning of the parameters:

1. The first parameter of gfi is a list of the total weights of each term in
the generated polynomial.

2. The second parameter is the list of vectors to be used for generat-
ing the expression, each followed by its list of weight values, like
{a,1,0,0}.

3. The third parameter is a list of homogeneous vector expressions. The
polynomial returned by gfi must not include any expression that is
functionally dependent on the expressions in this list. In other words,
from the most general polynomial with proper homogeneity that is gen-
erated at first within gfi terms are dropped so that it is not possible
to choose in the remaining polynomial the undetermined coefficients
!&r1, !&r2, . . . such that an expression results which is functionally
dependent only on the expressions of the third parameter list. In this ex-
ample we want to formulate an ansatz for a first integral that is function-
ally independent of the expressions aa, ab, bb (because A,B are as-
sumed to be constant vectors and U, V to be dynamical vectors), bu (a
known first integral), uv, -aa*uu + vv (two Casimirs, i.e. first inte-
grals) and ab*uu - 2*au*bu + buv which is the Hamiltonian.
The third parameter prevents the generation of the term bu*aa*uu
which also has weights {2, 1, 3} (as b has weights {0, 1, 0}, u has
weights {0, 0, 1} and a has weights {1, 0, 0}). The term bu*aa*uu is
dropped because the resulting polynomial would otherwise contain the
functionally dependent expression bu*(-aa*uu+vv).

4. The fourth parameter is the list of leading terms of the Gröbner basis of
identities between the vectors. The resulting polynomial contains only
terms which are not a multiple of any one of the terms in this list. By
excluding terms which are not multiples of leading terms of identities
in the Gröbner basis one defines a canonical form which vanishes only
if all terms vanish.
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The result of gfi is a list. Its first element is the most general polynomial
that has the required properties. The list of undetermined coefficients !&r. . .
is appended.

fnc_dep : investigates whether a given vectorial expression (the first parameter)
is functionally dependent on the elements of a list (the second parameter).
The third parameter is the list of occurring vectors with their weights. In the
following example it is to be checked whether the first integral finew is
new or merely the known one fiold in disguised form. Example:

ham:=ab*uu - 1/2*au*bu + buv$
fiold:=bu**2*((bu*aa-ab*au)**2*uu +

2*(bu*aa-ab*au)*(bu*auv-buv*au) -
vv*abu**2 - (bu*av-bv*au)**2 -
uu*vv*ab**2+aa*uu*vv*bb)$

finew:=( - 16*aa**2*bu**4*uu + 96*aa*ab**2*bb*uu**3 -
96*aa*ab*au*bb*bu*uu**2 + 32*aa*ab*au*bu**3*uu +
32*aa*abu*bu**3*uv - 32*aa*abv*bu**3*uu +
24*aa*au**2*bb*bu **2*uu - 16*aa*bu**4*vv +
56*ab**4*uu**3 - 84*ab**3*au*bu*uu**2 +
168*ab**2*abu*bv*uu**2 - 168*ab**2*abv*bu*uu**2 +
26*ab**2*au**2*bu**2*uu + 360*ab**2*auv*bb*uu**2 +
168*ab**2*bb*uu**2*vv - 184*ab**2*bb*uu*uv**2 -
168*ab**2*bu**2*uu*vv + 336*ab**2*bu*bv*uu*uv -
168*ab**2*bv**2*uu**2 + 264*ab*abu*au*bb*uu*uv -
32*ab* abu*au*bu**2*uv - 168*ab*abu*au*bu*bv*uu +
192*ab*abu*av*bb*uu**2 - 456*ab*abv*au*bb*uu**2 +
200*ab*abv*au*bu**2*uu - 7*ab*au**3*bu**3 -
180*ab*au*bb*bu*uu*vv + 44*ab*au*bb*bu*uv**2 +
192*ab*au*bb*bv*uu*uv + 116*ab*au*bu**3*vv -
168*ab*au* bu**2*bv*uv + 84*ab*au*bu*bv**2*uu +
192*ab*av*bb*bu*uu*uv - 192*ab*av*bb*bv*uu **2 -
264*abu*au**2*bb*bv*uu + 42*abu*au**2*bu**2*bv -
96*abu*au*av*bb*bu*uu + 96*abu*bb*bu*uv*vv -
136*abu*bb*bv*uu*vv + 24*abu*bb*bv*uv**2 -
56*abu*bu**2*bv* vv + 112*abu*bu*bv**2*uv -
56*abu*bv**3*uu + 360*abv*au**2*bb*bu*uu -
42*abv*au **2*bu**3 + 40*abv*bb*bu*uu*vv -
24*abv*bb*bu*uv**2 + 56*abv*bu**3*vv -
112*abv* bu**2*bv*uv + 56*abv*bu*bv**2*uu -
264*au**2*auv*bb**2*uu + 42*au**2*auv*bb*bu** 2 +
96*au**2*bb**2*uu*vv - 40*au**2*bb*bu**2*vv -
96*au**2*bb*bv**2*uu + 16*au** 2*bu**2*bv**2 -
192*au*av*bb**2*uu*uv + 192*au*av*bb*bu*bv*uu -
32*au*av*bu**3* bv - 136*auv*bb**2*uu*vv +
24*auv*bb**2*uv**2 + 40*auv*bb*bu**2*vv +
112*auv*bb* bu*bv*uv - 56*auv*bb*bv**2*uu +
96*av**2*bb**2*uu**2 - 96*av**2*bb*bu**2*uu +
16*av**2*bu**4 - 96*bb**2*uu*vv**2 +
96*bb**2*uv**2*vv + 96*bb*bu**2*vv**2 -



1154 CHAPTER 20. USER CONTRIBUTED PACKAGES

192*bb*bu*bv*uv*vv + 96*bb*bv**2*uu*vv)/8$

if fnc_dep(finew,{aa,ab,bb,bu,uv,uu*aa-vv,ham,fiold},
{{A,1,0,0},{B,0,1,0},{U,0,0,1},{V,1,0,1}})

then write "This is a known first integral."
else write "This is a new first integral!"$

−→

The expression in question is functionally dependent
on the list of expressions {p_1,p_2,...} in the
following way:

2 3 2
10*p_2*p_3*p_5 *p_7+7*p_2*p_7 +12*p_3*p_6*p_7 -2*p_8

This is a known first integral.

20.66.5 Complete list of global variables

Type Name Purpose
algebraic v_, gbase_, needed for poisson_v(), gfi(),

heads_ fnc_dep()
!&c1, !&c2, . . . constant coefficients introduced by c2s()

symbolic fino_, wgths_ used internally in gen()
!&r1, !&r2, . . . constant coefficients introduced by gfi()
tr_vec global tracing flag

operator poi_ stores Poisson brackets between
scalar and triple products

20.66.6 Requirements

load_package v3tools;
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20.67 WITH: Local Switch Settings

Author: Francis Wright

The operator with allows an expression to be evaluated and its value displayed
subject to switch settings that apply only locally during the evaluation and display
of this expression. Its syntax is

expression with on/off switches, on/off switches, ...

where on/off is either on or off, and switches is a single switch name or a comma-
separated sequence of switch names (as for the on and off commands). It is
intended primarily for interactive use and provides a convenient way to experiment
with the effects of different switches. Messages about changes of domain mode are
suppressed.

Here are some examples, assuming default switch settings:

(a+b)^2/2 with off exp, on div;

1 2
---*(a + b)
2

pi with on rounded;

3.14159265359

fix(sqrt 10) with on rounded;

3

The with operator has precedence immediately above :=, so with binds tighter
than := but looser than almost every other infix operator. Therefore,

x := pi + e with on rounded;

parses as

x := ((pi + e) with on rounded);

Hence,

x := pi + e with on rounded;
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5.85987448205

x;

103088002085129
-----------------
17592186044416

x with on rounded;

5.85987448205

In the above example, x is assigned a floating-point number, but it is displayed as
a rational number when the default switch settings are in effect.

The keywords on and off can appear as many times as desired in the right operand
of with. If a switch already has the setting specified in the right operand then it
is not changed, but if it has the opposite setting then it is changed before the left
operand is evaluated, and displayed if required, and changed back afterwards. Re-
peated identical switch settings are ignored but conflicting settings cause an error.
The order of switch settings is preserved.

Not all switches work sensibly locally, but for example

int(sin x, x) with on trint;

turns on integration tracing temporarily.
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20.68 WU: Wu Algorithm for Polynomial Systems

This is a simple implementation of the Wu algorithm implemented in REDUCE
working directly from [Wt87].

Author: Russell Bradford

Its purpose was to aid my understanding of the algorithm, so the code is simple,
and has a lot of tracing included. This is a working implementation, but there is
magnificent scope for improvement and optimisation. Things like using intelligent
sorts on polynomial lists, and avoiding the re-computation of various data spring
easily to mind. Also, an attempt at factorization of the input polynomials at each
pass might have beneficial results. Of course, exploitation of the natural parallel
structure is a must!

All bug fixes and improvements are welcomed.

The interface:

wu({x^2+y^2+z^2-r^2, x*y+z^2-1, x*y*z-x^2-y^2-z+1},
{x,y,z});

calls wu with the named polynomials, and with the variable ordering x > y > z.
In this example, r is a parameter.

The result is

2 3 2
{{{r + z - z - 1,

2 2 2 2 4 2 2 2
r *y + r *z + r - y - y *z + z - z - 2,

2
x*y + z - 1},

y},

2 4 2 2 2 7 6 5 4 3
{{r *z - 2*r *z + r + z - z - 2*z + z + z

2
+ z - 1,

2 2 3 2
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y *(r + z - z - 1),

2
x*y + z - 1},

2 3 2
y*(r + z - z - 1)}}

namely, a list of pairs of characteristic sets and initials for the characteristic sets.

Thus, the first pair above has the characteristic set

r2 + z3 − z2 − 1, r2y2 + r2z + r2 − y4 − y2z2 + z2 − z − 2, xy + z2 − 1

and initial y.

According to Wu’s theorem, the set of roots of the original polynomials is the
union of the sets of roots of the characteristic sets, with the additional constraints
that the corresponding initial is non-zero. Thus, for the first pair above, we find
the roots of {r2 + z3 − z2 − 1, . . . } under the constraint that y ̸= 0. These
roots, together with the roots of the other characteristic set (under the constraint of
y(r2 + z3 − z2 − 1) ̸= 0), comprise all the roots of the original set.

Additional information about the working of the algorithm can be gained by

on trwu;

This prints out details of the choice of basic sets, and the computation of charac-
teristic sets.

The second argument (the list of variables) may be omitted, when all the variables
in the input polynomials are implied with some random ordering.
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20.69 XCOLOR: Color Factor in some Field Theories

This package calculates the color factor in non-abelian gauge field theories using
an algorithm due to Cvitanovich.

Documentation for this package is in plain text.

Author: A. Kryukov

Program "xCOLOR" is intended for calculation the colour factor in non-abelian
gauge field theories. It is realized Cvitanovich algorithm [Cvi76]. In comparison
to the program "COLOR" [KR88] many improvements were made. The package
was written in symbolic mode. This version is more than 10 times faster than the
one in [KR88].

After load the program by the following command load xcolor;
user can be able to use the next additional commands and operators.

Command SUdim.

Format: SUdim <any expression>;
Set the order of SU group.
The default value is 3, i.e. SU(3).

Command SpTT.

Format: SpTT <any expression>;
Set the normalization coefficient A: Sp(TiTj) = A*Delta(i,j). Default value is 1/2.

Operator QG.

Format: QG(inQuark,outQuark,Gluon)
Describe the quark-gluon vertex. Parameters may be any identifiers. First and
second of then must be in- and out- quarks correspondently. Third one is a gluon.

Operator G3.

Format: G3(Gluon1,Gluon2,Gluon3)
Describe the three-gluon vertex. Parameters may be any identifiers. The order of
gluons must be clock.
In terms of QG and G3 operators you input diagram in "color" space as a product
of these operators. For example.
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Diagram: REDUCE expression:

e1

---->---
/ \
| e2 |

v1*..........*v2 <===> QG(e3,e1,e2)*QG(e1,e3,e2)
| |
\ e3 /
----<---

Here: --->--- quark

....... gluon

For more detail see [KR88].
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20.70 XIDEAL: Gröbner Bases for Exterior Algebra

XIDEAL constructs Gröbner bases for solving the left ideal membership problem:
Gröbner left ideal bases or GLIBs. For graded ideals, where each form is homo-
geneous in degree, the distinction between left and right ideals vanishes. Further-
more, if the generating forms are all homogeneous, then the Gröbner bases for the
non-graded and graded ideals are identical. In this case, XIDEAL is able to save
time by truncating the Gröbner basis at some maximum degree if desired.

Author: David Hartley

20.70.1 Description

The method of Gröbner bases in commutative polynomial rings introduced by
Buchberger (e.g. [Buc85]) is a well-known and very important tool in polynomial
ideal theory, for example in solving the ideal membership problem. XIDEAL ex-
tends the method to exterior algebras using algorithms from [HT93] and [Ape92].

There are two main departures from the commutative polynomial case. First, ow-
ing to the non-commutative product in exterior algebras, ideals are no longer auto-
matically two-sided, and it is necessary to distinguish between left and right ide-
als. Secondly, because there are zero divisors, confluent reduction relations are no
longer sufficient to solve the ideal membership problem: a unique normal form for
every polynomial does not guarantee that all elements in the ideal reduce to zero.
This leads to two possible definitions of Gröbner bases as pointed out by Stokes
[Sto90].

XIDEAL constructs Gröbner bases for solving the left ideal membership problem:
Gröbner left ideal bases or GLIBs. For graded ideals, where each form is homo-
geneous in degree, the distinction between left and right ideals vanishes. Further-
more, if the generating forms are all homogeneous, then the Gröbner bases for the
non-graded and graded ideals are identical. In this case, XIDEAL is able to save
time by truncating the Gröbner basis at some maximum degree if desired.

XIDEAL uses the exterior calculus package EXCALC of E. Schrüfer [Sch85a] to
provide the exterior algebra definitions. EXCALC is loaded automatically with
XIDEAL. The exterior variables may be specified explicitly, or extracted automat-
ically from the input polynomials. All distinct exterior variables in the input are
assumed to be linearly independent – if a dimension has been fixed (using the EX-
CALC spacedim or coframe statements), then input containing distinct exterior
variables with degrees totaling more than this number will generate an error.
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20.70.2 Declarations

xorder

xorder sets the term ordering for all other calculations. The syntax is

xorder k

where k is one of lex, gradlex or deglex. The lexicographical ordering lex
is based on the prevailing EXCALC kernel ordering for the exterior variables. The
EXCALC kernel ordering can be changed with the REDUCE korder or EXCALC

forder declarations. The graded lexicographical ordering gradlex puts terms
with more factors first (irrespective of their exterior degrees) and sorts terms of
the same grading lexicographically. The degree lexicographical ordering deglex
takes account of the exterior degree of the variables, putting highest degree first
and then sorting terms of the same degree lexicographically. The default ordering
is deglex.

xvars

It is possible to consider scalar and 0-form variables in exterior polynomials in two
ways: as variables or as coefficient parameters. This difference is crucial for Gröb-
ner basis calculations. By default, all scalar variables which have been declared as
0-forms are treated as exterior variables, along with any EXCALC kernels of degree
0. This division can be changed with the xvars declaration. The syntax is

xvars U,V,W,...

where the arguments are either kernels or lists of kernels. All variables specified
in the xvars declaration are treated as exterior variables in subsequent XIDEAL

calculations with exterior polynomials, and any other scalars are treated as param-
eters. This is true whether or not the variables have been declared as 0-forms. The
declaration

xvars {}

causes all degree 0 variables to be treated as parameters, and

xvars nil

restores the default. Of course, p-form kernels with p ̸= 0 are always considered
as exterior variables. The order of the variables in an xvars declaration has no
effect on the REDUCE kernel ordering or XIDEAL term ordering.
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20.70.3 Operators

xideal

xideal calculates a Gröbner left ideal basis in an exterior algebra. The syntax is

xideal(〈S:list of forms〉[,〈V:list of kernels〉][,〈R:integer〉]) :list of forms.

xideal calculates a Gröbner basis for the left ideal generated by 〈S〉 using the
current term ordering. The resulting list can be used for subsequent reductions
with xmod as long as the term ordering is not changed. Which 0-form variables
are to be regarded as exterior variables can be specified in an optional argument
〈V〉 (just like an xvars declaration). The order of variables in 〈V〉 has no effect
on the term ordering. If the set of generators 〈S〉 is graded, an optional parameter
〈R〉 can be given, and xideal produces a truncated basis suitable for reducing
exterior forms of degree less than or equal to 〈R〉 in the left ideal. This can save
time and space with large problems, but the result cannot be used for exterior forms
of degree greater than 〈R〉. The forms returned by xideal are sorted in increasing
order. See also the switches trxideal and xfullreduction.

xmodideal

xmodideal reduces exterior forms to their (unique) normal forms modulo a left
ideal. The syntax is

xmodideal(〈F:form〉, 〈S:list of forms〉):form
or
xmodideal(〈F:list of forms〉, 〈S:list of forms〉) :list of forms.

An alternative infix syntax is also available:

〈F〉 xmodideal 〈S〉 .

xmodideal(〈F〉,〈S〉) first calculates a Gröbner basis for the left ideal generated
by 〈S〉, and then reduces 〈F〉. 〈F〉 may be either a single exterior form, or a list of
forms, and 〈S〉 is a list of forms. If 〈F〉 is a list of forms, each element is reduced,
and any which vanish are deleted from the result. If the set of generators 〈S〉 is
graded, then a truncated Gröbner basis is calculated using the degree of 〈F〉 (or the
maximal degree in 〈F〉). See also trxmod.
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xmod

xmod reduces exterior forms to their (not necessarily unique) normal forms mod-
ulo a set of exterior polynomials. The syntax is

xmod(〈F:form〉, 〈S:list of forms〉):form
or
xmod(〈F:list of forms〉, 〈S:list of forms〉):list of forms.

An alternative infix syntax is also available:

〈F〉 xmod 〈S〉 .

xmod(〈F〉,〈S〉) reduces 〈F〉 with respect to the set of exterior polynomials 〈S〉,
which is not necessarily a Gröbner basis. 〈F〉 may be either a single exterior form,
or a list of forms, and 〈S〉 is a list of forms. This operator can be used in con-
junction with xideal to produce the same effect as xmodideal: for a single
homogeneous form 〈F〉 and a set of exterior forms 〈S〉, 〈F〉 xmodideal 〈S〉 is
equivalent to 〈F〉 xmod xideal(〈S〉,exdegree 〈F〉). See also trxmod.

xauto

xauto autoreduces a set of exterior forms. The syntax is

xauto(〈S:list of forms〉):list of forms.

xauto 〈S〉 returns a set of exterior polynomials which generate the same left ideal,
but which are in normal form with respect to each other. For linear expressions,
this is equivalent to finding the reduced row echelon form of the coefficient matrix.

excoeffs

The operator excoeffs, with syntax

excoeffs(〈F:form〉):list of expressions

returns the coefficients from an exterior form as a list. The coefficients are always
scalars, but which degree 0 variables count as coefficient parameters is controlled
by the command xvars.
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exvars

The operator exvars, with syntax

exvars(〈F:form〉):list of kernels

returns the exterior powers from an exterior form as a list. All non-scalar vari-
ables are returned, but which degree 0 variables count as coefficient parameters is
controlled by the command xvars.

20.70.4 Switches

xfullreduce

on xfullreduce allows xideal and xmodideal to calculate reduced, monic
Gröbner bases, which speeds up subsequent reductions, and guarantees a unique
form for the Gröbner basis. off xfullreduce turns of this feature, which may
speed up calculation of some Gröbner basis. xfullreduce is on by default.

trxideal

on trxideal produces a trace of the calculations done by xideal and
xmodideal, showing the basis polynomials and the results of the critical ele-
ment calculations. This can generate profuse amounts of output. trxideal is
off by default.

trxmod

on trxmod produces a trace of reductions to normal form during calculations by
XIDEAL operators. trxmod is off by default.

20.70.5 Examples

Suppose XIDEAL has been loaded, the switches are at their default settings, and
the following exterior variables have been declared:

pform x=0,y=0,z=0,t=0,f(i)=1,h=0,hx=0,ht=0;

In a commutative polynomial ring, a single polynomial is its own Gröbner basis.
This is no longer true for exterior algebras because of the presence of zero divisors,
and can lead to some surprising reductions:



1166 CHAPTER 20. USER CONTRIBUTED PACKAGES

xideal {d x^d y - d z^d t};

{d t^d z + d x^d y,

d x^d y^d z,

d t^d x^d y}

f(3)^f(4)^f(5)^f(6)
xmodideal {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)};

0

The heat equation, hxx = ht can be represented by the following exterior differen-
tial system.

S := {d h - ht*d t - hx*d x,
d ht^d t + d hx^d x,
d hx^d t - ht*d x^d t};

xmodideal can be used to check that the exterior differential system is closed
under exterior differentiation.

d S xmodideal S;

{}

xvars, or a second argument to xideal can be used to change the division
between exterior variables of degree 0 and parameters.

xideal {a*d x+y*d y};

d x*a + d y*y
{---------------}

a

xvars {a};
xideal {a*d x+y*d y};

{d x*a + d y*y,d x^d y}

xideal({a*d x+y*d y},{a,y});

{d x*a + d y*y,
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d x^d y*y}

xvars {}; % all 0-forms are coefficients
excoeffs(d u - (a*p - q)*d y);

{1, - a*p + q}

exvars(d u - (a*p - q)*d y);

{d u,d y}

xvars {p,q}; % p,q are no longer coefficients
excoeffs(d u - (a*p - q)*d y);

{ - a,1,1}

exvars(d u - (a*p - q)*d y);

{d y*p,d y*q,d u}

xvars nil;

Non-graded left and right ideals are no longer the same:

d t^(d z+d x^d y) xmodideal {d z+d x^d y};

0

(d z+d x^d y)^d t xmodideal {d z+d x^d y};

- 2*d t^d z

Any form containing a 0-form term generates the whole ideal:

xideal {1 + f(1) + f(1)^f(2) + f(2)^f(3)^f(4)};

{1}
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20.71 ZEILBERG: Indefinite and Definite Summation

This package is a careful implementation of the Gosper and Zeilberger algorithms
for indefinite and definite summation of hypergeometric terms, respectively. Ex-
tensions of these algorithms are also included that are valid for ratios of products
of powers, factorials, Γ function terms, binomial coefficients, and shifted factorials
that are rational-linear in their arguments.

Authors: Gregor Stölting and Wolfram Koepf

20.71.1 Introduction

This package is a careful implementation of the Gosper53 and Zeilberger algo-
rithms for indefinite, and definite summation of hypergeometric terms, respec-
tively. Further, extensions of these algorithms given by the first author are covered.
An expression ak is called a hypergeometric term (or closed form), if ak/ak−1 is
a rational function with respect to k. Typical hypergeometric terms are ratios of
products of powers, factorials, Γ function terms, binomial coefficients, and shifted
factorials (Pochhammer symbols) that are integer-linear in their arguments.

The extensions of Gosper’s and Zeilberger’s algorithm mentioned in particular are
valid for ratios of products of powers, factorials, Γ function terms, binomial coef-
ficients, and shifted factorials that are rational-linear in their arguments.

20.71.2 Gosper Algorithm

The Gosper algorithm [Gos78] is a decision procedure, that decides by algebraic
calculations whether or not a given hypergeometric term ak has a hypergeometric
term antidifference gk, i.e. gk− gk−1 = ak with rational gk/gk−1, and returns gk if
the procedure is successful, in which case we call ak Gosper-summable. Otherwise
no hypergeometric term antidifference exists. Therefore if the Gosper algorithm
does not return a closed form solution, it has proved that no such solution exists,
an information that may be quite useful and important. The Gosper algorithm is
the discrete analogue of the Risch algorithm for integration in terms of elementary
functions.

Any antidifference is uniquely determined up to a constant, and is denoted by

gk =
∑

k
ak .

Finding gk given ak is called indefinite summation. The antidifference operator Σ
is the inverse of the downward difference operator ∇ak = ak − ak−1. There is

53The SUM package contains also a partial implementation of the Gosper algorithm.
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an analogous summation theory corresponding to the upward difference operator
∆ak = ak+1 − ak.

In case, an antidifference gk of ak is known, any sum

n∑
k=m

ak = gn − gm−1

can be easily calculated by an evaluation of g at the boundary points like in the
integration case. Note, however, that the sum

n∑
k=0

(
n

k

)
(20.102)

e. g. is not of this type since the summand
(
n
k

)
depends on the upper boundary

point n explicitly. This is an example of a definite sum that we consider in the next
section.

Our package supports the input of powers (a^k), factorials (factorial(k)), Γ
function terms (gamma(a)), binomial coefficients (Binomial(n,k)), shifted
factorials (Pochhammer(a,k)= a(a + 1) · · · (a + k − 1) = Γ(a + k)/Γ(a)),
and partially products (prod(f,k,k1,k2)). It takes care of the necessary sim-
plifications, and therefore provides you with the solution of the decision problem
as long as the memory or time requirements are not too high for the computer used.

20.71.3 Zeilberger Algorithm

The (fast) Zeilberger algorithm [Zei90]–[Zei91] deals with the definite summation
of hypergeometric terms. Zeilberger’s paradigm is to find (and return) a linear
homogeneous recurrence equation with polynomial coefficients (called holonomic
equation) for an infinite sum

s(n) =
∞∑

k=−∞
f(n, k) ,

the summation to be understood over all integers k, if f(n, k) is a hypergeometric
term with respect to both k and n. The existence of a holonomic recurrence equat-
ion for s(n) is then generally guaranteed.

If one is lucky, and the resulting recurrence equation is of first order

p(n) s(n− 1) + q(n) s(n) = 0 (p, q polynomials) ,

s(n) turns out to be a hypergeometric term, and a closed form solution can be
easily established using a suitable initial value, and is represented by a ratio of
Pochhammer or Γ function terms if the polynomials p, and q can be factored.
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Zeilberger’s algorithm does not guarantee to find the holonomic equation of lowest
order, but often it does.

If the resulting recurrence equation has order larger than one, this information can
be used for identification purposes: Any other expression satisfying the same re-
currence equation, and the same initial values, represents the same function.

Note that a definite sum
m2∑

k=m1

f(n, k) is an infinite sum if f(n, k) = 0 for

k < m1 and k > m2. This is often the case, an example of which is the
sum (20.102) considered above, for which the hypergeometric recurrence equat-
ion 2s(n − 1) − s(n) = 0 is generated by Zeilberger’s algorithm, leading to the
closed form solution s(n) = 2n.

Definite summation is trivial if the corresponding indefinite sum is Gosper-
summable analogously to the fact that definite integration is trivial as soon as an el-
ementary antiderivative is known. If this is not the case, the situation is much more
difficult, and it is therefore quite remarkable and non-obvious that Zeilberger’s
method is just a clever application of Gosper’s algorithm.

Our implementation is mainly based on [Koo93] and [Koe94b]. More examples
can be found in [PS95], [Str93], [Wil90], and [Wil93] many of which are contained
in the test file zeilberg.tst.

20.71.4 REDUCE operator GOSPER

The gosper operator is an implementation of the Gosper algorithm.

• gosper(a,k) determines a closed form antidifference. If it does not re-
turn a closed form solution, then a closed form solution does not exist.

• gosper(a,k,m,n) determines

n∑
k=m

ak

using Gosper’s algorithm. This is only successful if Gosper’s algorithm ap-
plies.

Example:

2: gosper((-1)^(k+1)*(4*k+1)*factorial(2*k)/
(factorial(k)*4^k*(2*k-1)*factorial(k+1)),k);

k
- ( - 1) *factorial(2*k)

------------------------------------
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2*k
2 *factorial(k + 1)*factorial(k)

This solves a problem given in SIAM Review ([OK94], Problem 94–2) where it
was asked to determine the infinite sum

S = lim
n→∞

Sn , Sn =

n∑
k=1

(−1)k+1(4k + 1)(2k − 1)!!

2k(2k − 1)(k + 1)!
,

((2k − 1)!! = 1 · 3 · · · (2k − 1) = (2k)!
2k k!

). The above calculation shows that the
summand is Gosper-summable, and the limit S = 1 is easily established using
Stirling’s formula.

The implementation solves further deep and difficult problems some examples of
which are:

3: gosper(sub(n=n+1,binomial(n,k)^2/binomial(2*n,n))-
binomial(n,k)^2/binomial(2*n,n),k);

2
((binomial(n + 1,k) *binomial(2*n,n)

2
- binomial(2*(n + 1),n + 1)*binomial(n,k) )

2

*(2*k - 3*n - 1)*(k - n - 1) )/((

2*(2*(n + 1) - k)*(2*n + 1)*k

2
- (3*n + 1)*(n + 1) )

*binomial(2*(n + 1),n + 1)*binomial(2*n,n))

4: gosper(binomial(k,n),k);

(k + 1)*binomial(k,n)
-----------------------

n + 1

5: gosper((-25+15*k+18*k^2-2*k^3-k^4)/
(-23+479*k+613*k^2+137*k^3+53*k^4+5*k^5+k^6),k);

2
- (2*k - 15*k + 8)*k

----------------------------
3 2

23*(k + 4*k + 27*k + 23)
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The Gosper algorithm is not capable to give antidifferences depending on the har-
monic numbers

Hk :=
k∑

j=1

1

j
,

e. g.
∑

kHk = (k+1)(Hk+1− 1), but, is able to give a proof, instead, for the fact
that Hk does not possess a closed form evaluation:

6: gosper(1/k,k);

***** Gosper algorithm: no closed form solution exists

The following code gives the solution to a summation problem proposed in
Gosper’s original paper [Gos78]. Let

fk =
k∏

j=1

(a+ b j + c j2) and gk =
k∏

j=1

(e+ b j + c j2) .

Then a closed form solution for ∑
k

fk−1

gk

is found by the definitions

7: operator ff,gg$

8: let {ff(~k+~m) => ff(k+m-1)*(c*(k+m)^2+b*(k+m)+a)
when (fixp(m) and m>0),

ff(~k+~m) => ff(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+a)
when (fixp(m) and m<0)}$

9: let {gg(~k+~m) => gg(k+m-1)*(c*(k+m)^2+b*(k+m)+e)
when (fixp(m) and m>0),

gg(~k+~m) => gg(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+e)
when (fixp(m) and m<0)}$

and the calculation

10: gosper(ff(k-1)/gg(k),k);

ff(k)
---------------
(a - e)*gg(k)

11: clear ff,gg$
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Similarly closed form solutions of
∑

k
fk−m

gk
for positive integers m can be ob-

tained, as well as of
∑

k
fk−1

gk
for

fk =

k∏
j=1

(a+ b j + c j2 + d j3) and gk =

k∏
j=1

(e+ b j + c j2 + d j3)

and for analogous expressions of higher degree polynomials.

20.71.5 REDUCE operator EXTENDED_GOSPER

The extended_gosper operator is an implementation of an extended version
of Gosper’s algorithm given by Koepf [Koe94b].

• extended_gosper(a,k) determines an antidifference gk of ak when-
ever there is a number m such that hk − hk−m = ak, and hk is an m-fold
hypergeometric term, i.e.

hk/hk−m is a rational function with respect to k.

If it does not return a solution, then such a solution does not exist.

• extended_gosper(a,k,m) determines an m-fold antidifference hk of
ak, i.e. hk − hk−m = ak, if it is an m-fold hypergeometric term.

Examples:

12: extended_gosper(binomial(k/2,n),k);

k k - 1
(k + 2)*binomial(---,n) + (k + 1)*binomial(-------,n)

2 2
-------------------------------------------------------

2*(n + 1)

13: extended_gosper(k*factorial(k/7),k,7);

k
(k + 7)*factorial(---)

7

20.71.6 REDUCE operator SUMRECURSION

The sumrecursion operator is an implementation of the (fast) Zeilberger algo-
rithm.



1174 CHAPTER 20. USER CONTRIBUTED PACKAGES

• sumrecursion(f,k,n) determines a holonomic recurrence equation
for

summ(n) =
∞∑

k=−∞
f(n, k)

with respect to n, applying extended_sumrecursion if necessary, see
§ 20.71.7. The resulting expression equals zero.

• sumrecursion(f,k,n,j) searches for a holonomic recurrence equat-
ion of order j. This operator does not use extended_sumrecursion
automatically. Note that if j is too large, the recurrence equation may not be
unique, and only one particular solution is returned.

A simple example deals with Equation (20.102)54

14: sumrecursion(binomial(n,k),k,n);

2*summ(n - 1) - summ(n)

The whole hypergeometric database of the Vandermonde, Gauß, Kummer, Saal-
schütz, Dixon, Clausen and Dougall identities (see [Wil93]), and many more iden-
tities (see e. g. [Koe94b]), can be obtained using sumrecursion. As examples,
we consider the difficult cases of Clausen and Dougall:

15: summand:=factorial(a+k-1)*factorial(b+k-1)/
(factorial(k)*factorial(-1/2+a+b+k))

*factorial(a+n-k-1)*factorial(b+n-k-1)/
(factorial(n-k)*factorial(-1/2+a+b+n-k))$

16: sumrecursion(summand,k,n);

(2*a + 2*b + 2*n - 1)*(2*a + 2*b + n - 1)*summ(n)*n

- 2*(2*a + n - 1)*(a + b + n - 1)*(2*b + n - 1)*summ(n - 1)

17: summand:=pochhammer(d,k)*pochhammer(1+d/2,k)*
pochhammer(d+b-a,k)*pochhammer(d+c-a,k)*
pochhammer(1+a-b-c,k)*pochhammer(n+a,k)*
pochhammer(-n,k)/(factorial(k)*pochhammer(d/2,k)*
pochhammer(1+a-b,k)*pochhammer(1+a-c,k)*
pochhammer(b+c+d-a,k)*pochhammer(1+d-a-n,k)*
pochhammer(1+d+n,k))$

18: sumrecursion(summand,k,n);

54Note that with REDUCE Version 3.5 we use the global operator summ instead of sum to denote
the sum.
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- (n - 1 + d + c + b - a)*(n - 1 - d + a)

*(b - n - a)*(c - n - a)*summ(n) -

(d - n + c + b - 2*a)*(n - 1 + b)*(n - 1 + c)

*(d + n)*summ(n - 1)

corresponding to the statements

4F3

(
a , b , 1/2− a− b− n ,−n

1/2 + a+ b , 1− a− n , 1− b− n

∣∣∣∣∣ 1
)

=
(2a)n (a+ b)n (2b)n
(2a+ 2b)n (a)n (b)n

and

7F6

(
d , 1 + d/2 , d+ b− a , d+ c− a , 1 + a− b− c , n+ a ,−n

d/2 , 1 + a− b , 1 + a− c , b+ c+ d− a , 1 + d− a− n , 1 + d+ n

∣∣∣∣∣ 1
)

=
(d+ 1)n (b)n (c)n (1 + 2 a− b− c− d)n

(a− d)n (1 + a− b)n (1 + a− c)n (b+ c+ d− a)n
(compare next section), respectively.

Other applications of the Zeilberger algorithm are connected with the verification
of identities. To prove the identity

n∑
k=0

(
n

k

)3

=
n∑

k=0

(
n

k

)2(2k
n

)
,

e. g., we may prove that both sums satisfy the same recurrence equation

19: sumrecursion(binomial(n,k)^3,k,n);

2 2
8*(n - 1) *summ(n - 2) - summ(n)*n

2
+ (7*n - 7*n + 2)*summ(n - 1)

20: sumrecursion(binomial(n,k)^2*binomial(2*k,n),k,n);

2 2
8*(n - 1) *summ(n - 2) - summ(n)*n
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2
+ (7*n - 7*n + 2)*summ(n - 1)

and finally check the initial conditions:

21: sub(n=0,k=0,binomial(n,k)^3);

1

22: sub(n=0,k=0,binomial(n,k)^2*binomial(2*k,n));

1

23: sub(n=1,k=0,binomial(n,k)^3)
+sub(n=1,k=1,binomial(n,k)^3);

2

24: sub(n=1,k=0,binomial(n,k)^2*binomial(2*k,n))+
sub(n=1,k=1,binomial(n,k)^2*binomial(2*k,n));

2

20.71.7 REDUCE operator EXTENDED_SUMRECURSION

The extended_sumrecursion operator is an implementation of an extension
of the (fast) Zeilberger algorithm given by Koepf [Koe94b].

• extended_sumrecursion(f,k,n,m,l) determines a holonomic re-

currence equation for summ(n) =
∞∑

k=−∞
f(n, k) with respect to n if

f(n, k) is an (m, l)-fold hypergeometric term with respect to (n, k), i.e.

F (n, k)

F (n−m, k)
and

F (n, k)

F (n, k − l)

are rational functions with respect to both n and k. The resulting expression
equals zero.

• Internally, sumrecursion(f,k,n) calls (with suitable values m and l)
extended_sumrecursion(f,k,n,m,l) and covers therefore the ex-
tended algorithm completely.

Examples:
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25: extended_sumrecursion(binomial(n,k)*binomial(k/2,n),
k,n,1,2);

summ(n - 1) + 2*summ(n)

which can be obtained automatically by

26: sumrecursion(binomial(n,k)*binomial(k/2,n),k,n);

summ(n - 1) + 2*summ(n)

Similarly, we get

27: extended_sumrecursion(binomial(n/2,k),k,n,2,1);

2*summ(n - 2) - summ(n)

28: sumrecursion(binomial(n/2,k),k,n);

2*summ(n - 2) - summ(n)

29: sumrecursion(hyperterm({a,b,a+1/2-b,1+2*a/3,-n},
{2*a+1-2*b,2*b,2/3*a,1+a+n/2},4,k)/(factorial(n)*2^(-n)/
factorial(n/2))/
hyperterm({a+1,1},{a-b+1,b+1/2},1,n/2),k,n);

summ(n - 2) - summ(n)

In the last example, the progam chooses m = 2, and l = 1 to derive the resulting
recurrence equation (see [Koe94b], Table 3, (1.3)).

20.71.8 REDUCE operator HYPERRECURSION

Sums to which the Zeilberger algorithm applies, in general are special cases of the
generalized hypergeometric function

pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣x) :=

∞∑
k=0

(a1)k · (a2)k · · · (ap)k
(b1)k · (b2)k · · · (bq)k k!

xk

with upper parameters {a1, a2, . . . , ap}, and lower parameters {b1, b2, . . . , bq}. If
a recursion for a generalized hypergeometric function is to be established, you can
use the following REDUCE operator:

• hyperrecursion(upper,lower,x,n) determines a holonomic re-

currence equation with respect to n for pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣x),
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where upper= {a1, a2, . . . , ap} is the list of upper parameters, and
lower= {b1, b2, . . . , bq} is the list of lower parameters depending on n.
If Zeilberger’s algorithm does not apply, extended_sumrecursion of
§ 20.71.7 is used.

• hyperrecursion(upper,lower,x,n,j) (j ∈ N) searches only for
a holonomic recurrence equation of order j. This operator does not use
extended_sumrecursion automatically.

Therefore

30: hyperrecursion({-n,b},{c},1,n);

(b - c - n + 1)*summ(n - 1) + (c + n - 1)*summ(n)

establishes the Vandermonde identity

2F1

(
−n , b

c

∣∣∣∣∣ 1
)

=
(c− b)n
(c)n

,

whereas

31: hyperrecursion({d,1+d/2,d+b-a,d+c-a,1+a-b-c,n+a,-n},
{d/2,1+a-b,1+a-c,b+c+d-a,1+d-a-n,1+d+n},1,n);

- (n - 1 + d + c + b - a)*(n - 1 - d + a)

*(b - n - a)*(c - n - a)*summ(n) -

(d - n + c + b - 2*a)*(n - 1 + b)*(n - 1 + c)

*(d + n)*summ(n - 1)

proves Dougall’s identity, again.

If a hypergeometric expression is given in hypergeometric notation, then the use of
hyperrecursion is more natural than the use of sumrecursion.

Moreover you may use the REDUCE operator

• hyperterm(upper,lower,x,k) that yields the hypergeometric term

(a1)k · (a2)k · · · (ap)k
(b1)k · (b2)k · · · (bq)k k!

xk

with upper parameters upper= {a1, a2, . . . , ap}, and lower parameters
lower= {b1, b2, . . . , bq}
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in connection with hypergeometric terms.

The operator sumrecursion can also be used to obtain three-term recurrence
equations for systems of orthogonal polynomials with the aid of known hyper-
geometric representations. By ([NUS91], (2.7.11a)), the discrete Krawtchouk
polynomials k(p)n (x,N) have the hypergeometric representation

k(p)n (x,N) = (−1)n pn
(
N

n

)
2F1

(
−n , −x
−N

∣∣∣∣∣ 1p
)
,

and therefore we declare

32: krawtchoukterm:=
(-1)^n*p^n*binomial(NN,n)*hyperterm({-n,-x},{-NN},1/p,k)$

and get the three three-term recurrence equations

33: sumrecursion(krawtchoukterm,k,n);

((2*p - 1)*n - nn*p - 2*p + x + 1)*summ(n - 1)

- (n - nn - 2)*(p - 1)*summ(n - 2)*p - summ(n)*n

34: sumrecursion(krawtchoukterm,k,x);

(2*(x - 1)*p + n - nn*p - x + 1)*summ(x - 1)

- ((x - 1) - nn)*summ(x)*p - (p - 1)*(x - 1)*summ(x - 2)

35: sumrecursion(krawtchoukterm,k,NN);

(x + 1 + n + (p - 2)*nn)*summ(nn - 1) - (

(x + 1 - nn)*summ(nn - 2)

- (n - nn)*(p - 1)*summ(nn))

with respect to the parameters n, x, and N respectively.

20.71.9 REDUCE operator HYPERSUM

With the operator hypersum, hypergeometric sums are directly evaluated in
closed form whenever the extended Zeilberger algorithm leads to a recurrence
equation containing only two terms:

• hypersum(upper,lower,x,n) determines a closed form representa-
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tion for pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣x), where upper= {a1, a2, . . . , ap}

is the list of upper parameters, and lower= {b1, b2, . . . , bq} is the list of
lower parameters depending on n. The result is given as a hypergeometric
term with respect to n.

If the result is a list of length m, we call it m-fold symmetric, which is to be
interpreted as follows: Its jth part is the solution valid for all n of the form
n = mk + j − 1 (k ∈ N0). In particular, if the resulting list contains two
terms, then the first part is the solution for even n, and the second part is the
solution for odd n.

Examples [Koe94b]:

36: hypersum({a,1+a/2,c,d,-n},{a/2,1+a-c,1+a-d,1+a+n},1,n);

pochhammer(a - c - d + 1,n)*pochhammer(a + 1,n)
-------------------------------------------------
pochhammer(a - c + 1,n)*pochhammer(a - d + 1,n)

37: hypersum({a,1+a/2,d,-n},{a/2,1+a-d,1+a+n},-1,n);

pochhammer(a + 1,n)
-------------------------
pochhammer(a - d + 1,n)

Note that the operator togamma converts expressions given in factorial-Γ-
binomial-Pochhammer notation into a pure Γ function representation:

38: togamma(ws);

gamma(a - d + 1)*gamma(a + n + 1)
-----------------------------------
gamma(a - d + n + 1)*gamma(a + 1)

Here are some m-fold symmetric results:

39: hypersum({-n,-n,-n},{1,1},1,n);

n/2 2 n 1 n
( - 27) *pochhammer(---,---)*pochhammer(---,---)

3 2 3 2
{----------------------------------------------------,

n 2
factorial(---)

2
0}
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40: hypersum({-n,n+3*a,a},{3*a/2,(3*a+1)/2},3/4,n);

2 n 1 n
pochhammer(---,---)*pochhammer(---,---)

3 3 3 3
{-----------------------------------------------------,

3*a + 2 n 3*a + 1 n
pochhammer(---------,---)*pochhammer(---------,---)

3 3 3 3
0,

0}

These results correspond to the formulas (compare [Koe94b])

3F2

(
−n ,−n ,−n

1 , 1

∣∣∣∣∣ 1
)

=


0 if n odd

(1/3)n/2 (2/3)n/2

(n/2)!2
(−27)n/2 otherwise

and

3F2

(
−n , n+ 3a , a

3a/2 , (3a+ 1)/2

∣∣∣∣∣ 34
)

=


0 if n ̸= 0 (mod 3)

(1/3)n/3 (2/3)n/3

(a+ 1/3)n/3 (a+ 2/3)n/3
otherwise

20.71.10 REDUCE operator SUMTOHYPER

With the operator sumtohyper, sums given in factorial-Γ-binomial-Pochhammer
notation are converted into hypergeometric notation.

sumtohyper(f,k) determines the hypergeometric representation of
∞∑

k=−∞
fk,

i.e. its output is c*hypergeometric(upper,lower,x), corresponding to
the representation

∞∑
k=−∞

fk = c · pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣x) ,

where upper= {a1, a2, . . . , ap} and lower= {b1, b2, . . . , bq} are the lists of
upper and lower parameters.
Examples:

41: sumtohyper(binomial(n,k)^3,k);
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hypergeometric({ - n, - n, - n},{1,1},-1)

42: sumtohyper(binomial(n,k)/2^n
-sub(n=n-1,binomial(n,k)/2^n),k);

- n + 2 - n
- hypergeom({----------, - n},{------},-1)

2 2
---------------------------------------------

n
2

20.71.11 Simplification Operators

For the decision that an expression ak is a hypergeometric term, it is necessary to
find out whether or not ak/ak−1 is a rational function with respect to k. For the pur-
pose to decide whether or not an expression involving powers, factorials, Γ function
terms, binomial coefficients, and Pochhammer symbols is a hypergeometric term,
the following simplification operators can be used:

• simplify_gamma(f) simplifies an expression f involving only rational,
powers and Γ function terms according to a recursive application of the sim-
plification rule Γ (a + 1) = aΓ (a) to the expression tree. Since all Γ
arguments with integer difference are transformed, this gives a decision pro-
cedure for rationality for integer-linear Γ term product ratios.

• simplify_combinatorial(f) simplifies an expression f involving
powers, factorials, Γ function terms, binomial coefficients, and Pochhammer
symbols by converting factorials, binomial coefficients, and Pochhammer
symbols into Γ function terms, and applying simplify_gamma to its re-
sult. If the output is not rational, it is given in terms of Γ functions. If you
prefer factorials you may use

• gammatofactorial (rule) converting Γ function terms into factorials us-
ing Γ (x)→ (x− 1)!.

• simplify_gamma2(f) uses the duplication formula of the Γ function to
simplify f .

• simplify_gamman(f,n) uses the multiplication formula of the Γ func-
tion to simplify f .

The use of simplify_combinatorial(f) is a safe way to decide the ratio-
nality for any ratio of products of powers, factorials, Γ function terms, binomial
coefficients, and Pochhammer symbols.
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Example:

43: simplify_combinatorial(sub(k=k+1,krawtchoukterm)/
krawtchoukterm);

(k - n)*(k - x)
--------------------
(k - nn)*(k + 1)*p

From this calculation, we see again that the upper parameters of the hypergeometric
representation of the Krawtchouk polynomials are given by {−n,−x}, its lower
parameter is {−N}, and the argument of the hypergeometric function is 1/p.

Other examples are

44: simplify_combinatorial(binomial(n,k)/binomial(2*n,k-1));

gamma( - (k - 2*n - 2))*gamma(n + 1)
----------------------------------------
gamma( - (k - n - 1))*gamma(2*n + 1)*k

45: ws where gammatofactorial;

factorial( - k + 2*n + 1)*factorial(n)
----------------------------------------

factorial( - k + n)*factorial(2*n)*k

46: simplify_gamma2(gamma(2*n)/gamma(n));

2*n 2*n + 1
2 *gamma(---------)

2
-----------------------

2*sqrt(pi)

47: simplify_gamman(gamma(3*n)/gamma(n),3);

3*n 3*n + 2 3*n + 1
3 *gamma(---------)*gamma(---------)

3 3
----------------------------------------

2*sqrt(3)*pi

20.71.12 Tracing

If you set
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48: on zb_trace;

tracing is enabled, and you get intermediate results, see [Koe94b].

Example for the Gosper algorithm:

49: gosper(pochhammer(k-n,n),k);

k - 1
a(k)/a(k-1):= -----------

k - n - 1

Gosper algorithm applicable

p:= 1

q:= k - 1

r:= k - n - 1

degreebound := 0

1
f:= -------

n + 1

Gosper algorithm successful

pochhammer(k - n,n)*k
-----------------------

n + 1

Example for the Zeilberger algorithm:

50: sumrecursion(binomial(n,k)^2,k,n);

2
n

F(n,k)/F(n-1,k):= ----------
2

(k - n)

2
(k - n - 1)

F(n,k)/F(n,k-1):= --------------
2

k

Zeilberger algorithm applicable
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applying Zeilberger algorithm for order:= 1

2 2 2
p:= zb_sigma(1)*k - 2*zb_sigma(1)*k*n + zb_sigma(1)*n + n

2 2
q:= k - 2*k*n - 2*k + n + 2*n + 1

2
r:= k

degreebound := 1

2*k - 3*n + 2
f:= ---------------

n

2 2 2 3 2
- 4*k *n + 2*k + 8*k*n - 4*k*n - 3*n + 2*n

p:= -------------------------------------------------
n

Zeilberger algorithm successful

4*summ(n - 1)*n - 2*summ(n - 1) - summ(n)*n

51: off zb_trace;

20.71.13 Global Variables and Switches

The following global variables and switches can be used in connection with the
ZEILBERG package:

• zb_trace, switch; default setting off. Turns tracing on and off.

• zb_direction, variable; settings: down, up; default setting down.

In the case of the Gosper algorithm, either a downward or a forward antidif-
ference is calculated, i.e., gosper finds gk with either

ak = gk − gk−1 or ak = gk+1 − gk,

respectively.

In the case of the Zeilberger algorithm, either a downward or an upward
recurrence equation is returned. Example:
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52: zb_direction:=up$

53: sumrecursion(binomial(n,k)^2,k,n);

summ(n + 1)*n + summ(n + 1) - 4*summ(n)*n - 2*summ(n)

54: zb_direction:=down$

• zb_order, variable; settings: any nonnegative integer; default setting 5.
Gives the maximal order for the recurrence equation that sumrecursion
searches for.

• zb_factor, switch; default setting on. If off, the factorization of the
output usually producing nicer results is suppressed.

• zb_proof, switch; default setting off. If on, then several intermediate
results are stored in global variables:

• gosper_representation, variable; default setting nil.

If a gosper command is issued, and if the Gosper algorithm is applicable,
then the variable gosper_representation is set to the list of polynom-
ials (with respect to k) {p,q,r,f} corresponding to the representation

ak
ak−1

=
pk
pk−1

qk
rk

, gk =
qk+1

pk
fk ak ,

see [Gos78]. Examples:

55: on zb_proof;

56: gosper(k*factorial(k),k);

(k + 1)*factorial(k)

57: gosper_representation;

{k,k,1,1}

58: gosper(
1/(k+1)*binomial(2*k,k)/(n-k+1)

*binomial(2*n-2*k,n-k),k);

((2*k - n + 1)*(2*k + 1)

*binomial( - 2*(k - n), - (k - n))

*binomial(2*k,k))/((k + 1)*(n + 2)*(n + 1))
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59: gosper_representation;

{1,

(2*k - 1)*(k - n - 2),

(2*k - 2*n - 1)*(k + 1),

- (2*k - n + 1)
------------------}
(n + 2)*(n + 1)

• zeilberger_representation, variable; default setting nil.

If a sumrecursion command is issued, and if the Zeilberger algorithm is
successful, then the variable zeilberger_representation is set to
the final Gosper representation used, see [Koo93].

• zb_f, internal operator, do not use.

• zb_sigma, internal operator, do not use.

20.71.14 Messages

The following messages may occur:

• *****
Gosper algorithm: no closed form solution exists

Example input:

gosper(factorial(k),k).

• ***** Gosper algorithm not applicable

Example input:

gosper(factorial(k/2),k).

The term ratio ak/ak−1 is not rational.

• ***** illegal number of arguments

Example input:

gosper(k).

• ***** Zeilberger algorithm fails. Enlarge zb_order

Example input:

sumrecursion(binomial(n,k)*binomial(6*k,n),k,n)

For this example a setting zb_order:=6 is needed.



1188 CHAPTER 20. USER CONTRIBUTED PACKAGES

• ***** Zeilberger algorithm not applicable

Example input:

sumrecursion(binomial(n/2,k),k,n)

One of the term ratios f(n, k)/f(n − 1, k) or f(n, k)/f(n, k − 1) is not
rational.

• ***** SOLVE given inconsistent equations

You can ignore this message that occurs with Version 3.5.
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20.72 ZTRANS: Z-Transform Package

This package is an implementation of the Z-transform of a sequence. This is the
discrete analogue of the Laplace Transform.

Authors: Wolfram Koepf and Lisa Temme

20.72.1 Z-Transform

The Z-Transform of a sequence {fn} is the discrete analogue of the Laplace Trans-
form, and

Z{fn} = F (z) =
∞∑
n=0

fnz
−n .

This series converges in the region outside the circle |z| = |z0| = lim sup
n→∞

n
√
|fn| .

SYNTAX: ztrans(fn, n, z) where fn is an expression, and n,z
are identifiers.

20.72.2 Inverse Z-Transform

The calculation of the Laurent coefficients of a regular function results in the fol-
lowing inverse formula for the Z-Transform:
If F (z) is a regular function in the region |z| > ρ then ∃ a sequence {fn} with
Z{fn} = F (z) given by

fn =
1

2πi

∮
F (z)zn−1dz

SYNTAX: invztrans(F (z), z, n) where F (z) is an expression,
and z,n are identifiers.

20.72.3 Input for the Z-Transform

This package can compute the Z-Transforms of the following list of functions fn,
and certain combinations thereof.
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1 eαn 1
(n+k)

1
n!

1
(2n)!

1
(2n+1)!

sin(βn)
n! sin(αn+ ϕ) eαn sin(βn)

cos(βn)
n! cos(αn+ ϕ) eαn cos(βn)

sin(β(n+1))
n+1 sinh(αn+ ϕ) cos(β(n+1))

n+1

cosh(αn+ ϕ)
(
n+k
m

)
Other Combinations

Linearity Z{afn + bgn} = aZ{fn}+ bZ{gn}

Multiplication by n Z{nk · fn} = −z d
dz

(
Z{nk−1 · fn, n, z}

)
Multiplication by λn Z{λn · fn} = F

(
z
λ

)
Shift Equation Z{fn+k} = zk

(
F (z)−

k−1∑
j=0

fjz
−j

)

Symbolic Sums Z
{

n∑
k=0

fk

}
= z

z−1 · Z{fn}

Z

{
n+q∑
k=p

fk

}
combination of the above

where k, λ ∈ N \ {0}; and a, b are variables or fractions; and p, q ∈ Z or are
functions of n; and α, β and ϕ are angles in radians.

20.72.4 Input for the Inverse Z-Transform

This package can compute the Inverse Z-Transforms of any rational function,
whose denominator can be factored over Q, in addition to the following list of
F (z).
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sin
(
sin(β)

z

)
e

(
cos(β)

z

)
cos
(
sin(β)

z

)
e

(
cos(β)

z

)
√

z
A sin

(√
z
A

)
cos
(√

z
A

)
√

z
A sinh

(√
z
A

)
cosh

(√
z
A

)
z log

(
z√

z2−Az+B

)
z log

(√
z2+Az+B

z

)
arctan

(
sin(β)

z+cos(β)

)
where k, λ ∈ N \ {0} and A,B are fractions or variables (B > 0) and α, β, and ϕ
are angles in radians.

20.72.5 Application of the Z-Transform

Solution of difference equations

In the same way that a Laplace Transform can be used to solve differential equat-
ions, so Z-Transforms can be used to solve difference equations.
Given a linear difference equation of k-th order

fn+k + a1fn+k−1 + . . .+ akfn = gn (20.103)

with initial conditions f0 = h0, f1 = h1, . . ., fk−1 = hk−1 (where hj are given),
it is possible to solve it in the following way. If the coefficients a1, . . . , ak are con-
stants, then the Z-Transform of (20.103) can be calculated using the shift equation,
and results in a solvable linear equation for Z{fn}. Application of the Inverse Z-
Transform then results in the solution of (20.103).
If the coefficients a1, . . . , ak are polynomials in n then the Z-Transform of
(20.103) constitutes a differential equation for Z{fn}. If this differential equat-
ion can be solved then the Inverse Z-Transform once again yields the solution of
(20.103). Some examples of these methods of solution can be found in §20.72.6.

20.72.6 EXAMPLES

Here are some examples for the Z-Transform

1: ztrans((-1)^n*n^2,n,z);

z*( - z + 1)
---------------------

3 2
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z + 3*z + 3*z + 1

2: ztrans(cos(n*omega*t),n,z);

z*(cos(omega*t) - z)
---------------------------

2
2*cos(omega*t)*z - z - 1

3: ztrans(cos(b*(n+2))/(n+2),n,z);

z
z*( - cos(b) + log(------------------------------)*z)

2
sqrt( - 2*cos(b)*z + z + 1)

4: ztrans(n*cos(b*n)/factorial(n),n,z);

cos(b)/z
(e

sin(b) sin(b)

*(cos(--------)*cos(b) - sin(--------)*sin(b)))/z
z z

5: ztrans(sum(1/factorial(k),k,0,n),n,z);

1/z
e *z

--------
z - 1

6: operator f$

7: ztrans((1+n)^2*f(n),n,z);

2
df(ztrans(f(n),n,z),z,2)*z - df(ztrans(f(n),n,z),z)*z
+ ztrans(f(n),n,z)

Here are some examples for the Inverse Z-Transform

8: invztrans((z^2-2*z)/(z^2-4*z+1),z,n);
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n n n
(sqrt(3) - 2) *( - 1) + (sqrt(3) + 2)
-----------------------------------------

2

9: invztrans(z/((z-a)*(z-b)),z,n);

n n
a - b
---------
a - b

10: invztrans(z/((z-a)*(z-b)*(z-c)),z,n);

n n n n n n
a *b - a *c - b *a + b *c + c *a - c *b
-----------------------------------------

2 2 2 2 2 2
a *b - a *c - a*b + a*c + b *c - b*c

11: invztrans(z*log(z/(z-a)),z,n);

n
a *a
-------
n + 1

12: invztrans(e^(1/(a*z)),z,n);

1
-----------------
n

a *factorial(n)

13: invztrans(z*(z-cosh(a))/(z^2-2*z*cosh(a)+1),z,n);

cosh(a*n)

Examples: Solutions of Difference Equations

I (See [BS81], p. 651, Example 1).
Consider the homogeneous linear difference equation

fn+5 − 2fn+3 + 2fn+2 − 3fn+1 + 2fn = 0
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with initial conditions f0 = 0, f1 = 0, f2 = 9, f3 = −2, f4 = 23. The
Z-Transform of the left hand side can be written as F (z) = P (z)/Q(z)
where P (z) = 9z3 − 2z2 + 5z and Q(z) = z5 − 2z3 + 2z2 − 3z + 2 =
(z − 1)2(z + 2)(z2 + 1), which can be inverted to give

fn = 2n+ (−2)n − cos
π

2
n .

The following REDUCE session shows how the present package can be used
to solve the above problem.

1: operator f;

2: f(0):=0$ f(1):=0$ f(2):=9$ f(3):=-2$ f(4):=23$

7: equation :=
ztrans(f(n+5)-2*f(n+3)+2*f(n+2)-3*f(n+1)+2*f(n),n,z);

5
equation := ztrans(f(n),n,z)*z

3
- 2*ztrans(f(n),n,z)*z

2
+ 2*ztrans(f(n),n,z)*z

- 3*ztrans(f(n),n,z)*z

3 2
+ 2*ztrans(f(n),n,z) - 9*z + 2*z

- 5*z

8: ztransresult:=solve(equation,ztrans(f(n),n,z));

ztransresult :=

2
z*(9*z - 2*z + 5)

{ztrans(f(n),n,z)=----------------------------}
5 3 2
z - 2*z + 2*z - 3*z + 2
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9: result:=invztrans(part(first(ztransresult),2),z,n);

result :=

n n n n n
- i *( - 1) + 2*( - 1) *2 - i + 4*n

-----------------------------------------
2

II (See [BS81], p. 651, Example 2).
Consider the inhomogeneous difference equation:

fn+2 − 4fn+1 + 3fn = 1

with initial conditions f0 = 0, f1 = 1. Giving

F (z) = Z{1}
(

1

z2 − 4z + 3
+

z

z2 − 4z + 3

)
=

z

z − 1

(
1

z2 − 4z + 3
+

z

z2 − 4z + 3

)
.

The Inverse Z-Transform results in the solution

fn =
1

2

(
3n+1 − 1

2
− (n+ 1)

)
.

The following REDUCE session shows how the present package can be used
to solve the above problem.

10: clear(f)$ operator f$ f(0):=0$ f(1):=1$

14: equation:=ztrans(f(n+2)-4*f(n+1)+3*f(n)-1,n,z);

3
equation := (ztrans(f(n),n,z)*z

2
- 5*ztrans(f(n),n,z)*z

+ 7*ztrans(f(n),n,z)*z

2
- 3*ztrans(f(n),n,z) - z )/(z - 1)
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15: ztransresult:=solve(equation,ztrans(f(n),n,z));

ztransresult :=

2
z

{ztrans(f(n),n,z)=---------------------}
3 2
z - 5*z + 7*z - 3

16: result:=invztrans(part(first(ztransresult),2),z,n);

n
3*3 - 2*n - 3

result := ----------------
4

III Consider the following difference equation, which has a differential equation
for Z{fn}.

(n+ 1) · fn+1 − fn = 0

with initial conditions f0 = 1, f1 = 1. It can be solved in REDUCE using
the present package in the following way.

17: clear(f)$ operator f$ f(0):=1$ f(1):=1$

21: equation:=ztrans((n+1)*f(n+1)-f(n),n,z);

equation :=

2
- (df(ztrans(f(n),n,z),z)*z + ztrans(f(n),n,z))

22: operator tmp;

23: equation:=sub(ztrans(f(n),n,z)=tmp(z),equation);

2
equation := - (df(tmp(z),z)*z + tmp(z))

24: load_package(odesolve);

25: ztransresult:=odesolve(equation,tmp(z),z);
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1/z
ztransresult := {tmp(z)=e *arbconst(1)}

39: preresult :=
invztrans(part(first(ztransresult),2),z,n);

arbconst(1)
preresult := --------------

factorial(n)

40: solve({sub(n=0,preresult)=f(0),
sub(n=1,preresult)=f(1)},

arbconst(1));

{arbconst(1)=1}

41: result:=preresult where ws;

1
result := --------------

factorial(n)
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Chapter 21

Symbolic Mode

At the system level, REDUCE is based on a version of the programming language
Lisp known as Standard Lisp which is described in [MHGG80]. We shall assume
in this section that the reader is familiar with the material in that paper. This also
assumes implicitly that the reader has a reasonable knowledge about Lisp in gen-
eral, say at the level of the LISP 1.5 Programmer’s Manual ([MAE+62]) or any
of the books mentioned at the end of this section. Persons unfamiliar with this
material will have some difficulty understanding this section.

Although REDUCE is designed primarily for algebraic calculations, its source lan-
guage is general enough to allow for a full range of Lisp-like symbolic calculations.
To achieve this generality, however, it is necessary to provide the user with two
modes of evaluation, namely an algebraic mode and a symbolic mode. To enter
symbolic mode, the user types symbolic; (or lisp;) and to return to algebraic
mode one types algebraic;. Evaluations proceed differently in each mode so
the user is advised to check what mode he is in if a puzzling error arises. He can
find his mode by typing

eval_mode;

The current mode will then be printed as algebraic or symbolic.

Expression evaluation may proceed in either mode at any level of a calculation,
provided the results are passed from mode to mode in a compatible manner. One
simply prefixes the relevant expression by the appropriate mode. If the mode name
prefixes an expression at the top level, it will then be handled as if the global system
mode had been changed for the scope of that particular calculation.

For example, if the current mode is algebraic, then the commands

symbolic car ’(a);
x+y;

1199
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will cause the first expression to be evaluated and printed in symbolic mode and
the second in algebraic mode. Only the second evaluation will thus affect the
expression workspace. On the other hand, the statement

x + symbolic car ’(12);

will result in the algebraic value X+12.

The use of symbolic (and equivalently algebraic) in this manner is the same
as any operator. That means that parentheses could be omitted in the above ex-
amples since the meaning is obvious. In other cases, parentheses must be used, as
in

symbolic(x := ’a);

Omitting the parentheses, as in

symbolic x := a;

would be wrong, since it would parse as

symbolic(x) := a;

For convenience, it is assumed that any operator whose first argument is quoted is
being evaluated in symbolic mode, regardless of the mode in effect at that time.
Thus, the first example above could be equally well written:

car ’(a);

Except where explicit limitations have been made, most REDUCE algebraic con-
structions carry over into symbolic mode. However, there are some differences.
First, expression evaluation now becomes Lisp evaluation. Secondly, assignment
statements are handled differently, as we shall discuss shortly. Thirdly, local vari-
ables and array elements are initialized to nil rather than 0. (In fact, any variables
not explicitly declared integer are also initialized to nil in algebraic mode, but
the algebraic evaluator recognizes nil as 0.) Finally, function definitions follow
the conventions of Standard Lisp.

To begin with, we mention a few extensions to our basic syntax which are designed
primarily if not exclusively for symbolic mode.
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21.1 Symbolic Infix Operators

There are three binary infix operators in REDUCE intended for use in symbolic
mode, namely . (cons), eq and memq. The precedence of these operators was
given in another section.

21.2 Symbolic Expressions

These consist of scalar variables and operators and follow the normal rules of the
Lisp meta language.

Examples:

x
car u . reverse v
simp (u+v^2)

21.3 Quoted Expressions

Because symbolic evaluation requires that each variable or expression has a value,
it is necessary to add to REDUCE the concept of a quoted expression by analogy
with the Lisp quote function. This is provided by the single quote mark ’. For
example,

’a represents the Lisp S-expression (quote a)
’(a b c) represents the Lisp S-expression (quote (a b c))

Note, however, that strings are constants and therefore evaluate to themselves in
symbolic mode. Thus, to print the string "A String", one would write

prin2 "A String";

Within a quoted expression, identifier syntax rules are those of REDUCE. Thus
(a !. b) is the list consisting of the three elements a, ., and b, whereas (a
. b) is the dotted pair of a and b.

21.4 Lambda Expressions

lambda expressions provide the means for constructing Lisp lambda expres-
sions in symbolic mode. They may not be used in algebraic mode.
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Syntax:

〈lambda expression〉 −→ lambda 〈varlist〉〈terminator〉 〈statement〉

where

〈varlist〉 −→ (〈variable〉, . . ., 〈variable〉)

e.g.,

lambda (x,y); car x . cdr y;

is equivalent to the Lisp lambda expression

(lambda (x y) (cons (car x) (cdr y)))

The parentheses may be omitted in specifying the variable list if desired.

lambda expressions may be used in symbolic mode in place of prefix operators,
or as an argument of the reserved word function.

In those cases where a lambda expression is used to introduce local variables
to avoid recomputation, a where statement can also be used. For example, the
expression

(lambda (x,y); list(car x,cdr x,car y,cdr y))
(reverse u,reverse v)

can also be written

{car x,cdr x,car y,cdr y}
where x=reverse u,y=reverse v

Where possible, where syntax is preferred to lambda syntax, since it is more
natural.

21.5 Symbolic Assignment Statements

In symbolic mode, if the left side of an assignment statement is a variable, a setq
of the right-hand side to that variable occurs. If the left-hand side is an expression,
it must be of the form of an array element, otherwise an error will result. For exam-
ple, x:=y translates into (setq x y) whereas a(3) := 3 will be valid if a
has been previously declared a single dimensioned array of at least four elements.
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21.6 FOR EACH Statement

The for each form of the for statement, designed for iteration down a list, is
more general in symbolic mode. Its syntax is:

for each 〈id:identifier〉 (in | on) 〈lst:list〉 (do | collect | join |
product | sum)〈exprn:S-expr〉

As in algebraic mode, if the keyword in is used, iteration is on each element of the
list. With on, iteration is on the whole list remaining at each point in the iteration.
As a result, we have the following equivalence between each form of for each
and the various mapping functions in Lisp:

do collect join
in mapc mapcar mapcan
on map maplist mapcon

Example: To list each element of the list (a b c):

for each x in ’(a b c) collect list x;

21.7 Symbolic Procedures

All the functions described in the Standard Lisp Report are available to users in
symbolic mode. Additional functions may also be defined as symbolic procedures.
For example, to define the Lisp function assoc, the following could be used:

symbolic procedure assoc(u,v);
if null v then nil
else if u = caar v then car v
else assoc(u, cdr v);

If the default mode were symbolic, then symbolic could be omitted in the above
definition. macros may be defined by prefixing the keyword procedure by the
word macro. (In fact, ordinary functions may be defined with the keyword expr
prefixing procedure as was used in the Standard Lisp Report.) For example,

we could define a macro conscons by

symbolic macro procedure conscons l;
expand(cdr l,’cons);

Another form of macro, the smacro is also available. These are described in the
Standard Lisp Report. The Report also defines a function type fexpr. However,
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its use is discouraged since it is hard to implement efficiently, and most uses can be
replaced by macros. At the present time, there are no fexprs in the core REDUCE
system.

21.8 Standard Lisp Equivalent of REDUCE Input

A user can obtain the Standard Lisp equivalent of his REDUCE input by turning
on the switch defn (for definition). The system then prints the Lisp translation
of his input but does not evaluate it. Normal operation is resumed when defn is
turned off.

21.9 Communicating with Algebraic Mode

One of the principal motivations for a user of the algebraic facilities of REDUCE to
learn about symbolic mode is that it gives one access to a wider range of techniques
than is possible in algebraic mode alone. For example, if a user wishes to use parts
of the system defined in the basic system source code, or refine their algebraic
code definitions to make them more efficient, then it is necessary to understand the
source language in fairly complete detail. Moreover, it is also necessary to know a
little more about the way REDUCE operates internally. Basically, REDUCE con-
siders expressions in two forms: prefix form, which follow the normal Lisp rules
of function composition, and so-called canonical form, which uses a completely
different syntax.

Once these details are understood, the most critical problem faced by a user is how
to make expressions and procedures communicate between symbolic and algebraic
mode. The purpose of this section is to teach a user the basic principles for this.

If one wants to evaluate an expression in algebraic mode, and then use that ex-
pression in symbolic mode calculations, or vice versa, the easiest way to do this
is to assign a variable to that expression whose value is easily obtainable in both
modes. To facilitate this, a declaration share is available. share takes a list of
identifiers as argument, and marks these variables as having recognizable values in
both modes. The declaration may be used in either mode.

E.g.,

share x,y;

says that x and y will receive values to be used in both modes.

If a share declaration is made for a variable with a previously assigned algebraic
value, that value is also made available in symbolic mode.
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21.9.1 Passing Algebraic Mode Values to Symbolic Mode

If one wishes to work with parts of an algebraic mode expression in symbolic
mode, one simply makes an assignment of a shared variable to the relevant expres-
sion in algebraic mode. For example, if one wishes to work with (a+b)^2, one
would say, in algebraic mode:

x := (a+b)^2;

assuming that xwas declared shared as above. If we now change to symbolic mode
and say

x;

its value will be printed as a prefix form with the syntax:

(*sq 〈standard quotient〉 t)

This particular format reflects the fact that the algebraic mode processor currently
likes to transfer prefix forms from command to command, but doesn’t like to re-
convert standard forms (which represent polynomials) and standard quotients back
to a true Lisp prefix form for the expression (which would result in excessive com-
putation). So *sq is used to tell the algebraic processor that it is dealing with a
prefix form which is really a standard quotient and the second argument (t or nil)
tells it whether it needs further processing (essentially, an already simplified flag).

So to get the true standard quotient form in symbolic mode, one needs cadr of the
variable. E.g.,

z := cadr x;

would store in Z the standard quotient form for (a+b)^2.

Once you have this expression, you can now manipulate it as you wish. To facilitate
this, a standard set of selectors and constructors are available for getting at parts of
the form. Those presently defined are as follows:

REDUCE Selectors
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denr denominator of standard quotient

lc leading coefficient of polynomial

ldeg leading degree of polynomial

lpow leading power of polynomial

lt leading term of polynomial

mvar main variable of polynomial

numr numerator (of standard quotient)

pdeg degree of a power

red reductum of polynomial

tc coefficient of a term

tdeg degree of a term

tpow power of a term
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REDUCE Constructors
.+ add a term to a polynomial

./ divide (two polynomials to get quotient)

.* multiply power by coefficient to produce term

.^ raise a variable to a power

For example, to find the numerator of the standard quotient above, one could say:

numr z;

or to find the leading term of the numerator:

lt numr z;

Conversion between various data structures is facilitated by the use of a set of
functions defined for this purpose. Those currently implemented include:

!*a2f convert an algebraic expression to a standard form. If result is
rational, an error results;

!*a2k converts an algebraic expression to a kernel. If this is not possible,
an error results;

!*f2a converts a standard form to an algebraic expression;

!*f2q convert a standard form to a standard quotient;

!*k2f convert a kernel to a standard form;

!*k2q convert a kernel to a standard quotient;

!*kk2f convert a non-unique kernel to a standard form;

!*kk2q convert a non-unique kernel to a standard quotient;

!*p2f convert a standard power to a standard form;

!*n2f convert a number to a standard form;

!*p2q convert a standard power to a standard quotient;

!*q2f convert a standard quotient to a standard form. If the quotient de-
nominator is not 1, an error results;

!*q2k convert a standard quotient to a kernel. If this is not possible, an
error results;

!*t2f convert a standard term to a standard form

!*t2q convert a standard term to a standard quotient.
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21.9.2 Passing Symbolic Mode Values to Algebraic Mode

In order to pass the value of a shared variable from symbolic mode to algebraic
mode, the only thing to do is make sure that the value in symbolic mode is a
prefix expression. E.g., one uses (expt (plus a b) 2) for (a+b)^2, or
the format (*sq 〈standard quotient〉 t) as described above. However, if
you have been working with parts of a standard form they will probably not be in
this form. In that case, you can do the following:

1. If it is a standard quotient, call prepsq on it. This takes a standard quo-
tient as argument, and returns a prefix expression. Alternatively, you can
call mk!*sq on it, which returns a prefix form like (*sq 〈standard
quotient〉 t) and avoids translation of the expression into a true pre-
fix form.

2. If it is a standard form, call prepf on it. This takes a standard form as
argument, and returns the equivalent prefix expression. Alternatively, you
can convert it to a standard quotient and then call mk!*sq.

3. If it is a part of a standard form, you must usually first build up a standard
form out of it, and then go to step 2. The conversion functions described
earlier may be used for this purpose. For example,

(a) If z is an expression which is a term, !*t2f z is a standard form.

(b) If z is a standard power, !*p2f z is a standard form.

(c) If z is a variable, you can pass it direct to algebraic mode.

For example, to pass the leading term of (a+b)^2 back to algebraic mode, one
could say:

y:= mk!*sq !*t2q lt numr z;

where y has been declared shared as above. If you now go back to algebraic mode,
you can work with y in the usual way.

21.9.3 Complete Example

The following is the complete code for doing the above steps. The end result will
be that the square of the leading term of (a+ b)2 is calculated.

share x,y; % declare X and Y
% as shared

x := (a+b)^2; % store (a+b)^2 in X
symbolic; % transfer to symbolic mode
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z := cadr x; % store a true standard
% quotient in Z

lt numr z; % print the leading term
% of the numerator of Z

y := mk!*sq !*t2q lt numr z; % store the prefix form of
% this leading term in Y

algebraic; % return to algebraic mode
y^2; % evaluate square of the

% leading term of (a+b)^2

21.9.4 Defining Procedures for Intermode Communication

If one wishes to define a procedure in symbolic mode for use as an operator in alge-
braic mode, it is necessary to declare this fact to the system by using the declaration
operator in symbolic mode. Thus

symbolic operator leadterm;

would declare the procedure leadterm as an algebraic operator. This declaration
must be made in symbolic mode as the effect in algebraic mode is different. The
value of such a procedure must be a prefix form.

The algebraic processor will pass arguments to such procedures in prefix form.
Therefore if you want to work with the arguments as standard quotients you must
first convert them to that form by using the function SIMP!*. This function takes
a prefix form as argument and returns the evaluated standard quotient.

For example, if you want to define a procedure leadtermwhich gives the leading
term of an algebraic expression, one could do this as follows:

% Declare leadterm as a symbolic mode procedure to
% be used in algebraic mode.
symbolic operator leadterm;

% Define leadterm.
symbolic procedure leadterm u;

mk!*sq !*t2q lt numr simp!* u;

Note that this operator has a different effect than the operator lterm . In the latter
case, the calculation is done with respect to the second argument of the operator. In
the example here, we simply extract the leading term with respect to the system’s
choice of main variable.

Finally, if you wish to use the algebraic evaluator on an argument in a symbolic
mode definition, the function reval can be used. The one argument of reval
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must be the prefix form of an expression. reval returns the evaluated expression
as a true Lisp prefix form.
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21.10 Rlisp ’88

Rlisp ’88 is a superset of the Rlisp that has been traditionally used for the support
of REDUCE. It is fully documented in the book [Mar93]. Rlisp ’88 adds to the
traditional Rlisp the following facilities:

1. more general versions of the looping constructs for, repeat and while;

2. support for a backquote construct;

3. support for active comments;

4. support for vectors of the form name[index];

5. support for simple structures;

6. support for records.

In addition, “-” is a letter in Rlisp ’88. In other words, A-B is an identifier, not
the difference of the identifiers A and B. If the latter construct is required, it is
necessary to put spaces around the - character. For compatibility between the two
versions of Rlisp, we recommend this convention be used in all symbolic mode
programs.

To use Rlisp ’88, type on rlisp88;. This switches to symbolic mode with the
Rlisp ’88 syntax and extensions. While in this environment, it is impossible to
switch to algebraic mode, or prefix expressions by “algebraic”. However, symb-
olic mode programs written in Rlisp ’88 may be run in algebraic mode provided the
rlisp88 package has been loaded. We also expect that many of the extensions de-
fined in Rlisp ’88 will migrate to the basic Rlisp over time. To return to traditional
Rlisp or to switch to algebraic mode, say “off rlisp88;”.

21.11 References

There are a number of useful books which can give you further information about
LISP. Here is a selection: [All78, MAE+62, Tou84, WH81].
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Chapter 22

Calculations in High Energy
Physics

A set of REDUCE commands is provided for users interested in symbolic calcula-
tions in high energy physics. Several extensions to our basic syntax are necessary,
however, to allow for the different data structures encountered.

22.1 High Energy Physics Operators

We begin by introducing three new operators required in these calculations.

22.1.1 . (Cons) Operator

Syntax:

(exprn1:vector_expression)
. (exprn2:vector_expression):algebraic.

The binary . operator, which is normally used to denote the addition of an element
to the front of a list, can also be used in algebraic mode to denote the scalar product
of two Lorentz four-vectors. For this to happen, the second argument must be
recognizable as a vector expression at the time of evaluation. With this meaning,
this operator is often referred to as the dot operator. In the present system, the index
handling routines all assume that Lorentz four-vectors are used, but these routines
could be rewritten to handle other cases.

Components of vectors can be represented by including representations of unit vec-
tors in the system. Thus if eo represents the unit vector (1,0,0,0), (p.eo)
represents the zeroth component of the four-vector P. Our metric and notation fol-

1213
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lows Bjorken and Drell [JDB65]. Similarly, an arbitrary component p may be
represented by (p.u). If contraction over components of vectors is required, then
the declaration index must be used. Thus

index u;

declares u as an index, and the simplification of

p.u * q.u

would result in

P.Q

The metric tensor gµν may be represented by (u.v). If contraction over u and v
is required, then they should be declared as indices.

Errors occur if indices are not properly matched in expressions.

If a user later wishes to remove the index property from specific vectors, he can do
it with the declaration remind. Thus remind v1,...,vn; removes the index
flags from the variables V1 through Vn. However, these variables remain vectors
in the system.

22.1.2 G Operator for Gamma Matrices

Syntax:

g(id:identifier[,exprn:vector_expression])
:gamma_matrix_expression.

g is an n-ary operator used to denote a product of γ matrices contracted with
Lorentz four-vectors. Gamma matrices are associated with fermion lines in a Feyn-
man diagram. If more than one such line occurs, then a different set of γ matrices
(operating in independent spin spaces) is required to represent each line. To facil-
itate this, the first argument of g is a line identification identifier (not a number)
used to distinguish different lines.

Thus

g(l1,p) * g(l2,q)

denotes the product of γ · p associated with a fermion line identified as l1, and
γ · q associated with another line identified as l2 and where p and q are Lorentz
four-vectors. A product of γ matrices associated with the same line may be written
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in a contracted form.

Thus

g(l1,p1,p2,...,p3) = g(l1,p1)*g(l1,p2)*...*g(l1,p3) .

The vector a is reserved in arguments of g to denote the special γ matrix γ5. Thus

g(l,a) = γ5 associated with the line l

g(l,p,a) = γ · p× γ5 associated with the line l.

γµ (associated with the line l) may be written as g(l,u), with u flagged as an
index if contraction over u is required.

The notation of Bjorken and Drell is assumed in all operations involving γ matri-
ces.

22.1.3 EPS Operator

Syntax:

eps(exprn1:vector_expression,...,exprn4:vector_exp)
:vector_exp.

The operator eps has four arguments, and is used only to denote the completely
antisymmetric tensor of order 4 and its contraction with Lorentz four-vectors. Thus

ϵijkl =


+1 if i, j, k, l is an even permutation of 0,1,2,3
−1 if i, j, k, l is an odd permutation of 0,1,2,3
0 otherwise

A contraction of the form ϵijµνpµqν may be written as eps(i,j,p,q), with i
and j flagged as indices, and so on.

22.2 Vector Variables

Apart from the line identification identifier in the g operator, all other arguments
of the operators in this section are vectors. Variables used as such must be declared
so by the type declaration vector, for example:

vector p1,p2;

declares p1 and p2 to be vectors. Variables declared as indices or given a mass are
automatically declared vector by these declarations.
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22.3 Additional Expression Types

Two additional expression types are necessary for high energy calculations, namely

22.3.1 Vector Expressions

These follow the normal rules of vector combination. Thus the product of a scalar
or numerical expression and a vector expression is a vector, as are the sum and
difference of vector expressions. If these rules are not followed, error messages are
printed. Furthermore, if the system finds an undeclared variable where it expects
a vector variable, it will ask the user in interactive mode whether to make that
variable a vector or not. In batch mode, the declaration will be made automatically
and the user informed of this by a message.

Examples:

Assuming p and q have been declared vectors, the following are vector expressions

p
2*q/3
2*x*y*p - p.q*q/(3*q.q)

whereas p*q and p/q are not.

22.3.2 Dirac Expressions

These denote those expressions which involve γ matrices. A γ matrix is implicitly
a 4 × 4 matrix, and so the product, sum and difference of such expressions, or the
product of a scalar and Dirac expression is again a Dirac expression. There are
no Dirac variables in the system, so whenever a scalar variable appears in a Dirac
expression without an associated γ matrix expression, an implicit unit 4 by 4 matrix
is assumed. For example, g(l,p) + m denotes g(l,p) + m*〈unit 4 by
4 matrix〉. Multiplication of Dirac expressions, as for matrix expressions, is of
course non-commutative.

22.4 Trace Calculations

When a Dirac expression is evaluated, the system computes one quarter of the trace
of each γ matrix product in the expansion of the expression. One quarter of each
trace is taken in order to avoid confusion between the trace of the scalar m, say,
and m representing m * 〈unit 4 by 4 matrix〉. Contraction over indices
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occurring in such expressions is also performed. If an unmatched index is found in
such an expression, an error occurs.

The algorithms used for trace calculations are the best available at the time this
system was produced. For example, in addition to the algorithm developed by
Chisholm for contracting indices in products of traces, REDUCE uses the elegant
algorithm of Kahane for contracting indices in γ matrix products. These algorithms
are described in [Chi63] and [Kah68].

It is possible to prevent the trace calculation over any line identifier by the declara-
tion nospur. For example,

nospur l1,l2;

will mean that no traces are taken of γ matrix terms involving the line numbers l1
and l2. However, in some calculations involving more than one line, a catastrophic
error

NOSPUR on more than one line not implemented

can occur (for the reason stated!) If you encounter this error, please let us know!

A trace of a γ matrix expression involving a line identifier which has been declared
nospur may be later taken by making the declaration spur.

See also the CVIT package for an alternative mechanism (section D.2).

22.5 Mass Declarations

It is often necessary to put a particle “on the mass shell” in a calculation. This can,
of course, be accomplished with a let command such as

let p.p= m^2;

but an alternative method is provided by two commands mass and mshell.
mass takes a list of equations of the form:

〈vector variable〉 = 〈scalar variable〉

for example,

mass p1=m, q1=mu;
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The only effect of this command is to associate the relevant scalar variable as a
mass with the corresponding vector. If we now say

mshell 〈vector variable〉, . . ., 〈vector variable〉〈terminator〉

and a mass has been associated with these arguments, a substitution of the form

〈vector variable〉. 〈vector variable〉 = 〈mass〉^2

is set up. An error results if the variable has no preassigned mass.

22.6 Example

We give here as an example of a simple calculation in high energy physics the
computation of the Compton scattering cross-section as given in Bjorken and Drell
Eqs. (7.72) through (7.74). We wish to compute the trace of

α2

2

(
k′

k

)2(γ · pf +m

2m

)(
γ · e′γ · eγ · ki

2k.pi
+
γ · eγ · e′γ · kf

2k′ · pi

)
(
γ · pi +m

2m

)(
γ · kiγ · eγ · e′

2k.pi
+
γ · kfγ · e′γ · e

2k′ · pi

)
where ki and kf are the four-momenta of incoming and outgoing photons (with
polarization vectors e and e′ and laboratory energies k and k′ respectively) and pi,
pf are incident and final electron four-momenta.

Omitting therefore an overall factor
α2

2m2

(
k′

k

)2

we need to find one quarter of

the trace of

(γ · pf +m)

(
γ · e′γ · eγ · ki

2k.pi
+
γ · eγ · e′γ · kf

2k′.pi

)
×

(γ · pi +m)

(
γ · kiγ · eγ · e′

2k.pi
+
γ · kfγ · e′γ · e

2k′.pi

)
A straightforward REDUCE program for this, with appropriate substitutions (using
p1 for pi, pf for pf , ki for ki and kf for kf ) is

on div; % this gives output in same form
% as Bjorken and Drell.

mass ki= 0, kf= 0, p1= m, pf= m; vector e,ep;
% if e is used as a vector, it loses its scalar
% identity as the base of natural logarithms.
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mshell ki,kf,p1,pf;
let p1.e= 0, p1.ep= 0, p1.pf= m^2+ki.kf, p1.ki= m*k,

p1.kf= m*kp, pf.e= -kf.e, pf.ep= ki.ep,
pf.ki= m*kp, pf.kf= m*k, ki.e= 0, ki.kf= m*(k-kp),
kf.ep= 0, e.e= -1, ep.ep=-1;

operator gp;
for all p let gp(p)= g(l,p)+m;
comment this is just to save us a lot of writing;
gp(pf)*(g(l,ep,e,ki)/(2*ki.p1) + g(l,e,ep,kf)/

(2*kf.p1))

* gp(p1)*(g(l,ki,e,ep)/(2*ki.p1) + g(l,kf,ep,e)/
(2*kf.p1))$

write "The Compton cxn is ",ws;

(We use p1 instead of pi in the above to avoid confusion with the reserved variable
pi).

This program will print the following result

2 1 -1 1 -1
The Compton cxn is 2*e.ep + ---*k*kp + ---*k *kp - 1

2 2

22.7 Extensions to More Than Four Dimensions

In our discussion so far, we have assumed that we are working in the normal four
dimensions of QED calculations. However, in most cases, the programs will also
work in an arbitrary number of dimensions. The command

vecdim 〈expression〉〈terminator〉

sets the appropriate dimension. The dimension can be symbolic as well as numer-
ical. Users should note however, that the eps operator and the γ5 symbol (a) are
not properly defined in other than four dimensions and will lead to an error if used.

22.8 The CVIT algorithm

An alternative algorithm for computing traces of products of gamma matrices is
available, based on treating of gamma-matrices as 3-j symbols (details may be
found in [IKRT89, Ken82]).

This alternative algorithm is used when the switch cvit is set to on. With cvit
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off, calculations of Diracs matrices traces are performed using standard REDUCE
facilities.

For more information see section D.2.
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REDUCE and Rlisp Utilities

REDUCE and its associated support language system Rlisp include a number of
utilities which have proved useful for program development over the years. The
following are supported in most of the implementations of REDUCE currently
available.

23.1 The Standard Lisp Compiler

Many versions of REDUCE include a Standard Lisp compiler that is automatically
loaded on demand. You should check your system specific user guide to make sure
you have such a compiler. To make the compiler active, the switch comp should be
turned on. Any further definitions input after this will be compiled automatically.
If the compiler used is a derivative version of the original Griss-Hearn compiler
([GH79]), there are other switches that might also be used in this regard. However,
these additional switches are not supported in all compilers. They are as follows:

plap If on, causes the printing of the portable macros produced by the compiler;

pgwd If on, causes the printing of the actual assembly language instructions gen-
erated from the macros;

pwrds If on, causes a statistic message of the form
〈function〉 COMPILED, 〈words〉 WORDS, 〈words〉 LEFT
to be printed. The first number is the number of words of binary program
space the compiled function took, and the second number the number of
words left unused in binary program space.
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23.2 Fast Loading Code Generation Program

In most versions of REDUCE, it is possible to take any set of Lisp, Rlisp or RE-
DUCE commands and build a fast loading version of them. In Rlisp or REDUCE,
one does the following:

faslout <filename>;
<commands or IN statements>
faslend;

To load such a file, one uses the command load, e.g. load foo; or load
foo,bah;

This process produces a fast-loading version of the original file. In some imple-
mentations, this means another file is created with the same name but a different
extension. For example, in PSL-based systems, the extension is b (for binary). In
CSL-based systems, however, this process adds the fast-loading code to a single
file in which all such code is stored. Particular functions are provided by CSL for
managing this file, and described in the CSL user documentation.

In doing this build, as with the production of a Standard Lisp form of such state-
ments, it is important to remember that some of the commands must be instantiated
during the building process. For example, macros must be expanded, and some
property list operations must happen. The REDUCE sources should be consulted
for further details on this.

To avoid excessive printout, input statements should be followed by a $ instead of
the semicolon. With load however, the input doesn’t print out regardless of which
terminator is used with the command.

If you subsequently change the source files used in producing a fast loading file,
don’t forget to repeat the above process in order to update the fast loading file
correspondingly. Remember also that the text which is read in during the creation
of the fast load file, in the compiling process described above, is not stored in your
REDUCE environment, but only translated and output. If you want to use the file
just created, you must then use load to load the output of the fast-loading file
generation program.

When the file to be loaded contains a complete package for a given application,
load_package rather than load should be used. The syntax is the same. How-
ever, load_package does some additional bookkeeping such as recording that
this package has now been loaded, that is required for the correct operation of the
system.
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23.3 The Standard Lisp Cross Reference Program

cref is a Standard Lisp program for processing a set of Standard LISP function
definitions to produce:

1. A “summary” showing:

(a) A list of files processed;

(b) A list of “entry points” (functions which are not called or are only
called by themselves);

(c) A list of undefined functions (functions called but not defined in this
set of functions);

(d) A list of variables that were used non-locally but not declared global
or fluid before their use;

(e) A list of variables that were declared global but not used as fluids,
i.e., bound in a function;

(f) A list of fluid variables that were not bound in a function so that one
might consider declaring them globals;

(g) A list of all global variables present;

(h) A list of all fluid variables present;

(i) A list of all functions present.

2. A “global variable usage” table, showing for each non-local variable:

(a) Functions in which it is used as a declared fluid or global;

(b) Functions in which it is used but not declared;

(c) Functions in which it is bound;

(d) Functions in which it is changed by setq.

3. A “function usage” table showing for each function:

(a) Where it is defined;

(b) Functions which call this function;

(c) Functions called by it;

(d) Non-local variables used.

The program will also check that functions are called with the correct number of
arguments, and print a diagnostic message otherwise.

The output is alphabetized on the first seven characters of each function name.
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23.3.1 Restrictions

Algebraic procedures in REDUCE are treated as if they were symbolic, so that
algebraic constructs will actually appear as calls to symbolic functions, such as
aeval.

23.3.2 Usage

To invoke the cross reference program, the switch cref is used. on cref causes
the cref program to load and the cross-referencing process to begin. After all the
required definitions are loaded, off cref will cause the cross-reference listing
to be produced. For example, if you wish to cross-reference all functions in the
file tst.red, and produce the cross-reference listing in the file tst.crf, the
following sequence can be used:

out "tst.crf";
on cref;
in "tst.red"$
off cref;
shut "tst.crf";

To process more than one file, more in statements may be added before the call of
off cref, or the in statement changed to include a list of files.

23.3.3 Options

Functions with the flag nolist will not be examined or output. Initially, all
Standard Lisp functions are so flagged. (In fact, they are kept on a list nolist!*,
so if you wish to see references to all functions, then cref should be first loaded
with the command load cref, and this variable then set to nil).

It should also be remembered that any macros with the property list flag expand,
or, if the switch force is on, without the property list flag noexpand, will be
expanded before the definition is seen by the cross-reference program, so this flag
can also be used to select those macros you require expanded and those you do not.

23.4 Prettyprinting REDUCE Expressions

REDUCE includes a module for printing REDUCE syntax in a standard format.
This module is activated by the switch pret, which is normally off.

Since the system converts algebraic input into an equivalent symbolic form, the
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printing program tries to interpret this as an algebraic expression before printing
it. In most cases, this can be done successfully. However, there will be occasional
instances where results are printed in symbolic mode form that bears little resem-
blance to the original input, even though it is formally equivalent.

If you want to prettyprint a whole file, say off output,msg; and (hopefully)
only clean output will result. Unlike defn, input is also evaluated with pret on.

23.5 Prettyprinting Standard Lisp S-Expressions

REDUCE includes a module for printing S-expressions in a standard format. The
Standard Lisp function for this purpose is prettyprint which takes a Lisp ex-
pression and prints the formatted equivalent.

Users can also have their REDUCE input printed in this form by use of the switch
defn. This is in fact a convenient way to convert REDUCE (or Rlisp) syntax into
Lisp. off msg; will prevent warning messages from being printed.

NOTE: When defn is on, input is not evaluated.
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Chapter 24

Maintaining REDUCE

Since January 1, 2009 REDUCE is Open Source Software. It is hosted at

https://sourceforge.net/projects/reduce-algebra/

We mention here three ways in which REDUCE is maintained. The first is the
collection of queries, observations and bug-reports. All users are encouraged to
subscribe to the mailing list that SourceForge provides so that they will receive in-
formation about updates and concerns. Also on SourceForge there is a bug tracker
and a discussion forum. The expectation is that the maintainers and keen users
of REDUCE will monitor those and try to respond to issues. However these re-
sources are not there to seek answers to Maths homework problems – they are
intended specifically for issues to do with the use and support of REDUCE.

The second level of support is provided by the fact that all the sources of REDUCE
are available, so any user who is having difficulty either with a bug or understand-
ing system behaviour can consult the code to see if (for instance) comments in it
clarify something that was unclear from the regular documentation.

The source files for REDUCE are available on SourceForge in the Subversion
repository, which provides the command for using a Subversion client to fetch
the most up to date copy of everything. From time to time there may be one-file
archives of a snapshot of the sources placed in the download area (Files tab) on
SourceForge, and eventually some of these may be marked as “stable” releases,
but at present it is recommended that developers use a copy from the Subversion
repository.

The files fetched there come with a directory called “trunk” that holds the main
current REDUCE, and one called “branches” that is reserved for future experimen-
tal versions. All the files that we have for creating help files and manuals should
also be present in the files you fetch.
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The packages that make up the source for the algebraic capabilities of REDUCE
are in the “packages” sub-directory, and often there are test files for a package
present there and especially for contributed packages there will be documentation
in the form of a LATEX file. Although REDUCE is coded in its own language many
people in the past have found that it does not take too long to start to get used to it.

In various cases even fairly “ordinary end users” may wish to fetch the source ver-
sion of REDUCE and compile it all for themselves. This may either be because
they need the benefit of a bug-fix only recently checked into the Subversion repos-
itory or because no pre-compiled binary is available for the particular computer
and operating system they use. This latter is to some extent unavoidable since RE-
DUCE can run on both 32 and 64-bit Windows, the various MacOSX options (e.g.
Intel and Powerpc), many different distributions of Linux, some BSD variants and
Solaris (at least). It is not practically feasible for us to provide a constant stream of
up to date ready-built binaries for all these.

There are instructions for compiling REDUCE present at the top of the trunk source
tree. Usually the hardest issue seems to be ensuring that your computer has an
adequate set of development tools and libraries installled before you start, but once
that is sorted out the hope is that the compilation of REDUCE should proceed
uneventfully if sometimes tediously.

In a typical Open Source way the hope is that some of those who build REDUCE
from source or explore the source (out of general interest or to pursue an under-
standing of some bug or detail) will transform themselves into contributors or de-
velopers, which moves on to the third level of support.

At this third level any user can contribute proposals for bug fixes or extensions to
REDUCE or its documentation. It might be valuable to collect a library of addi-
tional user-contributed examples illustrating the use of the system too. To do this
first ensure that you have a fully up to date copy of the sources from Subversion,
and then depending on just what sort of change is being proposed provide the up-
dates to the developers via the SourceForge bug tracker or other route. In time we
may give more concrete guidance about the format of changes that will be easiest to
handle. It is obviously important that proposed changes have been properly tested
and that they are accompanied with a clear explanation of why they are of benefit.
A specific concern here is that in the past fixes to a bug in one part of REDUCE
have had bad effects on some other applications and packages, so some degree of
caution is called for. Anybody who develops a significant whole new package for
REDUCE is encouraged to make the developers aware so that it can be considered
for inclusion.

So the short form explanation about Support and Maintenance is that it is mainly
focussed around the SourceForge system. If discussions about bugs, requirements
or issues are conducted there then all users and potential users of REDUCE will
be able to benefit from reviewing them, and the Sourceforge mailing lists, tracker,
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forums and wiki will grow to be both a static repository of answers to common
questions, an active set of locations to get new issues looked at and a focus for
guiding future development.
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Appendix A

Reserved Identifiers

We list here all identifiers that are normally reserved in REDUCE including names
of commands, operators and switches initially in the system. Excluded are words
that are reserved in specific implementations of the system.

A.1 Commands

<<. . .>> algebraic anticom antisymmetric array bye clear
clear_dummy_base clear_dummy_names clearrules comment
coframe complex_conjugates cont decompose defid define
define_spaces defindex defpoly depend dfp_commute
display displayframe dummy_base dummy_name ed editdef
end even factor fdomain for forall forder foreach frame
generic_function getcsystem global_sign go goto if in
in_tex index indexrange index_symmetries infix input
integer keep killing_vector korder let linear lisp
listargp load load_package make_variables mass match
mathstyle matrix mshell nodepend noncom nonzero nospur
nosum notrealvalued noxpnd odd off on operator order out
pause pform plotreset plotshow precedence print_indexed
print_noindexed print_precision procedure putcsystem
putgrass quit real realvalued rem_dummy_indices
rem_spaces rem_tensor remanticom remember remfac
remforder remgrass remind remindex remnoncom renosum
remsym remvector resetreduce retry return riemannconx
rtr rtrout rtrst saveas scalar selfconjugate setmod
setring share show_dummy_names showtime shut signature
spacedim sparse spur symbolic symmetric symtree tensor
trrl trrlid tvector unitmat unrtr unrtrst unset untrrl
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untrrlid vec vecdim vector weight write wtlevel vstart
xorder xpnd xvars

A.2 Boolean Operators

abaglistp baglistp bagp checkproplist evenp fixp freeof
grassp matrixp numberp oddp ordp primep realvaluedp setp
sparsematp squarep symmetricp taylorseriesp

A.3 Infix Operators

:= :- ::- = == >= >< > <= < => + - -> -> * / // ^ ** *** .
.+ .* .: ./ .= .. # \ _= _| |_ with where setq or and
cons cross difference divide dot eq equal expt geq
greaterp intersect intersection leq lessp member memq
minus mod neq plus poly_quotient quotient recip set_eq
setdiff subset subset_eq times tpmat union vmod xmod
xmodideal

A.4 Numerical Operators

abs acos acosd acosh acot acotd acoth acsc acscd acsch
AGM_function Airy_Ai Airy_Aiprime Airy_Bi Airy_Biprime
arg argd arccd arccn arccs arcdc arcdn arcds arcnd arcnc
arcns arcsc arcsd arcsn asec asecd asech asin asind
asinh atan atand atanh atan2 atan2d Bernoulli BesselI
BesselJ BesselK BesselY Beta ceiling cos cosd cosh cot
cotd coth csc cscd csch deg2rad deg2dms dms2rad dms2deg
EllipticE EllipticE!’ EllipticF EllipticK EllipticK!’
elliptictheta1 elliptictheta2 elliptictheta3
elliptictheta4 Euler exp factorial fix floor Gamma
Hankel1 Hankel2 hypot ibeta igamma jacobiam JacobiE
jacobicn jacobidn jacobisn JacobiZeta KummerM KummerU
legendre_symbol Lerch_Phi log logb log10 Lommel1
Lommel2 m_gamma nextprime norm Pochhammer Polygamma psi
rad2deg rad2dms round sec secd sech weierstrass_sigma
weierstrass_sigma0 weierstrass_sigma1
weierstrass_sigma2 weierstrass_sigma3 sin sind sinh
sqrt StruveH StruveL tan tand tanh weierstrass
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weierstrass1 weierstrassZeta weierstrassZeta1
WhittakerM WhittakerU Zeta

A.5 Prefix Operators

@ add_columns add_rows add_to_columns add_to_rows
adjoint_cdiffop affine_monomial_curve affine_points
alatomp alg_to_symb algnlist algsort alkernp
allsymmetrybases analytic_spread annihilator append
appendn arbcomplex arbint arbrat arglength
array_to_list asfirst asflist aslast asrest assgrad
assist assisthelp asslist augment_columns
availablegroups avec baglmat band_matrix belast
BernoulliP Bernstein_base bettiNumbers bibasis
bibasis_print_statistics Binomial bounds block_matrix
blowup canonical canonicaldecomposition cde cde_grading
cf cf_continuents cf_convergent cf_convergents cf_euler
cf_expression cf_remove_constant cf_remove_fractions
cf_transform cf_unit_denominators cf_unit_numerators
cfrac change_termorder change_termorder1 char_matrix
char_poly character charactern charactertable
chebyshev_df chebyshev_eval chebyshev_fit chebyshev_int
ChebyshevT ChebyshevU Chebyshev_base_T Chebyshev_base_U
cholesky Ci clearbag clearcaliprintterms clearflag
clearfunctions clearop clearprop Clebsch_Gordan codim
coeff coeff_matrix coeff2 coeffn coercemat cofactor
column_dim combinations combnum comm companion conj
CONTFRAC continued_fraction conv_cdiff2superfun
conv_superfun2cdiff coordinates copy_into cresys
crossvect Csetrepresentation curl cyclicpermlist
dd_groebner defint deflineint deg degree
degsfromresolution delete delete_all deleteunits
dellastdigit delpair delsq den depatom depth depvarp
der_deg_ordering det detidnum df df_odd dfp diagonal
diagonalize diff diffset dilog dim dimzerop directsum
displayflag displayprop div divpol dlineint dotgrad
dummy_indices dpgcd dsolve dvint dvolint easydim
easyindepset easyprimarydecomposition Ei eliminate
ell_function elmult eps eqhull Erf eta1 eta2 eta3
euler_df EulerP eval2 evalb evalproc excoeffs exdegree
expand_cases expand_td explicit ext extend
extended_gosper extended_sumrecursion
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extendedgroebfactor extendedgroebfactor1 extractlist
extremum exvars factorize Fibonacci FibonacciP
find_companion first firstroot followline fourier_cos
fourier_sin FPS frequency frobenius funcvar g gbasis gcd
gcdnl GDIMENSION GegenbauerP Gegenbauer_base generators
get_columns get_rows getdegrees getecart getelmat
getring getkbase getleadterms getroot getrules gfnewt
gfroot ghostfactor gindependent_sets glexconvert
gnuplot gosper grad GradedBettinumbers gram_schmidt
grassparity greduce greduce_orders groebfactor groebner
groebnert groebnerf groebner_walk groepostproc
groesolve gsort gsplit gspoly gvars gzerodim!?
hankel_transform hconcmat hermat HermiteP Hermite_base
hermitian_tp hessian hilbert hilbertpolynomial
HilbertSeries homstbasis hypergeometric hyperrecursion
hypersum hyperterm hypexpand hypreduce I_setting
i_solve ideal_of_minors ideal_of_pfaffians ideal2list
ideal2mat gb intersection idealpower idealprod
idealquotient idealsum (CALI) idealsum (IDEALS) impart
implicit implicit_taylor indepvarsets ineq_solve infsum
initialize_equations initmat insert insert_keep_order
int integrate_equation interpol interreduce intersect
invbase inverse_taylor invlap invlex invtorder
invztrans irreduciblerepnr irreduciblereptable
isolatedprimes isprime iszeroradical jacobian JacobiP
jet_dim jet_fiber_dim jordan jordan_block
jordansymbolic K_transform kernlist korderlist
kronecker_product LaguerreP Laguerre_base LAPLACE
laplace_transform last lattice_delta lattice_e1
lattice_e2 lattice_e3 lattice_g lattice_g2 lattice_g3
lattice_generators lattice_invariants lattice_roots
lazystbasis leadterm LegendreP Legendre_base lcm lcof
left_factor left_factors length lhs lieclass
liendimcom1 lineint lineint linelength list
list_to_array list_to_ids listbag listgroebfactor
loadgroups log_sum lowestdeg lpdofac lpdofacx
lpdofactorize lpdofactorizex lpdogp lpdogdp lpdoord
lpdoptl lpdos lpdoset lpdosym lpdosym2dp lpdoweyl
lpower lterm lu_decom m_solve m_roots mainvar
make_identity map make_partic_tens mat mat2list
matappend mateigen matextc matextr mathomogenize
matintersect matjac matqquot matquot matrix_augment
matrix_stack matstabquot matsubr matsubc matsum max
MeijerG merge_list min minimal_generators minor minors
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minvect mk_cdiffop mk_ids_belong_space
mk_ids_belong_anyspace mk_superfun mkalllinodd
mkdepth_one mkgam mkid mkidm mkidnew mklist mkrandtabl
mkset mkvarlist1 monom modequalp modulequotient
monomial_base Motzkin mpvect mult_columns mult_rows
multi_coeff nc_cleanup nc_compact nc_divide
nc_factorize nc_factorize_ALL nc_groebner nc_preduce
nc_setup nearestroot nm noether noexpand_td nome
nome2!K nome2!K!’ nome2mod nome2mod!’ nordp normalform
nullspace num num_fit num_int num_min num_odesolve
num_solve num_to_perm nzdp odesolve one_of ov_limit
pade pair part partial periodic periodic2rational
perm_to_num permutations pf pfaffian pivot plot
plus_or_minus poleorder position precision precp
preduce preducet preimage prgen primarydecomposition
printgroup proc prod proj_monomial_curve proj_points
print_conditions prsys PS pschangevar pscompose pscopy
psdepvar pseudo_divide pseudo_inverse pseudo_quotient
pseudo_remainder psexplim psexpansionpt psfunction
psordlim psorder psreverse pssum pstaylor psterm
pstruncate put_equations_used putbag putflag putprop
pvar_df quasi_period_factors r_solve radical rand
random random_linear_form random_matrix random_new_seed
randomlist randpoly rank ratint rational2periodic
ratjordan ratpreimage realroots rederr redexpr reduct
remainder remove remove_columns remove_rows reimpart
repart repfirst represt residue resolve rest restaslist
result resultant reverse rhs left_factor left_factors
rlrootno root_of root_of_unity root_val rootacc
rootprec roots roots_at_prec root_val row_dim
rows_pivot Rsetrepresentation saturation save_cde_state
savemat scalefactors scalvect schouten_bracket second
select selectvars sequences set setavailable
setcaliprintterms setcalitrace setdegrees setelements
setelmat setgbasis setgenerators setgrouptable setideal
setmodule setring setrules show show_epsilons
show_spaces showproc showrules Si sieve sign SimpleDE
simplex simplify_gamma simplify_gamma2 simplify_gamman
simplify_combinatorial simpsys singular_locus
SixJSymbol smithex smithex_int solve SolidHarmonicY
sortlist sortnumlist spadd_columns spadd_rows
spadd_to_COLUMNS spadd_to_ROWS spaugment_columns
spband_matrix spblock_matrix spchar_matrix spchar_poly
spcholesky spcoeff_matrix spcol_dim spcompanion
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spcopy_into spdiagonal spextend spfind_companion
spget_columns spget_rows spgram_schmidt
SphericalHarmonicY sphermitian_tp sphessian spjacobian
spjordan_block split_field split splitext_list
splitext_opequ splitplusminus splitterms
splitvars_opequ splu_decom spmake_identity
spmatrix_augment spmatrix_stack spminor spmult_columns
spmult_rows sppivot sppseudo_inverse spremove_columns
spremove_rows sprow_dim sprows_pivot spstack_rows
spsub_matrix spsvd spswap_columns spswap_entries
spswap_rows stack_rows Stirling1 Stirling2 storegroup
structr struveh_transform sub sub_matrix submat
submodulep substitute sum summ sumvect sumtohyper
sumrecursion super_vectorfield suppress svd svec
swap_columns swap_entries swap_rows switches switchorg
sym symb_to_alg symdiff symmetrize symmetrybasis
symmetrybasispart symbolic_power syzygies tangentcone
taylor taylorcoefflist taylorcombine taylororiginal
taylorrevert taylortemplate taylortostandard testbool
theta1d theta2d theta3d theta4d third ThreeJSymbol
toeplitz torder torder_compile totaldeg tp trace
triang_adjoint trigexpand trigfactorize triggcd trigint
trigonometric_base trigreduce trigsimp union
vandermonde vardf varname varopt vconcmat vdf vint
volint volintegral vtaylor WeightedHilbertSeries
wholespace_dim wu xauto xmod xmodideal xideal
Y_transform zeroprimarydecomposition zeroprimes
zeroradical zerosolve ztrans

A.6 Reserved Variables

!__FILE__ !__LINE__ all_graded_der all_parametric_der
all_parametric_odd all_principal_der all_principal_odd
assumptions cali!=basering cali!=degrees cali!=monset
card_no catalan coords dep_var e euler_gamma eval_mode
fort_width fps_search_depth gltb glterms gmodule
golden_ratio gosper_representation gorders groebmonfac
greduce_result groebprotfile groebresmax
groebrestriction gvarslast hfactors high_pow i
indep_var infinity invtempbasis jacobian k!* khinchin
laline!* lie_list lie_class liemat lientrans low_pow mm
nc_factor_time negative nil nn no_glaisher odd_var
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pclass pi positive principal_der rates
repprincparam_der repprincparam_odd requirements
root_multiplicities rootacc!# rootsreal rootscomplex
set_distribution_rule species t taylorprintterms to_cn
to_dn to_sn total_order volintorder wholespace zb_f
zb_direction zb_order zb_sigma
zeilberger_representation

A.7 Switches

adjprec algint allbranch allfac allowdfint anticom
arbvars balanced_mod bcsimp bezout bfspace cf_taylor
checkord combineexpt combinelogs commutedf comp complex
CONTRACT cramer cref CVIT defn demo detectunits dfint
dfprint dispjacobian DISTRIBUTE div echo errcont
evallhseqp exdelt exp expanddf expandlogs ezgcd factor
factorprimes factorunits failhard fastsimplex fort
fortupper fullroots gcd gltbasis glterms
groebfullreduction groebopt groebprot groebstat
hardzerotest heugcd horner ifactor imaginary int intstr
latex latex lexefgb lcm lhyp list listargs lmon
lower_matrix ltrig mcd modular msg multiplicities
multiroot nat nero nocommutedf noconvert Noetherian
nointsubst nolnr nosplit nosum not_negative
odesolve_basis odesolve_check odesolve_expand
odesolve_explicit odesolve_fast odesolve_full
odesolve_implicit odesolve_noint odesolve_verbose
onespace only_integer output overview period plotkeep
precise precise_complex pret pri psprintorder rat
ratarg rational rationalize ratpri ratroot red_total
revpri rlisp88 rootmsg roundall roundbf rounded
savestructr semantic simpnoncomdf solvesingular
symmetric taylorautocombine taylorautoexpand
taylorkeeporiginal taylorprintorder time tr_lie tra
tracefps traceratint tracetrig trcompact trdefint trfac
trgroeb trgroeb1 trgroebr trgroebs trigform trint trint
trode trplot trpm sym!-assoc trroot trsolve trsum
trxideal trxmod trwu upper_matrix varopt latex
xfullreduce zb_factor zb_proof zb_trace
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A.8 Other Reserved Ids

bag begin do then expr fexpr function input lambda lisp
listproc macro matrixproc product repeat smacro sum then
until when while ws
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Appendix C

Changes since Version 3.8

New packages assert bibasis breduce cde cdiff clprl gcref guardian lalr lessons
libreduce listvecops logoturtle lpdo redfront reduce4 sstools utf8 with

Core package rlisp Support for namespaces (::)

Default value in switch statement

Support for utf8 characters

in_tex command

Core package poly Improvements for differentiation: new switches
expanddf, allowdfint etc (from odesolve)

New operator reimpart

Core package alg New switch precise_complex

Improvements for switch combineexpt (exptchk.red)

New command unset

New operators continued_fraction, totaldeg

Improvements to the conj operator, added selfconjugate declaration.

Added complex_conjugates declaration to associate pairs of identifiers as
mutual complex-conjugates.

Core Package mathpr New switch unicode_in_off_nat to have unicode
characters displayed as such when nat is off.
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Core Package solve New boolean operator polyp(p,var), to determine
whether p is a pure polynomial in var, ie. the coefficients of p do not contain var.

Core Package matrix New keyword matrixproc for declaration of
matrix-valued procedures, and listproc for declaration of list-valued procedures.

Operators now defined in the REDUCE core From changevar: changevar,

From polyrat: divide, pseudo_divide, pseudo_div,
pseudo_quotient, pseudo_remainder,

From specfn: Li, Si, Ci, Shi, Chi, Fresnel_S, Fresnel_C, gamma,
igamma, psi, polygamma, beta, ibeta, euler, bernoulli,
pochhammer, lerch_phi, polylog, zeta, besselj, bessely,
besseli, besselk, hankel1, hankel2, kummerM, kummerU, struveh,
struvel, lommel1, lommel2, whittakerm, whittakerw, Airy_Ai,
Airy_Bi, Airy_AiPrime, Airy_biprime, binomial,
solidharmonic, sphericalharmonic, fibonacci,fibonaccip,
motzkin, hypergeometric, MeijerG

From limit: limits, limit!+, limit!-,

From taylor and tps taylor, implicit_taylor, inverse_taylor,
taylororiginal, taylortemplate, taylorcoefflist,
taylortostandard, taylorcombine, taylorseriesp,
taylorrevert, ps, psexplim, psordlim, psterm, psorder,
pssetorder, psdepvar, psexpansionpt, psfunction,
pschangevar, psreverse, pscompose, pssum, pstaylor, pscopy,
pstruncate

From fps: fps, simplede, infsum

From compact: compact

From residue: residue, poleorder

From ineq and rsolve: ineq_solve, r_solve, i_solve,

From roots: realroots, isolater, rlrootno, roots,
roots_at_prec, root_val, nearestroot, firstroot, getroot,
mkpoly, gfnewt, gfroot,

From laplace: laplace, invlap,

From defint: laplace_transform, hankel_transform, y_transform,
k_transform, struveh_transform, fourier_sin, fourier_cos,

From arnum: defpoly, split_field

From zeilberg: extended_gosper, extended_sumrecursion, gosper,
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hyperrecursion, hypersum, hyperterm, sumtohyper,
sumrecursion, simplify_gamma, simplify_gamma2,
simplify_gamman, simplify_combinatorial,

From trigsimp: trigsimp, triggcd, trigfactorize

From ratint: ratint, log_sum

From odesolve: odesolve, dsolve, root_of_unity, plus_or_minus,

From gnuplot: New operator plot, new commands gnuplot, plotshow and
plotreset.

New switches tracefps, zb_factor, zb_proof, zb_trace

Constants now part of the core:
catalan, euler_gamma, golden_ratio, khinchin.

Variables as part of the core: gosper_representation, zb_direction,
zb_order, zeilberger_representation,

Consistent branch cuts for complex numerical functions.

Package specfn psi (digamma) function can now be calculated numerically for
complex arguments.

Package specfn New functions: theta1d, theta2d, theta3d and
theta4d — numerical evaluation derivatives of theta functions.

Package specfn Weierstrass, WeierstrassZeta, sigma, sigma1,
sigma2, sigma3 and sigma4 — rules and numerical code added.

Package defint Added tracing output printing of which is controlled by the
switch trdefint.

TeXmacs interface Print prompt numbers by setting the switch
promptnumbers to on by default.

Package excalc New command killing_vector.

Package specfn arcsn, arccn, arcdn, arcns, arcnc, arcnd, arcsc,
arcsd, arccs, arccd, arcds, arcdc — rules and numerical code added for
inverse Jacobian elliptic funtions, real arguments and values only.
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Package ellipfn New package comprising modules: ellipfn, efjacobi,
efellint, efjacinv, eftheta and efweier. These are essentially copies
of the modules sfellip, sfellipi, sfellipinv, sftheta and
sfweier which have been removed from package specfn. Documentation
moved into a new user contributed package in ellipfn.tex.



Appendix D

Description of Algorithms

D.1 Definite Integration

This section describes part of REDUCE’s definite integration package that is able
to calculate the definite integrals of many functions, including several special
functions. There are other parts of this package, such as Stan Kameny’s code for
contour integration, that are not included here. The integration process described
here is not the more normal approach of initially calculating the indefinite
integral, but is instead the rather unusual idea of representing each function as a
Meijer G-function (a formal definition of the Meijer G-function can be found in
[PBM89]), and then calculating the integral by using the following Meijer G
integration formula.

∫ ∞

0
xα−1Gst

uv

(
σx

∣∣∣∣∣ (cu)(dv)

)
Gmn

pq

(
ωxl/k

∣∣∣∣∣ (ap)(bq)

)
dx = kGij

kl

(
ξ

∣∣∣∣∣ (gk)(hl)

)
(D.1)

The resulting Meijer G-function is then retransformed, either directly or via a
hypergeometric function simplification, to give the answer. A more detailed
account of this theory can be found in [AM90].

D.1.1 Integration between zero and infinity

As an example, if one wishes to calculate the following integral

∫ ∞

0
x−1e−x sin(x) dx

then initially the correct Meijer G-functions are found, via a pattern matching
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process, and are substituted into eq. D.1 to give

√
π

∫ ∞

0
x−1G10

01

(
x

∣∣∣∣∣ .0
)
G10

02

(
x2

4

∣∣∣∣∣ . .1
2 0

)
dx

The cases for validity of the integral are then checked. If these are found to be
satisfactory then the formula is calculated and we obtain the following Meijer
G-function

G12
22

(
1

∣∣∣∣∣ 1
2 1
1
2 0

)
This is reduced to the following hypergeometric function

2F1(
1

2
, 1;

3

2
;−1)

which is then calculated to give the correct answer of

π

4

The above formula (D.1) is also true for the integration of a single Meijer
G-function by replacing the second Meijer G-function with a trivial Meijer
G-function.

A list of numerous particular Meijer G-functions is available in [PBM89].

D.1.2 Integration over other ranges

Although the description so far has been limited to the computation of definite
integrals between 0 and infinity, it can also be extended to calculate integrals
between 0 and some specific upper bound, and by further extension, integrals
between any two bounds. One approach is to use the Heaviside function, i.e.

∫ ∞

0
x2e−xH(1− x) dx =

∫ 1

0
x2e−xdx

Another approach, again not involving the normal indefinite integration process,
again uses Meijer G-functions, this time by means of the following formula

∫ y

0
xα−1Gmn

pq

(
σx

∣∣∣∣∣ (au)(bv)

)
dx = yαGm n+1

p+1 q+1

(
σy

∣∣∣∣∣ (a1..an, 1− α, an+1..ap)

(b1..bm,−α, bm+1..bq)

)
(D.2)
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For a more detailed look at the theory behind this see [AM90].

For example, if one wishes to calculate the following integral

∫ y

0
sin(2

√
x) dx

then initially the correct Meijer G-function is found, by a pattern matching
process, and is substituted into eq. D.2 to give

∫ y

0
G10

02

(
x

∣∣∣∣∣ . .1
2 0

)
dx

which then in turn gives

y G11
13

(
y

∣∣∣∣∣ 0
1
2 −1 0

)
dx

and returns the result

√
π J3/2(2

√
y) y

y1/4

D.1.2.1 Examples ∫ ∞

0
e−xdx

int(e^(-x),x,0,infinity);

1

∫ ∞

0
x sin(1/x) dx

int(x*sin(1/x),x,0,infinity);

1
int(x*sin(---),x,0,infinity)

x
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∫ ∞

0
x2 cos(x) e−2xdx

int(x^2*cos(x)*e^(-2*x),x,0,infinity);

4
-----
125

∫ ∞

0
xe−1/2xH(1− x) dx =

∫ 1

0
xe−1/2xdx

int(x*e^(-1/2x)*Heaviside(1-x),x,0,infinity);

2*(2*sqrt(e) - 3)
-------------------

sqrt(e)

∫ 1

0
x log(1 + x) dx

int(x*log(1+x),x,0,1);

1
---
4

∫ y

0
cos(2x) dx

int(cos(2x),x,y,2y);

sin(4*y) - sin(2*y)
---------------------

2

D.1.3 Integral Transforms

A useful application of the definite integration package is in the calculation of
various integral transforms. The transforms available are as follows:
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• Laplace transform

• Hankel transform

• Y-transform

• K-transform

• StruveH transform

• Fourier sine transform

• Fourier cosine transform

D.1.3.1 Laplace transform

The Laplace transform

f(s) = L{F(t)} =
∫ ∞

0
e−stF (t) dt

can be calculated by using the laplace_transform operator.

This requires as parameters

• the function to be integrated

• the integration variable.

For example

L{e−at}

is entered as

laplace_transform(e^(-a*x),x);

and returns the result

1

s+ a
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D.1.3.2 Hankel transform

The Hankel transform

f(ω) =

∫ ∞

0
F (t)Jν(2

√
ωt) dt

can be calculated by using the hankel_transform operator, e.g.,

hankel_transform(f(x),x);

This is used in the same way as the laplace_transform operator.

D.1.3.3 Y-transform

The Y-transform

f(ω) =

∫ ∞

0
F (t)Yν(2

√
ωt) dt

can be calculated by using the Y_transform operator, e.g.,

Y_transform(f(x),x);

This is used in the same way as the laplace_transform operator.

D.1.3.4 K-transform

The K-transform

f(ω) =

∫ ∞

0
F (t)Kν(2

√
ωt) dt

can be calculated by using the K_transform operator, e.g.,

K_transform(f(x),x);

This is used in the same way as the laplace_transform operator.

D.1.3.5 StruveH transform

The StruveH transform
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f(ω) =

∫ ∞

0
F (t)StruveH(ν, 2

√
ωt) dt

can be calculated by using the struveh_transform operator, e.g.,

struveh_transform(f(x),x);

This is used in the same way as the laplace_transform operator.

D.1.3.6 Fourier sine transform

The Fourier sine transform

f(s) =

∫ ∞

0
F (t) sin(st) dt

can be calculated by using the fourier_sin operator, e.g.,

fourier_sin(f(x),x);

This is used in the same way as the laplace_transform operator.

D.1.3.7 Fourier cosine transform

The Fourier cosine transform

f(s) =

∫ ∞

0
F (t) cos(st) dt

can be calculated by using the fourier_cos operator, e.g.,

fourier_cos(f(x),x);

This is used in the same way as the laplace_transform operator.

D.1.3.8 The print_conditions function

The required conditions for the validity of the transform integrals can be viewed
using the following command:

print_conditions().
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For example after calculating the following laplace transform

laplace_transform(x^k,x);

using the print_conditions operator would produce

1
repart(sum(ai) - sum(bj)) + ---*(q + 1 - p)

2

>(q - p)*repart(s) and

( - min(repart(bj))<repart(s))<1 - max(repart(ai))

or arg(eta)=pi*delta or

( - min(repart(bj))<repart(s))<1 - max(repart(ai))

or arg(eta)<pi*delta

where
delta = s+ t− u−v

2
eta = 1− α(v − u)− µ− ρ
µ =

∑q
j=1 bj −

∑p
i=1 ai +

p−q
2 + 1

ρ =
∑v

j=1 dj −
∑u

i=1 ci +
u−v
2 + 1

s, t, u, v, p, q, α as in eq. D.1

D.1.4 Extending the Tables

The relevant Meijer G representation for any function is found by a
pattern-matching process which is carried out on a list of Meijer G-function
definitions. This list, although extensive, can never hope to be complete and
therefore the user may wish to add more definitions. Definitions can be added by
adding the following lines:

defint_choose(f(~x),~var => f1(n,x);

symbolic putv(mellin!-transforms!*,n,’
(() (m n p q) (ai) (bj) (C) (var)));

where f(x) is the new function, i = 1, . . . , p, j = 1, . . . , q, C a constant, var =
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variable, n = an indexing number, where all expression must be in internal prefix
form.

For example when considering cos(x) we have the Meijer G representation –

cosx =
√
πG10

02

(
x2

4

∣∣∣∣∣ . .0 1
2

)
dx

i.e. m = 1, n = 0, p = 0, q = 2, ai = {}, bj = {0, 1/2), C =
√
π. The

corresponding internal definite integration package representation is

defint_choose(cos(~x),~var) => f1(3,x);

where 3 is the indexing number corresponding to the 3 in the following formula

symbolic putv(mellin!-transforms!*,3,’
(() (1 0 0 2) () (nil (quotient 1 2))
(sqrt pi) (quotient (expt x 2) 4)));

or the more interesting example of the Bessel function Jn(x):

Meijer G representation –

Jn(x)G
10
02

(
x2

4

∣∣∣∣∣ . .
n
2

−n
2

)
dx

Internal definite integration package representation –

defint_choose(besselj(~n,~x),~var) => f1(50,x,n);

symbolic putv(mellin!-transforms!*,50,’
((n) (1 0 0 2) () ((quotient n 2)

(minus (quotient n 2))) 1
(quotient (expt x 2) 4)));
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D.2 The CVIT package

This package provides an alternative method for computing traces of Dirac
gamma matrices, based on an algorithm by Cvitanovich that treats gamma
matrices as 3-j symbols.

Authors: V.Ilyin, A.Kryukov, A.Rodionov, A.Taranov.

In modern high energy physics the calculation of Feynman diagrams are still very
important. One of the difficulties of these calculations are trace calculations. So
the calculation of traces of Dirac’s γ-matrices were one of first task of computer
algebra systems. All available algorithms are based on the fact that
gamma-matrices constitute a basis of a Clifford algebra:

{Gm, Gn} = 2gmn.

We present the implementation of an alternative algorithm based on treating of
gamma-matrices as 3-j symbols (details may be found in [IKRT89, Ken82]).

The program consists of 5 modules described below.
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MODULES CROSS REFERENCES
+--------+
| REDUCE |
|________| |ISIMP1
ISIMP2| +-----------------------+

+--->-----| RED_TO_CVIT_INTERFACE |
|_______________________|

CALC_SPUR| |REPLACE_BY_VECTOR
| |REPLACE_BY_VECTORP
| |GAMMA5P
^ V
+--------------+
| CVITMAPPING |
|______________|

^
|PRE-CALC-MAP
|CALC_MAP_TAR
|CALC_DENTAR
|

+-------------+
| INTERFIERZ |
|_____________|

| |MK-NUMR
| |STRAND-ALG-TOP
| ^

MAP-TO-STRAND| +------------+
INCIDENT1| | EVAL-MAPS |

| |____________|
^ |DELETEZ1
| |CONTRACT-STRAND

+----------------+ |COLOR-STRAND
| MAP-TO-STRAND |--->--+
|________________|

Module RED_TO_CVIT_INTERFACE

Author: A.P.Kryukov
Purpose:interface REDUCE and CVIT package

RED_TO_CVIT_INTERFACE module is intended for connection of REDUCE
with main module of CVIT package. The main idea is to preserve standard
REDUCE syntax for high energy calculations. For realization of this we redefine
SYMBOLIC PROCEDURE ISIMP1 from HEPhys module of REDUCE system.
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After loading CVIT package user may use switch CVIT which is ON by default. If
switch CVIT is OFF then calculations of Diracs matrices traces are performed
using standard REDUCE facilities. If CVIT switch is ON then CVIT package will
be active.

RED_TO_CVIT_INTERFACE module performs some primitive simplification
and control input data independently. For example it remove GmGm, check parity
of the number of Dirac matrices in each trace etc. There is one principal
restriction concerning G5-matrix. There are no closed form for trace in
non-integer dimension case when trace include G5-matrix. The next restriction is
that if the space-time dimension is integer then it must be even (2,4,6,...). If these
and other restrictions are violated then the user get corresponding error message.
List of messages is included.

LIST OF IMPORTED FUNCTIONS
-------------------------------------------------
Function From module

-------------------------------------------------
ISIMP2 HEPhys
CALC_SPUR CVITMAPPING

-------------------------------------------------

LIST OF EXPORTED FUNCTION
-------------------------------------------------
Function To module

-------------------------------------------------
ISIMP1 HEPhys (redefine)
REPLACE_BY_VECTOR EVAL_MAP
REPLACE_BY_VECTORP EVAL__MAP
GAMMA5P CVITMAPPING, EVAL_MAP

-------------------------------------------------

Module CVITMAPPING

Author: A.Ya.Rodionov
Purpose: graphs reduction

CVITMAPPING module is intended for diagrams calculation according to
Cvitanovic - Kennedy algorithm. The top function of this module CALC_SPUR
is called from RED_TO_CVIT_INTERFACE interface module. The main idea of
the algorithm consists in diagram simplification according to rules (1.9’) and
(1.14) from [1]. The input data - trace of Diracs gamma matrices (G-matrices) has
a form of a list of identifiers lists with cyclic order. Some of identifiers may be
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identical. In this case we assume summation over dummy indices. So trace
Sp(GbGr).Sp(GwGbGcGwGcGr) is represented as list ((b r) (w b c w c r)).

The first step is to transform the input data to “map” structure and then to reduce
the map to a “simple” one. This transformation is made by function
TRANSFORM_MAP_ (top function). Transformation is made in three steps. At
the first step the input data are transformed to the internal form - a map (by
function PREPARE_MAP_). At the second step a map is subjected to Fierz
transformations (1.14) (function MK_SIMPLE_MAP_). At this step of
optimization can be maid (if switch CVITOP is on) by function MK_FIRZ_OP. In
this case Fierzing starts with linked vertices with minimal distance (number of
vertices) between them. After Fierz transformations map is further reduced by
vertex simplification routine MK_SIMPLE_VERTEX using (1.9’). Vertices
reduced to primitive ones, that is to vertices with three or less edges. This is the
last (third) step in transformation from input to internal data.

The next step is optional. If switch CVITBTR is on factorisation of bubble
(function FIND_BUBBLES1) and triangle (function FIND_TRIANGLES1)
submaps is made. This factorisation is very efficient for “wheel” diagrams and
unnecessary for “lattice” diagrams. Factorisation is made recursively by
substituting composed edges for bubbles and composed vertices for triangles. So
check (function SORT_ATLAS) must be done to test possibility of future marking
procedure. If the check fails then a new attempt to reorganize atlas (so we call
complicated structure witch consists of MAP, COEFFicient and DENOMinator) is
made. This cause backtracking (but very seldom). Backtracking can be traced by
turning on switch CVITRACE. FIND_BUBLTR is the top function of this
program’s branch.

Then atlases must be prepared (top function WORLD_FROM_ATLAS) for final
algebraic calculations. The resulted object called “world” consists of edges names
list (EDGELIST), their marking variants (VARIANTS) and WORLD1 structure.
WORLD1 structure differs from WORLD structure in one point. It contains
MAP2 structure instead of MAP structure. MAP2 is very complicated structure
and consist of VARIANTS, marking plan and GSTRAND. (GSTRAND
constructed by PRE!-CALC!-MAP_ from INTERFIERZ module.) By marking
we understand marking of edges with numbers according to Cvitanovic - Kennedy
algorithm.

The last step is performed by function CALC_WORLD. At this step algebraic
calculations are done. Two functions CALC_MAP_TAR and CALC_DENTAR
from INTERFIERZ module make algebraic expressions in the prefix form. This
expressions are further simplified by function REVAL. This is the REDUCE
system general function for algebraic expressions simplification. REVAL and
SIMP!* are the only REDUCE functions used in this module.

There are also some functions for printing several internal structures:
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PRINT_ATLAS, PRINT_VERTEX, PRINT_EDGE, PRINT_COEFF,
PRINT_DENOM. This functions can be used for debugging.

If an error occur in module CVITMAPPING the error message “ERROR IN MAP
CREATING ROUTINES” is displayed. Error has number 55. The switch
CVITERROR allows to give full information about error: name of function where
error occurs and names and values of function’s arguments. If CVITERROR
switch is on and backtracking fails message about error in SORT_ATLAS
function is printed. The result of computation however will be correct because in
this case factorized structure is not used. This happens extremely seldom.

List of imported function
-------------------------------------------------
function from module

-------------------------------------------------
REVAL REDUCE
SIMP!* REDUCE
CALC_MAP_TAR INTERFIERZ
CALC_DENTAR INTERFIERZ
PRE!-CALC!-MAP_ INTERFIERZ
GAMMA5P RED_TO_CVIT_INTERFACE

-------------------------------------------------

List of exported function
-------------------------------------------------
function to module

-------------------------------------------------
CALC_SPUR REDUCE - CVIT interface

-------------------------------------------------

Data structure
WORLD ::= (EDGELIST,VARIANTS,WORLD1)
WORLD1 ::= (MAP2,COEFF,DENOM)
MAP2 ::= (MAPS,VARIANTS,PLAN)
MAPS ::= (EDGEPAIR . GSTRAND)
MAP1 ::= (EDGEPAIR . MAP)
MAP ::= list of VERTICES (unordered)
EDGEPAIR ::= (OLDEDGELIST . NEWEDGELIST)
COEFF ::= list of WORLDS (unordered)
ATLAS ::= (MAP,COEFF,DENOM)
GSTRAND ::= (STRAND*,MAP,TADPOLES,DELTAS)
VERTEX ::= list of EDGEs (with cyclic order)
EDGE ::= (NAME,PROPERTY,TYPE)
NAME ::= ATOM
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PROPERTY ::= (FIRSTPAIR . SECONDPAIR)
TYPE ::= T or NIL
------------------------------------------------

*Define in module MAP!-TO!-STRAND.

Modules INTERFIERZ, EVAL_MAPS, AND MAP-TO-STRAND

Author: A.Taranov
Purpose: evaluate single Map

Module INTERFIERZ exports to module CVITMAPPING three functions:
PRE-CALC-MAP_, CALC-MAP_TAR, CALC-DENTAR.

Function PRE-CALC-MAP_ is used for preliminary processing of a map. It
returns a list of the form (STRAND NEWMAP TADEPOLES DELTAS) where
STRAND is strand structure described in MAP-TO-STRAND module.
NEWMAP is a map structure without “tadepoles” and “deltas”. “Tadepole” is a
loop connected with map with only one line (edge). “Delta” is a single line
disconnected from a map. TADEPOLES is a list of “tadepole” submaps. DELTAS
is a list (CONS E1 E2) where E1 and E2 are

Function CALC_MAP_TAR takes a list of the same form as returned by
PRE-CALC-MAP_, a-list, of the form (... edge . weight ... ) and returns a prefix
form of algebraic expression corresponding to the map numerator.

Function CALC-DENTAR returns a prefix form of algebraic expression
corresponding to the map denominator.

Module EVAL-MAP exports to module INTERFIERZ functions MK-NUMR and
STRAND-ALG-TOP.

Function MK-NUMR returns a prefix form for some combinatorial coefficient
(Pohgammer symbol).

Function STRAND-ALG-TOP performs an actual computation of a prefix form of
algebraic expression corresponding to the map numerator. This computation is
based on a “strand” structure constructed from the “map” structure.

Module MAP-TO-STRAND exports functions MAP-TO-STRAND, INCIDENT1
to module INTERFIERZ and functions DELETEZ1, CONTRACT-STRAND,
COLOR-STRAND to module EVAL-MAPS.

Function INCIDENT1 is a selector in “strand” structure. DELETEZ1 performs
auxiliary optimization of “strand”. MAP-TO-STRAND transforms “map” to
“strand” structure. The latter is describe in program module.

CONTRACT-STRAND do strand vertex simplifications of “strand” and
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COLOR-STRAND finishes strand generation.

Description of STRAND data structure.
STRAND ::=<LIST OF VERTEX>
VERTEX ::=<NAME> . (<LIST OF ROAD> <LIST OF ROAD>)
ROAD ::=<ID> . NUMBER
NAME ::=NUMBER

LIST OF MESSAGES

• CALC_SPUR: <vecdim> IS NOT EVEN SPACE-TIME DIMENSION The
dimension of space-time <vecdim> is integer but not even. Only even
numeric dimensions are allowed.

• NOSPUR NOT YET IMPLEMENTED Attempt to calculate trace when
NOSPUR switch is on. This facility is not implemented now.

• G5 INVALID FOR VECDIM NEQ 4 Attempt to calculate trace with
gamma5-matrix for space-time dimension not equal to 4.

• CALC_SPUR: <expr> HAS NON-UNIT DENOMINATOR The <expr>
has non-unit denominator.

• THREE INDICES HAVE NAME <name> There are three indices with
equal names in evaluated expression.

List of switches
------------------------------------------------------
switch default comment

------------------------------------------------------
CVIT ON If it is on then use Kennedy-

Cvitanovic algorithm else use
standard facilities.

CVITOP OFF Fierz optimization switch
CVITBTR ON Bubbles and triangles

factorisation switch
CVITRACE OFF Backtracking tracing switch

------------------------------------------------------

Functions cross references*.

CALC_SPUR
|
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+-->SIMP!* (REDUCE)
|
+-->CALC_SPUR0

|
|--->TRANSFORM_MAP_
| |
| |--->MK_SIMPLE_VERTEX
| +--->MK_SIMPLE_MAP_
| |
| +--->MK_SIMPLE_MAP_1
| |
| +--->MK_FIERS_OP
|
|--->WORLD_FROM_ATLAS
| |
| +--->CONSTR_WORLDS
| |
| +---->MK_WORLD1
| |
| +--->MAP_2_FROM_MAP_1
| |
| |--->MARK_EDGES
| +--->MAP_1_TO_STRAND
| |
| +-->PRE!-CALC!-MAP_
| (INTERFIRZ)
|
|--->CALC_WORLD
| |
| |--->CALC!-MAP_TAR (INTERFIRZ)
| |--->CALC!-DENTAR (INTERFIRZ)
| +--->REVAL (REDUCE)
|
+--->FIND_BUBLTR

|
+--->FIND_BUBLTR0

|
|--->SORT_ATLAS
+--->FIND_BUBLTR1

|
|--->FIND_BUBLES1
+--->FIND_TRIANGLES1

*Unmarked functions are from CVITMPPING module.
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Symbols

!!flim global variable, 189
!!nfpd global variable, 189
!*csystems global (AVECTOR)

AVECTOR package, 379
!__file__ (special identifier), 214
!__line__ (special identifier), 214
Γ function, 1080
ψ function, 1082
ψ(n) functions, 1082
ζ function

SPECFN package, 1086
* (times) operator, 47

3-D vectors, 943
algebraic numbers, 178
lists, 883
vectors, 377

** (expt) operator, 47
lists, 883

*** (lpdotimes) operator
LPDO package, 887

*. (ldot) operator, 883
+ (plus) operator, 47

3-D vectors, 943
algebraic numbers, 178
lists, 883
vectors, 377

- (minus) operator, 47
3-D vectors, 943
lists, 883
vectors, 377

1286
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. (cons) operator, 54

.* (ideal product) infix operator
IDEALS package, 840

.+ (ideal sum) infix operator
IDEALS package, 840

.. (interval) operator, 264

./ (ideal quotient) infix operator
IDEALS package, 840

.: (ideal quotient) infix operator
IDEALS package, 840

.= (ideal equality) infix operator
IDEALS package, 840

/ (quotient) operator, 47
3-D vectors, 943
algebraic numbers, 179
lists, 883
vectors, 377

/* . . .*/ (inline comment), 42
// (double slash) operator, 207
:= (assignment) operator, 137

CANTENS package, 465
; (statement terminator), 57
< (lessp) operator, 45
<< (begin group), 59
<= (leq) operator, 45
= for comparing sets, 1033
== (setvalue) infix operator

ASSIST package, 359
== operator

CANTENS package, 465
> (greaterp) operator, 45
>< (vectorcross operator

3-D vectors, 943
>= (geq) operator, 45
>> (end group), 59
@ operator

EXCALC package, 732
partial differentiation, 749
tangent vector, 749

# (Hodge-*) operator
EXCALC package, 736, 749

$ (statement terminator), 57
% (Percent sign), 42
^ (expt) operator, 47
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3-D vectors, 943
lists, 883

^ (wedge) operator
exterior multiplication, 731, 749

\ (setdiff) operator
SETS package, 1035

GROEBNER package
Default term order, 795

TAYLOR package
Caveats, 244
Defaults, 244

_ (lnth) operator for lists, 884
_| (inner product) operator

EXCALC package, 735, 749
|_ (Lie derivative) operator

EXCALC package, 736, 749
3j and 6j symbols, 1076

A

abaglistp operator
ASSIST package, 358

abs operator, 73, 193
acos numerical operator, 80
acosd numerical operator, 80
acosh numerical operator, 80
acot numerical operator, 80
acotd numerical operator, 80
acoth numerical operator, 80
acsc numerical operator, 80
acscd numerical operator, 80
acsch numerical operator, 80
Adamchik, Victor, 1277
Adamchik, Viktor, 1076, 1101
add_to_columns operator

LINALG package, 859
add_to_rows operator

LINALG package, 859
add_columns operator

LINALG package, 858
add_rows operator

LINALG package, 859
adj operator
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PHYSOP package, 959
adjoint_cdiffop operator

CDE package, 523
adjprec switch, 176
affine identifier

CANTENS package, 458
Affine space

Cantens package, 496
affine_monomial_curve operator

CALI package, 428
affine_monomial_curve!* symbolic procedure

CALI package, 424
affine_points operator

CALI package, 428, 439
affine_points!* symbolic procedure

CALI package, 427
affine_points1!* symbolic procedure

CALI package, 427
AGM_function operator

ELLIPFN package, 703
Airy functions, 87, 1076, 1084
Airy_Ai, 87
Airy_Ai operator, 1084
Airy_Aiprime, 87
Airy_Aiprime operator, 1084
Airy_Bi, 87
Airy_Bi operator, 1084
Airy_Biprime, 87
Airy_Biprime operator, 1084
alatomp operator

ASSIST package, 366
alg_to_symb operator

ASSIST package, 368
algebraic, 1199
Algebraic mode, 1199, 1204, 1205
Algebraic number fields, 178
Algebraic numbers, 178

CALI package, 402
algint switch, 103
algnlist operator

ASSIST package, 352
algsort operator

ASSIST package, 362
alkernp operator
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ASSIST package, 366
all_graded_der shared variable

CDIFF package, 556
all_parametric_der shared global variable

CDE package, 515, 529
all_parametric_odd shared global variable

CDE package, 515
all_principal_der shared global variable

CDE package, 515
all_principal_odd shared global variable

CDE package, 515
allbranch switch, 116
allfac switch, 133–135, 960
allowdfint switch, 99
allsymmetrybases operator

SYMMETRY package, 1130
Alvarez-Sobreviela, Luis, 897, 904
analytic_spread operator

CALI package, 428
analytic_spread!* symbolic procedure

CALI package, 424
and logical operator, 50
annihilator operator

CALI package, 428
annihilatorX!* symbolic procedure

CALI package, 419
ansatz of symmetry generator, 1071
anticom command

DUMMY package, 644
anticom switch, 958
anticomm operator

PHYSOP package, 957
Anticommutative

CANTENS package, 492
anticommute operator

PHYSOP package, 959
Antisymmetric

Cantens package, 481
antisymmetric declaration, 125

CANTENS package, 503
Antisymmetric operator, 125
Antweiler, Werner, 1134
append operator, 54
appendn operator
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ASSIST package, 353
APPLYSYM, 335
APPLYSYM package, 326

Example, 336
approximation, 95
arbcomplex operator, 116
arbint operator, 116
arbvars switch, 116
arccd operator, 90

ELLIPFN package, 723
arccn operator, 90

ELLIPFN package, 723
arccs operator, 90

ELLIPFN package, 723
arcdc operator, 90

ELLIPFN package, 723
arcdn operator, 90

ELLIPFN package, 723
arcds operator, 90

ELLIPFN package, 723
arcnc operator, 90

ELLIPFN package, 723
arcnd operator, 90

ELLIPFN package, 723
arcns operator, 90

ELLIPFN package, 723
arcsc operator, 90

ELLIPFN package, 723
arcsd operator, 90

ELLIPFN package, 723
arcsn operator, 90

ELLIPFN package, 723
arg numerical operator, 80
argd numerical operator, 80
arglength operator, 146
ARNUM package, 178

example, 180–182
array declaration, 69
array length, 70
array_to_list operator

ASSIST package, 364
asec numerical operator, 80
asecd numerical operator, 80
asech numerical operator, 80
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asfirst operator
ASSIST package, 354

asflist operator
ASSIST package, 354

asin numerical operator, 80
asind numerical operator, 80
asinh numerical operator, 80
aslast operator

ASSIST package, 354
asrest operator

ASSIST package, 354
assgrad operator

CALI package, 428
assgrad!* symbolic procedure

CALI package, 425
Assignment, 58, 61, 66

of a shared variable, 1205
Symbolic mode, 1202

Assignment statement, 58
multiple, 58

assist operator
ASSIST package, 348

ASSIST package, 348, 456, 506
assisthelp operator

ASSIST package, 348
asslist operator

ASSIST package, 354
Associativity, 45
assumptions variable, 118
Asymptotic command, 198, 210
atan, 102
atan numerical operator, 80
atan2 numerical operator, 80
atan2d numerical operator, 80
atand numerical operator, 80
atanh numerical operator, 80
ATENSOR package, 375
augment operator

EDS package, 663
augment_columns operator

LINALG package, 859
availablegroups operator

SYMMETRY package, 1131
avec operator
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AVECTOR package, 376
Avector package

example, 379–381
AVECTOR package, 376

B

Böing, Harald, 971
back Turtle function, 290
bag reserved identifier

ASSIST package, 356
baglistp operator

ASSIST package, 358
baglmat operator

ASSIST package, 373
bagp boolean operator

ASSIST package, 356
balanced_mod switch, 177, 925
band_matrix operator

LINALG package, 860
Barnes, Alan, 247, 926, 995, 1076, 1135
bas_detectunits symbolic procedure

CALI package, 413
bas_factorunits symbolic procedure

CALI package, 413
bas_getrelations symbolic procedure

CALI package, 409
bas_removerelations symbolic procedure

CALI package, 409
bas_setrelations symbolic procedure

CALI package, 409
base coefficients

CALI package, 402
base elements

CALI package, 409
base ring

CALI package, 397, 406
Basic Elliptic Integrals, 710
basis

CALI package, 401
bcsimp switch, 403, 406
begin ... end, 64, 66–68
belast operator
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ASSIST package, 353
Bernoulli numbers, 91, 1095
Bernoulli operator, 91, 1095
Bernoulli polynomials, 89, 1077, 1095
BernoulliP operator, 89, 1095
Bernstein_base procedure, 1095
Bessel functions, 87, 1076, 1082
BesselI operator, 87, 1082
BesselJ operator, 87, 1082
BesselK operator, 87, 1082
BesselY operator, 87, 1082
Beta function, 86, 1076, 1081
Beta operator, 86, 1081
bettiNumbers operator

CALI package, 428
BettiNumbers!* symbolic procedure

CALI package, 421
bezout switch, 169
bfspace switch, 176
bibasis operator

BIBASIS package, 385
BIBASIS package, 383
bibasis_print_statistics operator

BIBASIS package, 385
Binomial coefficients, 90
Binomial operator, 90
bk Turtle function, 290
Blinkow, Yu. A., 842
bloc-diagonal, 473, 474, 476
Block, 64, 68
block_matrix operator

LINALG package, 861
blockorder procedure

CALI package, 398
blockorder!* symbolic procedure

CALI package, 407
blowup

CALI package, 438
blowup operator

CALI package, 428
blowup!* symbolic procedure

CALI package, 425
bndeq!* shared variable

EXCALC package, 737
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Boolean expression, 49
boolean operator

BOOLEAN package, 389
BOOLEAN package, 389
border basis

CALI package, 439
bounded identifier, 401

CALI package, 428
bounds operator

NUMERIC package, 269
Bradford, Russell, 1157
Branch Cuts, 86
Brand, Andreas, 590
Buchberger’s Algorithm, 792, 795
bye command, 71

C

c(i) operator
SPDE package, 1065

C-style inline comments, 42
CALI package, 393
cali!=basering global symbolic variable

CALI package, 397
cali!=basering global variable

CALI package, 405, 408
cali!=degrees global symbolic variable

CALI package, 400
cali!=degrees global variable

CALI package, 405, 408
cali!=monset global variable

CALI package, 405, 415
Call by value, 232, 235
CAMAL package, 441
Cannam, Chris, 1076
Canonical form, 129
canonical operator

CANTENS package, 456, 473, 483, 488, 490, 491, 493, 501
DUMMY package, 645

canonicaldecomposition operator
SYMMETRY package, 1130

CANTENS package, 455
== operator, 465
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affine space, 496
anticommutative indexed objects, 492
antisymmetric tensor, 481
depend declaration, 461
dummy indices, 494
epsilon tensor, 481
for all, 467
indices, 492, 503
indices, dummy, 494
indices, numeric, 487
indices, symbolic, 484
let, 464
loading, 456
metric tensor, 499
mixed symmetry, 503
numeric indices, 487
partial symmetry, 503
rewriting rules, 464
Riemann tensor, 503
signature, 480–482, 499
spaces, 484, 491, 499
spinor, 492
SUB, 464
sub, 491
subspaces, 480
symbolic indices, 473, 484
symmetries, 503
tensor contractions, 496
tensor derivatives, 507
tensor polynomial, 490
trace, 490
variables, 460, 462, 469

Caprasse, Hubert, 348, 455
card_no shared global variable, 139, 141
cartan_system operator

EDS package, 669
Cartesian coordinates

ORTHOVEC package, 942
Catalan reserved variable, 40, 1090
cauchy_system operator

EDS package, 669
Caveats

TAYLOR package, 244
cde operator
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CDE package, 512
CDE package, 509
cde_grading operator

CDE package, 525
CDIFF package, 551
ceiling operator, 74
cf operator, 95

RATAPRX package, 1000
cf_even_odd operator

RATAPRX package, 1004
cf_remove_constant operator

RATAPRX package, 1003
cf_remove_fractions operator

RATAPRX package, 1003
cf_unit_denominators operator

RATAPRX package, 1003
cf_unit_numerators operator

RATAPRX package, 1003
cf_continuents operator

RATAPRX package, 1000
cf_convergent operator

RATAPRX package, 1000
cf_convergents operator

RATAPRX package, 1001
cf_euler operator, 96

RATAPRX package, 1001, 1003
cf_expression operator

RATAPRX package, 1000
cf_taylor switch

RATAPRX package, 998
cf_transform operator

RATAPRX package, 1004
cfrac operator, 96, 998
CGB operator, 577
CGB package, 576
CGBFULLRED switch, 580
CGBGEN switch, 578
CGBGS switch, 580
CGBREAL switch, 579
CGBSTAT switch, 580
Chain rule, 734
change of term orders

CALI package, 439
change_termorder operator
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CALI package, 429
change_termorder!* symbolic procedure

CALI package, 427
change_termorder1 operator

CALI package, 429
change_termorder1!* symbolic procedure

CALI package, 427
changevar operator, 92
char_matrix operator

LINALG package, 861
char_poly operator

LINALG package, 861
character operator

SYMMETRY package, 1130
Character set, 37
characteristic_variety operator

EDS package, 691
charactern operator

SYMMETRY package, 1131
characters operator

EDS package, 670
charactertabl operator

SYMMETRY package, 1131
Chebyshev fit, 263
Chebyshev polynomials, 88, 1077, 1092
Chebyshev_base_T procedure, 1095
Chebyshev_base_U procedure, 1095
chebyshev_df operator

NUMERIC package, 270
chebyshev_eval operator

NUMERIC package, 270
chebyshev_fit operator

NUMERIC package, 270
chebyshev_int operator

NUMERIC package, 270
ChebyshevT, 88
ChebyshevT operator, 1092
ChebyshevU, 88
ChebyshevU operator, 1092
checkord switch, 513
checkproplist boolean operator

ASSIST package, 363
Chi (hyperbolic cosine integral) operator, 86, 1079
cholesky operator
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LINALG package, 862
Ci (cosine integral) operator, 86, 1079
cleanup operator

EDS package, 687
clear command, 200, 204, 367
clear_dummy_base command

DUMMY package, 643
clear_dummy_names command

DUMMY package, 643
clearbag operator

ASSIST package, 356
clearcaliprintterms operator

CALI package, 405
clearflag operator

ASSIST package, 365
clearfunctions operator

ASSIST package, 367
clearop operator

ASSIST package, 367
clearphysop command

PHYSOP package, 955
clearprop operator

ASSIST package, 366
clearrules command, 205
clearscreen Turtle function, 291
Clebsch Gordan coefficients, 1076
Clebsch_Gordan operator, 1089
closed operator

EDS package, 678
closure operator

EDS package, 671
cls Turtle function, 291
cobasis operator

EDS package, 660
codim operator

CALI package, 429
codim!* symbolic procedure

CALI package, 420
coeff operator, 144
coeff2 operator

COEFF2 package, 581
COEFF2 package, 581
coeff_matrix operator

LINALG package, 862
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Coefficient, 175, 177
coeffn operator, 145
coercemat operator

ASSIST package, 373
cofactor operator, 227
Coframe, 737, 742
coframe

coframe
with metric, 742

coframe
with signature, 742

coframe command, 1161
EXCALC package, 742

coframing operator
EDS package, 654

Cohen, Ian, 103
collect keyword, 61
column degree

CALI package, 400
column_dim operator

LINALG package, 863
combinations operator

ASSIST package, 361
Combinatorial numbers, 90
combineexpt switch, 84
combinelogs switch, 83
combnum operator

ASSIST package, 361
comm operator

PHYSOP package, 957
SPDE package, 1065

Command, 69
ed, 220
bye, 71
cont, 221
define, 72
pause, 221
resetreduce, 72
showtime, 71

Command terminator
in command, 213

Comment
/* . . .*/ (inline), 42
% (Percent sign), 42
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comment keyword, 42
comment keyword, 42
commute operator

PHYSOP package, 959
commutedf switch, 98
comp switch, 1221
compact operator, 147
COMPACT package, 147
companion operator

LINALG package, 863
Compiler, 1221
Complex coefficient, 177
complex switch, 85, 177, 187, 1084
complex_conjugates declaration, 193
Compound statement, 64, 66
Computations with supersymmetric algebraic and differential expressions, 1104
Computing limits, 103
Conditional statement, 60
conj operator, 74
CONLAW package, 583
Constructor, 1205
cont command, 221
contact operator

EDS package, 657
contfrac operator, 95, 998
Continued fractions, 997
continued_fraction operator, 95, 1000
contract switch, 957
conv_cdiff2superfun operator

CDE package, 520
conv_superfun2cdiff operator

CDE package, 520
coordinates command

AVECTOR package, 378
coordinates operator

EDS package, 661
Coordinates, cartesian

ORTHOVEC package, 942
Coordinates, cylindrical

ORTHOVEC package, 942
Coordinates, spherical

ORTHOVEC package, 942
coords vector

AVECTOR package, 378
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copy_into operator
LINALG package, 864

cos numerical operator, 80
cosd numerical operator, 80
cosh numerical operator, 80
cot numerical operator, 80
cotd numerical operator, 80
coth numerical operator, 80
Cotter, Caroline, 288
CRACK package, 590
crack, running in CDE package, 530
cramer switch, 112, 225
cref switch, 1223, 1224
cresys operator

SPDE package, 1064, 1066
cross infix operator

AVECTOR package, 377
EDS package, 664

Cross product, 377, 944
Cross reference, 1223
crossvect operator

ASSIST package, 370
csc numerical operator, 80
cscd numerical operator, 80
csch numerical operator, 80
Csetrepresentation operator

SYMMETRY package, 1132
Curl

vector field, 378
curl operator

AVECTOR package, 378
ORTHOVEC package, 945

CVIT package, 1278
cyclicpermlist operator

ASSIST package, 360
Cylindrical coordinates

ORTHOVEC package, 942

D

d (exterior differentiation) operator
EXCALC package, 749

dd_groebner operator
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GROEBNER package, 814
Declaration, 69

antisymmetric, 125
array, 69
complex_conjugates, 193
even, 123
factor, 133
index, 126
korder, 144
linear, 123
matrix, 223
noncom, 124
nonzero, 123
notrealvalued, 192
odd, 123
off, 70
on, 70
operator, 126
order, 132, 144
precedence, 126
print_indexed, 126
print_noindexed, 126
realvalued, 191
remfac, 133
selfconjugate, 192
symmetric, 125
mode handling, 70

decompose operator, 170
Decomposition

partial fraction, 106
Default term order

GROEBNER package, 795
defid statement

RLFI package, 1027
defindex statement

RLFI package, 1027
define command, 72
define_spaces command

CANTENS package, 457, 471
Definite integration, 101
Definite integration (simple), 380
defint function

AVECTOR package, 380
DEFINT package, 101
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deflineint function
AVECTOR package, 381

defn switch, 1204, 1225
defpoly statement

ARNUM package, 179
deg operator, 171
deg2dms numerical operator, 75
deg2rad numerical operator, 75
Degree, 171
degree arguments, 1135
degree operator

CALI package, 429
degree vectors

CALI package, 397
degree!* symbolic procedure

CALI package, 421
degreeorder procedure

CALI package, 398
degreeorder!* symbolic procedure

CALI package, 407
degsfromresolution operator

CALI package, 429
del keyword

CANTENS package, 474
del tensor

CANTENS package, 486, 499
delete operator

ASSIST package, 352
delete_all operator

ASSIST package, 352
deleteunits operator

CALI package, 429
deleteunits!* symbolic procedure

CALI package, 413
dellastdigit operator

ASSIST package, 359
delpair operator

ASSIST package, 352
delsq operator

ORTHOVEC package, 945
delsq operator

AVECTOR package, 378
delta function

CANTENS package, 475, 491
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delta keyword
CANTENS package, 474

delta operator
CANTENS package, 489

delta tensor
CANTENS package, 474, 476, 477, 491, 496

demo switch, 70
den operator, 159, 172
dep_var global variable

CDE package, 511
depatom operator

ASSIST package, 363
depend command, 119, 127, 945

CANTENS package, 461, 507
depth operator

ASSIST package, 353
depvarp operator

ASSIST package, 366
deq(i) operator

SPDE package, 1065
der_deg_ordering operator

CDE package, 526
Derivative

of generic functions, 635
partial, 635
variational, 737

derived_system operator
EDS package, 671

DESIR package, 628
det operator, 129, 225
detectunits switch, 403, 413
Determinant

in detm!*, 743
detidnum operator

ASSIST package, 359
detm!* variable

EXCALC package, 743
DETRAFO, 345
df operator, 98, 100

CANTENS package, 461
df_odd operator

CDE package, 514
dfint switch, 99
dfp operator
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DFPART package, 636
dfp_commute declaration

DFPART package, 638
DFPART package, 635
dfprint switch, 100
diagonal operator

LINALG package, 864
diagonalize operator

SYMMETRY package, 1130
Dicrescenzo, C., 628
diff operator

LPDO package, 888
Differential geometry, 729
Differentiation, 98, 100, 127

partial, 732
vector, 378

diffset operator
ASSIST package, 358

Digamma function, 1076, 1082
dilog, 87, 102, 1086
Dilog function, 87, 1076, 1086
dim operator

CALI package, 429, 439
EDS package, 672

dim!* symbolic procedure
CALI package, 419

dim_grassmann_variety operator
EDS package, 672

Dimension, 732
dimzerop operator

CALI package, 429
dimzerop!* symbolic procedure

CALI package, 422
Dirac γ matrix, 1214
directsum operator

CALI package, 429
disjoin operator

EDS package, 686
dispjacobian switch, 92
Display, 129
display operator, 219
Display, graphical, 273
displayflag operator

ASSIST package, 365
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displayframe command
EXCALC package, 745, 749

Displaying structure, 142
displayprop operator

ASSIST package, 365
distribute switch, 351, 369
div operator

AVECTOR package, 378
ORTHOVEC package, 945

div switch, 134, 175
Divergence

vector field, 378
divide operator, 164
divpol operator

ASSIST package, 369
dlineint operator

ORTHOVEC package, 947
dmode

CALI package, 402
dms2deg numerical operator, 75
dms2rad numerical operator, 75
do keyword, 61, 63
Dollar sign, 57
Dolzmann, Andreas, 576, 788, 823, 1025
DOT, 956
dot infix operator

AVECTOR package, 377
Dot product, 377, 944, 1213
dotgrad operator

ORTHOVEC package, 944, 945
Double slash operator

in rules, 207
Double tilde variables

in rules, 208
down_qratio operator

QSUM package, 981
downward_antidifference, 982
dp_pseudodivmod symbolic procedure

CALI package, 402, 409
dp_pseudodivmod!* symbolic procedure

CALI package, 418
dpgcd operator

CALI package, 429
dpgcd symbolic procedure
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CALI package, 409
dpmat

CALI package, 400, 401, 410, 439
dpmat_coldegs symbolic procedure

CALI package, 410
dpmat_cols symbolic procedure

CALI package, 410
dpmat_gbtag symbolic procedure

CALI package, 410
dpmat_list symbolic procedure

CALI package, 410
dpmat_rows symbolic procedure

CALI package, 410
draw Turtle function, 291
Dresse, Alain, 641
dsolve operator synonym

ODESOLVE package, 927
dual bases

CALI package, 439
dualbases

CALI package, 396, 426
dualhbases

CALI package, 426, 427
dummy, 460, 462
Dummy indices

Cantens package, 494
dummy indices, 491
DUMMY package, 492, 494
DUMMY package, 456, 491, 503, 641
dummy_base declaration

DUMMY package, 642
dummy_indices operator

CANTENS package, 463
dummy_name declaration

DUMMY package, 642
dvint operator

ORTHOVEC package, 947
dvolint operator

ORTHOVEC package, 947

E

e reserved variable, 40



E 1309

Eastwood, James W., 941
easydim

CALI package, 416
easydim operator

CALI package, 429
easydim!* symbolic procedure

CALI package, 420
easyindepset operator

CALI package, 429
easyindepset!* symbolic procedure

CALI package, 420
easyprimarydecomposition operator

CALI package, 430
easyprimarydecomposition!* symbolic procedure

CALI package, 423
ecart

CALI package, 393, 408
ecart vector

CALI package, 399, 432, 439
echo switch, 213
ed command, 217, 220
editdef command, 220
eds operator

EDS package, 656
EDS package, 647
efgb symbol

CALI package, 405
Ei (exponential integral) operator, 86, 1079
Elementary functions, 80
eliminate

CALI package, 438
eliminate operator

CALI package, 430
eliminate!* symbolic procedure

CALI package, 418
eliminationorder procedure

CALI package, 398
eliminationorder!* symbolic procedure

CALI package, 407
ell_function operator

CDE package, 522
ellint_1st operator

ELLIPFN package, 711
ellint_2nd operator
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ELLIPFN package, 711
ellint_3rd operator

ELLIPFN package, 711
ELLIPFN package, 698
Elliptic functions, 89, 698
Elliptic Integrals, 89, 698
EllipticD operator

ELLIPFN package, 706
EllipticE operator

ELLIPFN package, 705
ellipticE operator

ELLIPFN package, 89
EllipticE’ operator

ELLIPFN package, 705
EllipticF operator

ELLIPFN package, 704
ellipticF operator

ELLIPFN package, 89
EllipticK operator

ELLIPFN package, 704
ellipticK operator

ELLIPFN package, 89
EllipticK’ operator

ELLIPFN package, 704
EllipticPi operator

ELLIPFN package, 707
elliptictheta1 operator

ELLIPFN package, 90, 714
elliptictheta2 operator

ELLIPFN package, 90, 714
elliptictheta3 operator

ELLIPFN package, 90, 714
elliptictheta4 operator

ELLIPFN package, 90, 714
elmult operator

ASSIST package, 352
end, 71
eps

Levi-Civita tensor, 749
eps operator, 1215

EXCALC package, 745
epsilon keyword

CANTENS package, 474
Epsilon tensor
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Cantens package, 481
epsilon tensor

CANTENS package, 491, 499
eqhull operator

CALI package, 430
eqhull!* symbolic procedure

CALI package, 423
Equation, 50, 51
equiv infix operator

EDS package, 681
Erf (error function) operator, 86, 102, 1079
errcont switch, 217
Error functions, 1079
Errors

TAYLOR package, 244
eta keyword

CANTENS package, 474
eta tensor

CANTENS package, 478, 479, 497
ETA(ALFA) operator

SPDE package, 1065
eta1 operator

ELLIPFN package, 721
eta2 operator

ELLIPFN package, 721
eta3 operator

ELLIPFN package, 721
Euclidean metric, 742
euclidian identifier

CANTENS package, 458
Euler, 92
Euler numbers, 92, 1094
Euler operator, 1094
Euler polynomials, 89, 1077, 1094
euler_df operator

CDE package, 516
Euler_Gamma reserved variable, 40, 1090
EulerP, 89
EulerP operator, 1094
eval2 operator

COEFF2 package, 581
eval_mode shared global variable, 1199
evalb operator

SETS package, 1036
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evallhseqp switch, 51
evalproc operator

RANDPOLY package, 989
even declaration, 123
Even operator, 123
evenp boolean operator, 49
evlf symbol

CALI package, 406
EXCALC package

example, 731–733, 735–739, 742–744, 746–748, 750
tracing, 745

EXCALC package, 460, 729
Exclamation mark, 37
exclude, 183, 184
excoeffs operator

XIDEAL package, 1164
exdegree operator

EXCALC package, 731, 749
exdelt switch, 488, 502
exfactors operator

EDS package, 684
exp, 102
exp numerical operator, 80
exp switch, 160, 163
expand_cases operator, 114
expand_td command

CDE package, 513
expanddf switch, 98
expandlogs switch, 83
explicit operator

ASSIST package, 363
expr, 1203
Expression, 47

boolean, 49
ext operator

CDE package, 514
extend operator

LINALG package, 865
extended Gröbner factorizer

CALI package, 404, 417, 439
extended_gosper operator

ZEILBERG package, 1173
extended_sumrecursion operator

ZEILBERG package, 1176
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extendedgroebfactor operator
CALI package, 430

extendedgroebfactor!* symbolic procedure
CALI package, 417

extendedgroebfactor1 operator
CALI package, 430

extendedgroebfactor1!* symbolic procedure
CALI package, 417

Extendible power series, 247
Exterior calculus, 729
Exterior differentiation, 733
Exterior form

declaration, 730
ordering, 747
vector, 730
with indices, 730, 738

Exterior product, 731, 748
extractlist operator

ASSIST package, 363
extremum operator

ASSIST package, 362
ezgcd switch, 163

F

factor declaration, 133
factor switch, 160, 161
factorial, 236
factorial numerical operator, 76
Factorization, 160
factorize, 161
factorprimes

CALI package, 440
factorprimes switch, 403
factorunits switch, 404, 413
failhard switch, 102
false identifier

SETS package, 1036
fancy_lower_digits, 40
fancy_print_df, 100
Fast loading of code, 1222
fast_la switch, 1063
fastsimplex switch, 877
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fdomain command
EXCALC package, 732, 749

fexpr reserved identifier, 1203
Fibonacci, 92
Fibonacci numbers, 92
Fibonacci polynomials, 89, 1077, 1094
FibonacciP, 89
FibonacciP operator, 1094
FIDE package, 761
File handling, 213
File, startup, 216
find_companion operator

LINALG package, 865
first operator, 54, 353
firstroot operator, 185
Fitch, John P., 103, 441
fix operator, 76
fixp boolean operator, 49
flatten

CALI package, 440
floor operator, 76
followline operator

ASSIST package, 359
for, 68
for all

Cantens package, 467
for all, 200
for all declaration, 199
for each, 61, 62
for each statement, 1203
for statement, 61
forder command

EXCALC package, 747, 749
fort switch, 139
fort_width variable, 141
FORTRAN, 139, 141
fortupper switch, 141
forward Turtle function, 290
Fourier cosine transform, 1275
Fourier sine transform, 1275
fourier_cos operator, 1275
fourier_sin operator, 1275
fps operator

FPS package, 259
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FPS package, 259
fps_search_depth shared variable

FPS package, 261
frame command

EXCALC package, 744, 749
free identifier, 401
Free operators

in rules, 207
freeof boolean operator, 49
frequency operator

ASSIST package, 352
Fresnel_C, 1079
Fresnel_C (Fresnel cosine integral) operator, 86
Fresnel_S, 1079
Fresnel_S (Fresnel sine integral) operator, 86
frobenius operator

EDS package, 681
NORMFORM package, 919

fullroots switch, 114, 923
Function

partial, 237
funcvar operator

ASSIST package, 363
fwd Turtle function, 290

G

g operator, 1214
Gamma function, 86, 1076, 1080
Gamma operator, 86
gammatofactorial rule

ZEILBERG package, 1182
Gaskell, Kerry, 101
Gatermann, Karin, 1129
Gates, Barbara L., 790
gb operator

IDEALS package, 840
gb-tag

CALI package, 410, 439
gbasis operator

CALI package, 430
gbasis!* symbolic procedure

CALI package, 414
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gbtestversion
CALI package, 405, 414, 439

gcd switch, 162, 163
gcdnl operator

ASSIST package, 362
GCREF package, 788
gdimension operator

GROEBNER package, 799
Gegenbauer polynomials, 88, 1077, 1092
Gegenbauer_base procedure, 1095
GegenbauerP, 88
GegenbauerP operator, 1092
gen(i) operator

SPDE package, 1065
Generalised Laguerre polynomials, 1093
Generalized Hypergeometric functions, 1101
generators operator

SYMMETRY package, 1131
Generic function, 635
generic tensor, 460
generic_function declaration

DFPART package, 635
GENTRAN package, 790
get_columns operator

LINALG package, 866
get_rows operator

LINALG package, 866
getcsystem command

AVECTOR package, 379
getdegrees operator

CALI package, 400
getecart operator

CALI package, 399
getelmat operator

ASSIST package, 374
getkbase operator

CALI package, 430
getkbase!* symbolic procedure

CALI package, 422
getleadterms operator

CALI package, 430
getring procedure

CALI package, 399
getroot operator, 185
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getrules operator
CALI package, 402

gfnewt operator, 186
gfroot operator, 186
ghostfactor operator

ASSIST package, 371
gindependent_sets operator

GROEBNER package, 799
gl(i) operator

SPDE package, 1065
glexconvert operaort

GROEBNER package, 799
global procedures

CALI package, 395
global_sign command

CANTENS package, 457
global_sign operator

CANTENS package, 479, 482
gltb global variable

GROEBNER package, 798
gltbasis switch, 798, 802
glterms shared variable

GROEBNER package, 798
glterms switch, 798
gmodule shared variable

GROEBNER package, 810
gnuplot command, 280
GNUPLOT package, 273
go to, 66, 67
go to statement, 66
Golden_Ratio reserved variable, 41, 1090
gorders shared variable

GROEBNER package, 806
gosper operator

ZEILBERG package, 1170
Gosper’s Algorithm, 1105
gosper_representation variable

ZEILBERG package, 1185
Gräbe, Hans-Gert, 393
Gröbner Bases, 792, 909
grad operator

AVECTOR package, 378
ORTHOVEC package, 945

Graded ordering, 813
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GradedBettinumbers operator
CALI package, 430

GradedBettiNumbers!* symbolic procedure
CALI package, 421

Gradient
vector field, 378

gradlex
term order, 793

Gragert, P., 551
gram_schmidt operator

LINALG package, 866
Graphical display, 273
grassmann_variety operator

EDS package, 677
grassp boolean operator

ASSIST package, 371
grassparity operator

ASSIST package, 371
greduce operator

GROEBNER package, 805
greduce_orders operator

GROEBNER package, 806
greduce_result shared variable

GROEBNER package, 807
GRINDER package, 791
groeb

CALI package, 438
groeb!=rf symbol

CALI package, 405
groeb_homstbasis

CALI package, 415
groeb_lazystbasis

CALI package, 415
groeb_mingb symbolic procedure

CALI package, 415
groeb_minimize symbolic procedure

CALI package, 416
groeb_stbasis symbolic procedure

CALI package, 414
groebf_zeroprimes1 symbolic procedure

CALI package, 417
groebfactor operator

CALI package, 430
groebfactor!* symbolic procedure
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CALI package, 416
groebfullreduction switch, 798, 802
groebmonfac shared variable

GROEBNER package, 803
GROEBNER gvarslast, 801
groebner operator, 840

GROEBNER package, 796
Groebner package, 792

example, 794, 796, 807, 809, 810, 815
ordering

graded, 813
grouped, 812
matrix, 814
weighted, 813

switch comp, 814
term order

gradlex, 793
lex, 793
revgradlex, 793

GROEBNER package, 112, 792
groebner_walk operator

GROEBNER package, 801
groebnerf, 802, 815
groebnert operator

GROEBNER package, 809
groebopt switch, 797, 799, 802
groebprot switch, 807
groebprotfile shared variable

GROEBNER package, 807
groebresmax shared variable

GROEBNER package, 803
groebrestriction shared variable

GROEBNER package, 804
groebstat switch, 798, 802
groepostproc operator

GROEBNER package, 816
groesolve operator

GROEBNER package, 815
Group statement, 59, 60, 64, 215
Grouped ordering, 812
Grozin, Andrey G., 791
gsort operator

GROEBNER package, 820
gsplit operator
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GROEBNER package, 820
gspoly operator

GROEBNER package, 821
GSYS operator, 577
GSYS2CGB operator, 579
GUARDIAN package, 823
gvars operator

GROEBNER package, 796
gvarslast shared variable

GROEBNER package, 796
gvarslast variable

GROEBNER package, 798
gzerodim? operator

GROEBNER package, 798

H

Hankel functions, 87, 1076, 1082
Hankel transform, 1274
Hankel1 operator, 87, 1082
Hankel2 operator, 87, 1082
hankel_transform operator, 1274
hardzerotest switch, 404
Harper, David, 376
Hartley, David, 647, 1161
hconcmat operators

ASSIST package, 374
heading global variable

TURTLE package, 292
Hearn, Anthony C., 28
hermat operators

ASSIST package, 374
Hermite polynomials, 88, 1077, 1094
Hermite_base procedure, 1095
HermiteP, 88
HermiteP operator, 1094
hermitian_tp operator

LINALG package, 867
hessian operator

LINALG package, 867
heugcd switch, 163
hf!=hf symbol

CALI package, 405
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hf_whs_from_resolution symbolic procedure
CALI package, 421

hf_whilb symbolic procedure
CALI package, 421

hf_whilb3 symbolic procedure
CALI package, 421

hfactors scale factors
AVECTOR package, 378

hftestversion
CALI package, 405, 420, 421, 439

High energy trace, 1216
High energy vector expression, 1213, 1216
high_pow, 145
hilbert operator

LINALG package, 868
Hilbert Polynomial, 819
Hilbert polynomial, 818
Hilbert series

CALI package, 399
hilbertpolynomial operator

GROEBNER package, 819
HilbertSeries

CALI package, 440
HilbertSeries operator

CALI package, 430
HilbertSeries!* symbolic procedure

CALI package, 421
History, 218
Hodge-* duality operator, 736, 745
home Turtle function, 291
homstbasis operator

CALI package, 431
homstbasis!* symbolic procedure

CALI package, 415
horner switch, 134
hypergeometric, 1102
Hypergeometric functions, 1085, 1101
hyperrecursion operator

ZEILBERG package, 1177
hypersum operator

ZEILBERG package, 1179
hyperterm operator

ZEILBERG package, 1177
hypexpand operator
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ASSIST package, 369
hypot numerical operator, 80
hypreduce operator

ASSIST package, 369

I

i (imaginary unit), 178
I reserved symbol

IDEALS package, 839
i reserved variable, 41
I_setting operator

IDEALS package, 839
i_solve operator, 121
ibeta operator, 86, 1081
Ideal dimension (GROEBNER package), 799
Ideal quotient, 817
ideal quotient

CALI package, 418
ideal2list operator

IDEALS package, 839
ideal2mat

CALI package, 401
ideal2mat operator

CALI package, 431
ideal_of_minors operator

CALI package, 431
ideal_of_minors symbolic procedure

CALI package, 410
ideal_of_pfaffians operator

CALI package, 431
ideal_of_pfaffians symbolic procedure

CALI package, 411
idealpower operator

CALI package, 431
idealprod operator

CALI package, 431
idealquotient operator, 840

CALI package, 431
GROEBNER package, 817

idealquotientX!* symbolic procedure
CALI package, 419

ideals
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CALI package, 401
IDEALS package, 839
idealsum operator

CALI package, 431
Identifier, 39
if, 59, 60
ifactor switch, 161
iGamma operator

SPECFN package, 1081
igamma operator, 86
Ilyin, V., 1278
imaginary switch, 874
Imaginary unit i, 178
impart, 79
impart operator, 74, 77, 78, 191
implicit operator

ASSIST package, 363
implicit_taylor operator, 240
in command, 213
in keyword, 61
in_tex command, 214
Incomplete Beta functions, 1081
Incomplete Gamma functions, 1081
Indefinite integration, 101
indep_var global variable

CDE package, 511
independence operator

EDS package, 662
Independent sets (GROEBNER package), 799
indepvarsets operator

CALI package, 431
indepvarsets!* symbolic procedure

CALI package, 419
index declaration, 1214
index_expand operator

EDS package, 685
index_symmetries command

EXCALC package, 741, 749
indexed, 100
indexrange command

EXCALC package, 749
indexrange declaration

CANTENS package, 471, 472
EXCALC package, 739
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indexrange identifier
CANTENS package, 457

Indices
Cantens package, 492, 503

ineq_solve operator, 119
Inequalities, solving, 119
infinity, 183, 184
infinity reserved variable, 41
infix declaration, 126
Infix operator, 42–45
info Turtle function, 291
infsum operator

FPS package, 260
initialize_equations operator

CDE package, 527
CDIFF package, 558

initmat operator
CALI package, 431

Inner product, 944
exterior form, 735

Input, 213
input, 218
insert operator

ASSIST package, 352
insert_keep_order operator

ASSIST package, 352
Instant evaluation, 70, 147, 198, 224, 225
int operator, 100
int switch, 221
Integer, 48
integer, 65
Integral functions, 86, 1079
Integral transform

Fourier cosine transform, 1275
Fourier sine transform, 1275
Hankel transform, 1274
K-transform, 1274
Laplace transform, 850, 1273
StruveH transform, 1274
Y-transform, 1274

integral_element operator
EDS package, 673

integrate_equation operator
CDE package, 528
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CDIFF package, 558
Integration, 100, 124

definite (simple), 380
line, 381
volume, 380

Integration, definite, 101
Integration, indefinite, 101
Interactive use, 217, 221
internal procedures

CALI package, 395
interpol operator, 171
interreduce operator

CALI package, 431
interreduce!* symbolic procedure

CALI package, 413
intersect operator

ASSIST package, 358
SETS package, 1034

intersection (ideal intersection) operator
IDEALS package, 840

intersection operator
SETS package, 1034

Introduction, 33
intstr switch, 130
invariants operator

EDS package, 689
invbase operator

INVBASE package, 843
INVBASE package, 842
Inverse Elliptic functions, 90, 698
Inverse Jacobi Elliptic functions, 723
invert operator

EDS package, 683
invlap operator

LAPLACE package, 850
invlex operator

INVBASE package, 845
involution operator

EDS package, 672
involutive operator

EDS package, 678
invtempbasis share variable

INVBASE package, 846
invtorder operator
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INVBASE package, 843
invztrans operator

ZTRANS package, 1189
irreduciblerepnr operator

SYMMETRY package, 1131
irreduciblereptable operator

SYMMETRY package, 1131
isolatedprimes operator

CALI package, 431
isolatedprimes!* symbolic procedure

CALI package, 423
isolater operator, 184
isprime operator

CALI package, 432
isprime!* symbolic procedure

CALI package, 423
iszeroradical operator

CALI package, 432
Ito, Masaaki, 581

J

Jacobi Elliptic functions, 89, 698, 699
Jacobi Elliptic Integrals, 708
Jacobi polynomials, 88, 1077, 1093
Jacobi Theta functions, 90, 698, 714
jacobiadditionrules rule list

ELLIPFN package, 701
jacobiam operator

ELLIPFN package, 89, 702
jacobian operator

LINALG package, 868
jacobian shared variable

NUMERIC package, 266
jacobicd operator

ELLIPFN package, 89, 699
jacobicn operator

ELLIPFN package, 89, 699
jacobics operator

ELLIPFN package, 89, 699
jacobidc operator

ELLIPFN package, 89, 699
jacobidn operator
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ELLIPFN package, 89, 699
jacobids operator

ELLIPFN package, 89, 699
JacobiE operator

ELLIPFN package, 708
jacobiE operator

ELLIPFN package, 89
jacobinc operator

ELLIPFN package, 89, 699
jacobind operator

ELLIPFN package, 89, 699
jacobins operator

ELLIPFN package, 89, 699
JacobiP, 88
JacobiP operator, 1093
jacobisc operator

ELLIPFN package, 89, 699
jacobisd operator

ELLIPFN package, 89, 699
jacobisn operator

ELLIPFN package, 89, 699
jacobiZeta operator

ELLIPFN package, 89, 708
jet_fiber_dim operator

CDE package, 512
jet_dim operator

CDE package, 512
join keyword, 61
jordan operator

NORMFORM package, 923
jordan_block operator

LINALG package, 869
jordansymbolic operator

NORMFORM package, 921

K

K-transform, 1274
K_transform operator, 1274
Kako, Fujiko, 581
Kameny, Stanley L., 101, 103
Kazasov, C., 850
keep command
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EXCALC package, 748, 749
Kernel, 129, 133, 144

ASSIST package, 356
CANTENS package, 506

kernel form, 130
kernlist operator

ASSIST package, 352
Kersten, P. H. M., 551
Khinchin reserved variable, 1090
khinchin reserved variable, 41
Killing Vectors, 747
killing_vector command

EXCALC package, 747, 749
Koepf, Wolfram, 107, 147, 259, 971, 995, 1189
korder declaration, 144, 955
korderlist operator

ASSIST package, 363
kronecker_product operator

LINALG package, 882
Kryukov, A., 1278
Kummer functions, 87, 1076, 1085
KummerM operator, 87

SPECFN package, 1085
KummerU operator, 87

SPECFN package, 1085

L

l’Hôpital’s rule, 103, 946
Label, 66, 67
Laguerre polynomials, 88, 1077, 1093
Laguerre_base procedure, 1095
LaguerreP, 88
LaguerreP operator, 1093
LALR package, 847
lalr_create_parser lisp function

LALR package, 847
lambda reserved word, 1201
Lambert’s W function, 87, 112, 1076, 1087
Lambert_W, 87, 1087
Langmead, Neil, 1011, 1141
laplace operator

LAPLACE package, 850
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LAPLACE package, 850
Laplace transform, 850, 1273
laplace_transform operator, 1273
Laplacian

vector field, 378
lasimp switch, 1028
last operator

ASSIST package, 353
latex switch, 1028
Lattice invariants, 720
Lattice roots, 720
lattice_delta operator

ELLIPFN package, 720
lattice_e1 operator

ELLIPFN package, 720
lattice_e2 operator

ELLIPFN package, 720
lattice_e3 operator

ELLIPFN package, 720
lattice_g operator

ELLIPFN package, 720
lattice_g2 operator

ELLIPFN package, 720
lattice_g3 operator

ELLIPFN package, 720
lattice_generators operator

ELLIPFN package, 722
lattice_invariants operator

ELLIPFN package, 722
lattice_roots operator

ELLIPFN package, 722
lazystbasis operator

CALI package, 432
lazystbasis!* symbolic procedure

CALI package, 415
lcm operator, 164
lcm switch, 164
lcof operator, 172
ldot operator, 883
Leading coefficient, 172
leadterm operator

ASSIST package, 368
left_factor operator

NCPOLY package, 914
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left_factors operator
NCPOLY package, 914

Legendre Elliptic Integrals, 703
Legendre polynomials, 88, 233, 1077, 1091
Legendre_base procedure, 1095
legendre_symbol operator, 77
LegendreP, 88
LegendreP operator, 1091
length, 70, 103
length operator, 53, 159, 161, 225

use on lists, 53
Lerch_Phi, 87, 1087
let, 83, 99, 117, 125–127, 205, 235, 236
LET rules, 196
Levi-Cevita tensor, 745
lex

term order, 793
lex, 577
lexefgb switch, 404, 417
lexicographic

CALI package, 397
lhs operator, 51
lhyp switch, 850
Li (logarithmic integral) operator, 86, 1079
Lie Derivative, 736
LIE package, 852
lie_class variable

LIE package, 853
lie_list variable

LIE package, 853
lieclass procedure

LIE package, 853
liemat matrix

LIE package, 853
liendimcom1 procedure

LIE package, 852
lientrans matrix

LIE package, 853
LIEPDE, 329
lift operator

EDS package, 667
limit operator, 103
limit!+ operator, 104
limit!- operator, 104
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LINALG package, 856
Line integrals, 381
linear, 124
Linear Algebra package, 856, 1040
linear declaration, 123
Linear operator, 123, 124, 127
linear_divisors operator

EDS package, 684
linearise operator

EDS package, 673
linearize operator

EDS package, 673
lineint function

AVECTOR package, 381
lineint operator

ORTHOVEC package, 947
linelength operator, 132
Liska, Richard, 761, 1026
Lisp, 1199
lisp, 1199
List, 53

vector operations, 883
list, 110
List operation, 53, 55
list switch, 134
list_to_array operator

ASSIST package, 364
list_to_ids operator

ASSIST package, 359
listargp declaration, 55
listargs switch, 55
listbag operator

ASSIST package, 358
listgroebfactor operator

CALI package, 432
listgroebfactor!* symbolic procedure

CALI package, 416
listminimize

CALI package, 438
listproc keyword, 235
listtest

CALI package, 438
LISTVECOPS package, 883
lmon switch, 850
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ln numerical operator, 80
LNTH operator, 884
load command, 1222
load_package command, 325, 1222
loadgroups operator

SYMMETRY package, 1133
local procedures

CALI package, 395
localorder procedure

CALI package, 398
localorder!* symbolic procedure

CALI package, 407
log, 102
log numerical operator, 80
log10 numerical operator, 80
log_sum operator

RATINT package, 1015
logb numerical operator, 80
LOGOTURTLE package, 298
Lommel functions, 87, 1076, 1085
Lommel1 operator, 87

SPECFN package, 1085
Lommel2 operator, 87

SPECFN package, 1085
Loop, 61, 62
lose lisp flag, 367
low_pow, 145
lower_matrix switch, 874
lowestdeg operator

ASSIST package, 369
LPDO package, 886
lpdofac operator

LPDO package, 893
lpdofactorize operator

LPDO package, 892
lpdofactorizex operator

LPDO package, 895
lpdofacx operator

LPDO package, 896
lpdogdp operator

LPDO package, 890
lpdogp operator

LPDO package, 890
lpdoord operator
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LPDO package, 889
lpdoptl operator

LPDO package, 890
lpdos operator

LPDO package, 892
lpdoset operator

LPDO package, 888
lpdosym operator

LPDO package, 891
lpdosym2dp operator

LPDO package, 891
lpdoweyl operator

LPDO package, 889
lpower operator, 172
lterm operator, 173, 1209
ltrig switch, 850
lu_decom operator

LINALG package, 869

M

Möller, H. M., 792
m_gamma operator

SPECFN package, 1081
m_roots operator, 122
m_solve operator, 122
MacCallum, Malcolm, 926
macro reserved identifier, 1203
mainvar operator, 173
make_bloc_diagonal operator

CANTENS package, 477
make_partic_tens operator

CANTENS package, 474, 478, 481, 489
make_tensor_belong_space declaration

CANTENS package, 473
make_tensor_belong_space operator

CANTENS package, 471, 472, 476
make_identity operator

LINALG package, 870
make_variables command

CANTENS package, 462
map

CALI package, 424
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map, 110
map operator, 104
mass declaration, 1215, 1217
MAT operator, 224
mat operator, 223
mat2list

CALI package, 401, 440
mat2list operator

CALI package, 432
matappend operator

CALI package, 432
match command, 203
mateigen operator, 226
matextc operator

ASSIST package, 373
matextr operator

ASSIST package, 373
Mathematical functions, 80
MATHML package, 897
MATHMLOM package, 904
mathomogenize operator

CALI package, 432
mathprint symbolic procedure

CALI package, 406
mathstyle statement

RLFI package, 1027
matintersect

CALI package, 438
matintersect operator

CALI package, 432
matintersect!* symbolic procedure

CALI package, 418
matjac operator

CALI package, 432
matjac symbolic procedure

CALI package, 410
matqquot operator

CALI package, 432
matqquot!* symbolic procedure

CALI package, 418
matquot operator

CALI package, 432
matquot!* symbolic procedure

CALI package, 418
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Matrix assignment, 229
Matrix calculations, 223
matrix declaration, 223
Matrix ordering, 814
matrix_augment operator

LINALG package, 871
matrix_stack operator

LINALG package, 872
MATRIXP, 1056
matrixp boolean operator

LINALG package, 871
matrixproc keyword, 234
matstabquot operator

CALI package, 432
matstabquot!* symbolic procedure

CALI package, 419
matsubc operators

ASSIST package, 374
matsubr operators

ASSIST package, 374
matsum operator

CALI package, 433
max operator, 77
mcd switch, 162, 164
Meijer’s G function, 1101

use for definite integration, 1269
MeijerG, 1102
Melenk, Herbert, 119, 122, 263, 273, 317, 389, 635, 792, 839, 1021, 1076
member (ideal membership test) infix operator

IDEALS package, 840
member operator

SETS package, 1037
merge_list operator

ASSIST package, 352
metric command

EXCALC package, 749
metric keyword

CANTENS package, 474
metric operator

CANTENS package, 489
Metric structure, 742
Metric tensor

Cantens package, 499
min operator, 77
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minimal_generators operator
CALI package, 433

minimal_generators!* symbolic procedure
CALI package, 426

Minimum, 263
Minkowski, 457, 474, 478
minor operator

LINALG package, 872
minors operator

CALI package, 433
minors symbolic procedure

CALI package, 410
minvect operator

ASSIST package, 370
Mixed symmetry

Cantens package, 503
mk_ids_belong_anyspace command

CANTENS package, 460
mk_ids_belong_anyspace operator

CANTENS package, 473
mk_ids_belong_space operator

CANTENS package, 459, 473, 503
mk_cdiffop operator

CDE package, 517
mk_superfun operator

CDE package, 519
mkalllinodd operator

CDE package, 532
mkdepend operator

EDS package, 686
mkdepth_one operator

ASSIST package, 353, 368
mkgam operator

ASSIST package, 364
mkid operator, 105
mkidm operator

ASSIST package, 372
mkidnew operator

ASSIST package, 359
mklist operator

ASSIST package, 351
mkpoly operator, 185
mkrandtabl operator

ASSIST package, 360
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mkset operator
ASSIST package, 358
SETS package, 1033

mkvarlist1 operator
CDIFF package, 556

mm reserved variable
SPDE package, 1065

mod infix operator
CALI package, 433

mod operator, 164
mod!* symbolic procedure

CALI package, 413
Mode, 70

algebraic, 1204
symbolic, 1204

Mode communication, 1204
Mode handling declarations, 70
modequalp operator

CALI package, 433, 439
modequalp!* symbolic procedure

CALI package, 418
Modular coefficient, 177
modular switch, 162, 177, 925
module bcsf

CALI package, 406
module cali

CALI package, 395
module calimat

CALI package, 410, 440
module dpmat

CALI package, 410
module groeb

CALI package, 414
module groebf

CALI package, 416, 439
module lf

CALI package, 406, 439
module moid

CALI package, 419
module mora

CALI package, 438
module odim

CALI package, 422, 439
module prime
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CALI package, 422
module quotient

CALI package, 418
module ring

CALI package, 406
module scripts

CALI package, 424, 438
module term order

CALI package, 400
module triang

CALI package, 416, 417
modulequotient operator

CALI package, 433
modulequotientX!* symbolic procedure

CALI package, 419
modules

CALI package, 401
moid_primes symbolic procedure

CALI package, 419
monom operator

ASSIST package, 369
monomial_base procedure, 1095
Moore, P. Mary Ann, 160
Motzkin, 91
Motzkin numbers, 91
move Turtle function, 291
mpvect operator

ASSIST package, 370
MRV_LIMIT operator, 907
MRVLIMIT package, 905
msg switch, 1225
mshell command, 1217
mult_columns operator

LINALG package, 872
mult_rows operator

LINALG package, 873
multi_coeff operator

CDIFF package, 557
Multiple assignment statement, 58
multiplicities switch, 113
multiroot switch, 187
mv Turtle function, 291
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N

nat switch, 138, 141, 738
nc_factor_time shared variable

NCPOLY package, 914
nc_factorize_all operator

NCPOLY package, 913
nc_cleanup operator

NCPOLY package, 911
nc_compact operator

NCPOLY package, 915
nc_divide operator

NCPOLY package, 912
nc_factorize operator

NCPOLY package, 913
nc_groebner operator

NCPOLY package, 911
nc_preduce operator

NCPOLY package, 913
nc_setup operator

NCPOLY package, 909
NCPOLY package, 909
nearestroot, 187
nearestroot operator, 185
nearestroots, 185
negative reserved variable, 41, 183
negativity, 193
nero switch, 139
Neun, Winfried, 101, 259, 576, 792, 1076, 1101
Newton’s method, 263
nextprime operator, 77
nil reserved variable, 41
nm operator

COEFF2 package, 581
nn reserved variable

SPDE package, 1065
no_glaisher rule list

ELLIPFN package, 701
nocommutedf switch, 98
noconvert switch, 176
nodepend command, 127, 945
noerrsimplex switch, 877
noether function

EXCALC package, 738, 749
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Noetherian switch, 393, 398, 404, 407
noexpand_td command

CDE package, 513
nointsubst switch, 102
nolnr switch, 102
Nome and Related functions, 698, 713
nome operator

ELLIPFN package, 713
nome2!K operator

ELLIPFN package, 713
nome2!K!’ operator

ELLIPFN package, 713
nome2mod operator

ELLIPFN package, 713
nome2mod!’ operator

ELLIPFN package, 713
Non-commuting operator, 124
noncom, 644
NONCOM command, 363
noncom declaration, 124, 909, 951
nonzero declaration, 123
nordp operator

ASSIST package, 366
norm numerical operator, 80
normalform operator

CALI package, 433
normalform!* symbolic procedure

CALI package, 413
Norman, Arthur C., 160
NORMFORM package, 916
nosplit switch, 135
nospur declaration, 1217
nosum command

EXCALC package, 741, 749
nosum switch, 741
not_negative switch, 874
notrealvalued declaration, 192
nought_forms operator

EDS package, 663
noxpnd

@, 734
d, 733

noxpnd @ command
EXCALC package, 749
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noxpnd command
EXCALC package, 749

ns dummy variable
EXCALC package, 740

nullspace operator, 227
num operator, 173
num_to_perm operator

ASSIST package, 361
num_fit operator

NUMERIC package, 271
num_int operator

NUMERIC package, 267
NUM_MIN operator

NUMERIC package, 265
num_odesolve operator

NUMERIC package, 268
num_solve operator

NUMERIC package, 266
Number, 38, 39
numberp boolean operator, 49
Numeric indices

CANTENS package, 487
NUMERIC package, 263
Numerical operator, 73
Numerical precision, 40
nzdp operator

CALI package, 433
nzdp!* symbolic procedure

CALI package, 426

O

odd declaration, 123
Odd operator, 123
odd_var global variable

CDE package, 513
oddp boolean operator

ASSIST package, 359
odesolve operator

ODESOLVE package, 927
ODESOLVE package, 926
odesolve_basis switch, 930
odesolve_check switch, 930
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odesolve_expand switch, 930
odesolve_explicit switch, 930
odesolve_fast switch, 930
odesolve_full switch, 930
odesolve_implicit switch, 930
odesolve_noint switch, 930
odesolve_verbose switch, 930
odim_borderbasis symbolic procedure

CALI package, 422
odim_parameter symbolic procedure

CALI package, 422
odim_up symbolic procedure

CALI package, 422
off, 70
off declaration, 70
oldbasis symbol

CALI package, 406
oldborderbasis symbol

CALI package, 406
oldring symbol

CALI package, 406
on, 70
on declaration, 70
on keyword, 61
one_forms operator

EDS package, 663
one_of operator, 114
onespace switch, 456, 464, 470, 474

Off, 471, 475, 478, 480, 483, 496, 501
On, 470, 474, 478, 481, 499, 507

only_integer switch, 874
opapply operator

PHYSOP package, 959
Operator, 42, 43, 45

antisymmetric, 125
associativity, 45
CANTENS package, 491
double slash, 207
even, 123
infix, 43
linear, 123
non-commuting, 124
numerical, 73
odd, 123
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precedence, 43, 45
symmetric, 125
unary prefix, 43

operator declaration, 126
CANTENS package, 497
symbolic mode, 1209

Operators
free, in rules, 207

oporder declaration
PHYSOP package, 955

or logical operator, 50
order declaration, 132, 144
Ordering

exterior form, 747
ordp boolean operator, 49, 125, 1033
Orthogonal polynomials, 88, 1077, 1090

Chebyshev, 1077
Gegenbauer, 1077
Hermite, 1077
Jacobi, 1077
Laguerre, 1077
Legendre, 1077

ORTHOVEC package, 941
example, 948, 950

Other polynomials, 89, 1077, 1094
out command, 214
Output, 136, 141
Output declaration, 132
output switch, 131
ov_limit operator

ORTHOVEC package, 946
overview switch, 162

P

Packages
APPLYSYM, 326
ARNUM, 178
ASSIST, 348
ATENSOR, 375
AVECTOR, 376
BIBASIS, 383
BOOLEAN, 389
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CALI, 393
CAMAL, 441
CANTENS, 455
CDE, 509
CDIFF, 551
CGB, 576
COEFF2, 581
COMPACT, 147
CONLAW, 583
CRACK, 590
CVIT, 1278
DEFINT, 101
DESIR, 628
DFPART, 635
DUMMY, 641
EDS, 647
ELLIPFN, 698
EXCALC, 729
FIDE, 761
FPS, 259
GCREF, 788
GENTRAN, 790
GNUPLOT, 273
GRINDER, 791
GROEBNER, 112, 792
GUARDIAN, 823
IDEALS, 839
INVBASE, 842
LALR, 847
LAPLACE, 850
LIE, 852
LINALG, 856
LISTVECOPS, 883
LOGOTURTLE, 298
LPDO, 886
MATHML, 897
MATHMLOM, 904
MRVLIMIT, 905
NCPOLY, 909
NORMFORM, 916
NUMERIC, 263
ODESOLVE, 926
ORTHOVEC, 941
PHYSOP, 951
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PM, 963
QHULL, 970
QSUM, 971
RANDPOLY, 985
RATAPRX, 995
RATINT, 1011
REACTEQN, 1021
REDLOG, 1025
RLFI, 1026
SCOPE, 1031
SETS, 1032
SPARSE, 1040
SPDE, 1064
SPECFN, 1076
SPECFN2, 1101
SSTOOLS, 1104
SUM, 1105
SUSY2, 1107
SYMMETRY, 1129
TRI, 1134
TRIGD, 1135
TRIGINT, 1141
TURTLE, 288
V3TOOLS, 1146
WITH, 1155
WU, 1157
XCOLOR, 1159
XIDEAL, 1161
ZEILBERG, 1168
ZTRANS, 1189

Padé Approximation, 1007
pade operator

RATAPRX package, 1007
Padget, Julian, 247
pair operator

ASSIST package, 353
part operator, 143, 145

error when using on Taylor kernel, 245
use on lists, 53
use on Taylor kernel, 241

partial, 100
Partial derivative, 635
Partial differentiation, 732
Partial fraction, 106
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decomposition, 106
Partial function, 237
partial operator

LPDO package, 887
Partial symmetry

Cantens package, 503
pause command, 221
pclass reserved variable

SPDE package, 1065, 1066, 1068
pde2eds operator

EDS package, 658
pde2jet operator

EDS package, 685
People

Adamchik, Victor, 1277
Adamchik, Viktor, 1076, 1101
Alvarez-Sobreviela, Luis, 897, 904
Antweiler, Werner, 1134
Böing, Harald, 971
Barnes, Alan, 247, 926, 995, 1076, 1135
Blinkow„ Yu. A., 842
Bradford, Russell, 1157
Brand, Andreas, 590
Cannam, Chris, 1076
Caprasse, Hubert, 348, 455
Cohen, Ian, 103
Cotter, Caroline, 288
Dicrescenzo, C., 628
Dolzmann, Andreas, 576, 788, 823, 1025
Dresse, Alain, 641
Eastwood, James W., 941
Fitch, John P., 103, 441
Gaskell, Kerry, 101
Gatermann, Karin, 1129
Gates, Barbara L., 790
Gräbe, Hans-Gert, 393
Gragert, P., 551
Grozin, Andrey G., 791
Harper, David, 376
Hartley, David, 647, 1161
Hearn, Anthony C., 28
Ilyin, V., 1278
Ito, Masaaki, 581
Kako, Fujiko, 581
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Kameny, Stanley L., 101, 103
Kazasov, C., 850
Kersten, P. H. M., 551
Koepf, Wolfram, 107, 147, 259, 971, 995, 1189
Kryukov, A., 1278
Langmead, Neil, 1011, 1141
Liska, Richard, 761, 1026
Möller, H. M., 792
MacCallum, Malcolm, 926
Melenk, Herbert, 119, 122, 263, 273, 317, 389, 635, 792, 839, 1021, 1076
Moore, P. Mary Ann, 160
Neun, Winfried, 101, 259, 576, 792, 1076, 1101
Norman, Arthur C., 160
Padget, Julian, 247
Popowicz, Ziemowit, 1107
Post, G., 551
Rebbeck, Matt, 856, 916
Richard-Jung, C., 628
Rodionov, A., 1278
Roelofs, G., 551
Schöbel, Carsten, 852
Schöbel, Franziska, 852
Schöpf, Rainer, 239
Schrüfer, Eberhard, 178, 729
Schruefer, Eberhard, 883, 1104
Schwarz, Fritz, 1064
Spiridonova, M., 850
Sturm, Thomas, 576, 788, 823, 886, 970, 1025
Taranov, A., 1278
Temme, Lisa, 995, 1189
Tomov, V., 850
Tournier, E., 628
van Hulzen, J. A., 1031
Vitolo, Raffaele, 509, 551
Warns, Mathias, 951
Wolf, Thomas, 326, 583, 590, 1104, 1146
Wright, Francis J., 121, 298, 317, 926, 985, 1032, 1076, 1155
Zharkov, A. Yu., 842

Percent sign, 42
Period Lattice and Related functions, 1076
period switch, 141
Periodic decimal representation, 995
periodic operator

RATAPRX package, 995
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periodic2rational operator
RATAPRX package, 996

perm_to_num operator
ASSIST package, 361

permutations operator
ASSIST package, 360

pf operator, 106
pfaffian operator

CALI package, 433
EDS package, 678

pfaffian symbolic procedure
CALI package, 410

pform statement
EXCALC package, 730, 749

pgwd switch, 1221
physindex declaration

PHYSOP package, 953
PHYSOP package, 951
pi reserved variable, 41
pivot operator

LINALG package, 873
plap switch, 1221
plot command, 273
plotkeep switch, 280
plotreset command, 280
plotshow command, 281
plus_or_minus operator, 931
PM package, 963
Pochhammer, 106
Pochhammer notation, 106
Pochhammer symbol, 106, 1090–1093, 1101
poincare operator

EDS package, 688
poleorder operator, 107
poly_quotient operator, 164
Polygamma functions, 86, 1076, 1082
Polygamma operator, 86, 1082
Polylog, 87, 1086
Polylogarithm and related functions, 87, 1076, 1086
Polynomial, 159
Polynomial equations, 792
Polynomial functions, 88, 1077
Polynomial Pseudo-Division, 167
Polynomials
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Bernoulli, 1077
Euler, 1077
Fibonacci, 1077
Other, 1077

Popowicz, Ziemowit, 1107
position operator

ASSIST package, 353
positive reserved variable, 41, 183
positivity, 193
Post, G., 551
Power Series

arithmetic, 248
differentiation, 248

Power series, 247
composition, 254
expansions, 247
exponentiation, 249
extendible, 247
integration, 248
reversion, 253

Precedence, 43, 45
precedence declaration, 126
precise switch, 84, 85
precise_complex switch, 85
precision operator, 175

in ROOTS package, 188
precp operator

ASSIST package, 366
preduce operator, 840

GROEBNER package, 806
preducet operator

GROEBNER package, 809
Prefix, 73, 127
Prefix operator, 42

declaring new one, 126
unary, 43

preimage
CALI package, 438

preimage operator
CALI package, 433

preimage!* symbolic procedure
CALI package, 424

pret switch, 1224, 1225
prettyprint function, 1225
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Prettyprinting, 1224, 1225
prgen operator

SPDE package, 1065
pri switch, 132
primary decomposition

CALI package, 438
primarydecomposition operator

CALI package, 433
primarydecomposition!* symbolic procedure

CALI package, 423
primep boolean operator, 49
primt!=decompose2 symbolic procedure

CALI package, 422
prin2 lisp function, 359
principal_der global variable

CDE package, 515
PRINT_CONDITIONS operator, 1275
print_indexed declaration, 126
print_noindexed declaration, 126
print_precision command, 176
printgroup operator

SYMMETRY package, 1131
printterms symbol

CALI package, 405
proc operator

RANDPOLY package, 988
Procedure

body, 233, 234
heading, 232
list-valued, 235
matrix-valued, 234
using let inside body, 235

procedure command, 231
prod operator

SUM package, 1105
product keyword, 61
Program, 42
Program structure, 37
proj_monomial_curve operator

CALI package, 434
proj_monomial_curve!* symbolic procedure

CALI package, 425
proj_points operator

CALI package, 434, 439
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proj_points!* symbolic procedure
CALI package, 427

proj_points1!* symbolic procedure
CALI package, 427

prolong operator
EDS package, 674

Proper statement, 51, 57
properties operator

EDS package, 662
prsys operator

SPDE package, 1065, 1067
ps operator, 248
pschangevar operator, 257
pscompose operator, 254
pscopy operator, 256
psdepvar operator, 252
Pseudo-Division, 167
PSEUDO_DIVIDE operator, 167
pseudo_inverse operator

LINALG package, 873
PSEUDO_QUOTIENT operator, 167
PSEUDO_REMAINDER operator, 167
psexpansionpt operator, 252
psexplim operator, 251
psfunction operator, 252
Psi function, 1076, 1082
psi operator, 86, 1082
psorder operator, 253
psordlim operator, 257
psprintorder switch, 252
psreverse operator, 253
pssum operator, 255
pstaylor operator, 250
psterm operator, 252
pstruncate operator, 253
Puiseux expansion, 254
pullback operator

EDS package, 665
put_equations_used operator

CDE package, 528
CDIFF package, 558

putbag operator
ASSIST package, 356

putcsystem command
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AVECTOR package, 379
putflag operator

ASSIST package, 365
putgrass operator

ASSIST package, 371
putprop operator

ASSIST package, 365
pvar_df operator

CDE package, 516
pwrds switch, 1221

Q

qbinomial operator
QSUM package, 971

qbrackets operator
QSUM package, 971

qfactorial operator
QSUM package, 971

qgosper operator
QSUM package, 975

qgosper_down switch, 975, 982
qgosper_specialsol switch, 982
QHULL package, 970
qphihyperterm operator

QSUM package, 972
qpochhammer operator

QSUM package, 971
qpsihyperterm operator

QSUM package, 972
qratio operator

QSUM package, 981
qsimpcomb operator

QSUM package, 978, 981
QSUM package, 971
qsum_nullspace switch, 981, 982
qsum_trace switch, 982
qsumrecursion operator

QSUM package, 976
qsumrecursion_certificate switch, 977, 982
qsumrecursion_down switch, 982
qsumrecursion_exp switch, 982
Quadrature, 263
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Quasi-period factors, 720
quasi_period_factors operator

ELLIPFN package, 722
quasilinear operator

EDS package, 679
QUASILINPDE, 342
quit, 71
quote, 1201

R

r_solve operator, 121
rad2deg numerical operator, 75
rad2dms numerical operator, 75
radical

CALI package, 440
radical operator

CALI package, 434
radical!* symbolic procedure

CALI package, 423
rand operator

RANDPOLY package, 988
random operator, 78, 988
random_linear_form operator

CALI package, 434
random_linear_form symbolic procedure

CALI package, 411
random_new_seed operator, 78
random_matrix operator

LINALG package, 874
randomlist operator

ASSIST package, 360
randpoly operator

RANDPOLY package, 985
RANDPOLY package, 985
rank operator, 228
rat switch, 135
RATAPRX package, 995
ratarg switch, 144, 171
ratint operator

RATINT package, 1011
RATINT package, 1011
Rational coefficient, 175
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Rational function, 159
rational number, 95
rational switch, 175
rational2periodic operator

RATAPRX package, 995
rationalize switch, 178
ratjordan operator

NORMFORM package, 920
ratpreimage operator

CALI package, 434
ratpreimage!* symbolic procedure

CALI package, 424
ratpri switch, 136
ratroot switch, 187
RC operator

ELLIPFN package, 709
RD operator

ELLIPFN package, 709
REACTEQN package, 1021
real, 65
Real coefficient, 175
Real number, 38, 39
realroots, 185
realroots operator, 184
realvalued declaration, 191
realvaluedp operator, 192
Rebbeck, Matt, 856, 916
red

CALI package, 438
red_better

CALI package, 411
red_TopRedBE

CALI package, 411
red_extract symbolic procedure

CALI package, 413
red_Interreduce symbolic procedure

CALI package, 412
red_prepare symbolic procedure

CALI package, 413
red_redpol symbolic procedure

CALI package, 413
red_Straight symbolic procedure

CALI package, 412
red_TailRed symbolic procedure
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CALI package, 412
red_TailRedDriver symbolic procedure

CALI package, 412
red_TopInterreduce symbolic procedure

CALI package, 412
red_TopRed symbolic procedure

CALI package, 412
red_TopRedBE symbolic procedure

CALI package, 412
red_total switch, 404, 412
red_TotalRed symbolic procedure

CALI package, 412
rederr operator, 234
redexpr operator

ASSIST package, 368
REDLOG package, 1025
reducerc file, 33, 216
reduct operator, 174
reimpart operator, 78
rem_dummy_indices command

CANTENS package, 463, 493
rem_value_tens command

CANTENS package, 465, 466
rem_spaces command

CANTENS package, 459, 471
rem_tensor command

CANTENS package, 462
remainder operator, 164
remanticom command

DUMMY package, 645
remember statement, 238
remfac declaration, 133
remforder command

EXCALC package, 748, 749
remgrass operator

ASSIST package, 371
remind declaration, 1214
remindex command

ASSIST package, 364
remnoncom command

ASSIST package, 363
remove operator

ASSIST package, 352
remove_columns operator
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LINALG package, 875
remove_rows operator

LINALG package, 875
remove_variables command

CANTENS package, 462
remsym command

CANTENS package, 506
DUMMY package, 645

remvector command
ASSIST package, 364

renosum command
EXCALC package, 741, 749

reorder operator
EDS package, 688

repart operator, 74, 77–79
repart opreator, 74
repeat, 64, 66, 68
repeat statement, 64
repfirst operator

ASSIST package, 353
repprincparam_der shared global variable

CDE package, 515
repprincparam_odd shared global variable

CDE package, 515
represt operator

ASSIST package, 353
requirements shared variable, 117
Reserved variable, 40, 41
Reserved variable

high_pow, 145
low_pow, 145
Catalan, 40
Euler_Gamma, 40
Golden_Ratio, 41
i, 41
infinity, 41
Khinchin, 41
negative, 41
NIL, 41
pi, 41
positive, 41
t, 41

reset operator
COEFF2 package, 582
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resetreduce command, 72
residue operator, 107
resolve

CALI package, 438
resolve operator

CALI package, 434
Resolve!* symbolic procedure

CALI package, 421
rest operator, 54, 353
restaslist operator

ASSIST package, 354
restrict operator

EDS package, 665
restrictions operator

EDS package, 662
result operator

SPDE package, 1064
resultant operator, 169
retry command, 217
return, 65–68
return statement, 67
reverse lexicographic

CALI package, 397
reverse operator, 55
revgradlex

term order, 793
revgradlex, 577
revlex term order

CALI package, 440
revpri switch, 136
Rewriting rules

CANTENS package, 464
RF operator

ELLIPFN package, 709
rhs operator, 51
Richard-Jung, C., 628
Riemann tensor

Cantens package, 503
Riemann Zeta function, 87, 1076

SPECFN package, 1086
riemannconx command

EXCALC package, 745, 749
Riemannian Connections, 745
right_factor operator
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NCPOLY package, 914
right_factors operator

NCPOLY package, 914
ring

CALI package, 401
ring_from_a symbolic procedure

CALI package, 406
ring_2a symbolic procedure

CALI package, 406
ring_define symbolic procedure

CALI package, 407
ring_degrees symbolic procedure

CALI package, 406
ring_ecart symbolic procedure

CALI package, 406
ring_isnoetherian symbolic procedure

CALI package, 406
ring_lp symbolic procedure

CALI package, 407
ring_names symbolic procedure

CALI package, 406
ring_rlp symbolic procedure

CALI package, 407
ring_sum symbolic procedure

CALI package, 407
ring_tag symbolic procedure

CALI package, 406
RJ operator

ELLIPFN package, 709
RLFI package, 1026
Rlisp, 1221
RLISP88, 1211
rlrootno operator, 184
Rodionov, A., 1278
Roelofs, G., 551
root finding, 182
root_of_unity operator, 931
root_multiplicities global variable, 113
root_of operator, 113
root_val operator, 185
rootacc operator (ROOTS package), 188
rootacc!# global variable (ROOTS package), 188
rootmsg switch, 188
rootprec operator (ROOTS package), 188
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roots, 185
roots operator, 184
roots_at_prec operator, 185
rootscomplex global variable, 184
rootsreal global variable, 184
round operator, 79
roundall switch, 176
roundbf switch, 176
rounded switch, 40, 41, 48, 85, 139, 175, 187, 1078, 1084
row_dim operator

LINALG package, 875
rows_pivot operator

LINALG package, 875
rplaca lisp function, 354
rplacd lisp function, 354
Rsetrepresentation operator

SYMMETRY package, 1132
rtr command, 318
rtrace switch, 317, 324
rtrout command, 324
rtrst command, 320
Rule lists, 204
Rules

Double slash operators, 207
Double tilde variables, 208
Free operators, 207

rules symbol
CALI package, 405

S

saturation operator
GROEBNER package, 818

save_cde_state operator
CDE package, 512

saveas statement, 131
savemat operator

CALI package, 434
savesfs switch, 1079
savestructr switch, 143
Saving an expression, 141
sbk Turtle function, 290
Scalar, 47
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scalar, 64, 65
Scalar variable, 40
scalefactors operator

AVECTOR package, 378
scalop declaration

PHYSOP package, 953
scalvect operator

ASSIST package, 370
Schöbel, Carsten, 852
Schöbel, Franziska, 852
Schöpf, Rainer, 239
schouten_bracket operator

CDE package, 521
Schrüfer, Eberhard, 178, 729
Schruefer, Eberhard, 883, 1104
Schwarz, Fritz, 1064
scientific_notation declaration, 38
SCOPE package, 1031
sder(i) operator

SPDE package, 1065
sec numerical operator, 80
secd numerical operator, 80
sech numerical operator, 80
second operator, 54
select operator, 110
Selector, 1205
selectvars operator

CDE package, 512
selfconjugate declaration, 75, 192
Semicolon, 57
semilinear operator

EDS package, 680
sequences operator

ASSIST package, 351
Set Statement, 58
set statement, 58, 105
set_distribution_rule variable

SETS package, 1035
set_coframing operator

EDS package, 660
set_eq operator

SETS package, 1038
setavailable operator

SYMMETRY package, 1133
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setback Turtle function, 290
setcaliprintterms operator

CALI package, 404
setcalitrace

CALI package, 439
setcalitrace operator

CALI package, 404
setdegrees operator

CALI package, 401, 405
setdiff operator

SETS package, 1035
setelements operator

SYMMETRY package, 1132
setelmat operator

ASSIST package, 374
setforward Turtle function, 290
setgbasis

CALI package, 439
setgbasis operator

CALI package, 434
setgenerators operator

SYMMETRY package, 1132
setgrouptable operator

SYMMETRY package, 1132
setheading Turtle function, 289
setheadingtowards Turtle function, 290
setideal operator

CALI package, 401, 402
setkorder function

CALI package, 407
setmod, 177
setmodule operator

CALI package, 401, 403
setmonset operator

CALI package, 405
setmonset!* symbolic procedure

CALI package, 415
setp operator

ASSIST package, 358
setposition Turtle function, 290
setring

CALI package, 399, 438
setring command

CALI package, 397
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setring operator
CALI package, 405

setring procedure
CALI package, 399

setring!* symbolic procedure
CALI package, 407

setrules operator
CALI package, 402, 409

setrules symbol
CALI package, 405

setrules!* symbolic procedure
CALI package, 406

SETS package, 1032
setx Turtle function, 289
sety Turtle function, 289
sfwd Turtle function, 290
sgn

indeterminate sign, 737
sh Turtle function, 289
share declaration, 1204
Shi (hyperbolic sine integral) operator, 86, 1079
show operator

ASSIST package, 366
show_dummy_names command

DUMMY package, 643
show_epsilons operator

CANTENS package, 483, 485, 501
show_spaces operator

CANTENS package, 458, 471, 485
showproc operator

RANDPOLY package, 989
showrules operator, 209
SHOWTIME command, 71
shto Turtle function, 290
shut command, 215
Si (sine integral) operator, 86, 1079
Side effect, 51
sieve operator

CALI package, 434
Sigma functions, 90, 698, 717, 720
sign operator, 79, 193
Signature

CANTENS package, 481
Cantens package, 480, 482, 499
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signature command
CANTENS package, 456, 478, 499
EXCALC package, 749

signature identifier
CANTENS package, 457

SimpleDE operator
FPS package, 261

simplex operator
LINALG package, 876

Simplification, 48, 129
simplify_combinatorial operator

ZEILBERG package, 1182
simplify_gamma operator

ZEILBERG package, 1182
simplify_gamma2 operator

ZEILBERG package, 1182
simplify_gamman operator

ZEILBERG package, 1182
simpnoncomdf switch, 98
simpsys operator

SPDE package, 1064, 1066, 1068
sin numerical operator, 80
sind numerical operator, 80
singular_locus operator

CALI package, 411, 435
singular_locus!* symbolic procedure

CALI package, 411
sinh numerical operator, 80
SixjSymbol operator, 1089
slt Turtle function, 289
smacro reserved identifier, 1203
smithex operator

NORMFORM package, 917
smithex_int operator

NORMFORM package, 918
SolidHarmonicY, 87
SolidHarmonicY operator, 1088
solve operator, 112, 113, 914

assumptions variable, 118
requirements shared variable, 117
root_multiplicities global variable, 113
use of GROEBNER package, 792

solvesingular switch, 116
Solving inequalities, 119
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Sonin polynomials, 1093
sort lisp function, 362
sortlist operator

ASSIST package, 362
sortnumlist operator

ASSIST package, 362
space, 456
spacedim command, 1161

EXCALC package, 732, 749
Spaces

CANTENS package, 491
Cantens package, 484, 499

spaces, 459, 470, 477, 480
spadd_to_columns operator

SPARSE package, 1045
spadd_to_rows operator

SPARSE package, 1045
spadd_columns operator

SPARSE package, 1044
spadd_rows operator

SPARSE package, 1044
sparse declaration

SPARSE package, 1040
SPARSE package, 1040
sparsematp predicate

SPARSE package, 1060
spaugment_columns operator

SPARSE package, 1045
spband_matrix operator

SPARSE package, 1046
spblock_matrix operator

SPARSE package, 1046
spchar_matrix operator

SPARSE package, 1047
spchar_poly operator

SPARSE package, 1047
spcholesky operator

SPARSE package, 1047
spcoeff_matrix operator

SPARSE package, 1048
spcol_dim operator

SPARSE package, 1048
spcompanion operator

SPARSE package, 1049
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spcopy_into operator
SPARSE package, 1049

SPDE package, 1064
spdiagonal operator

SPARSE package, 1050
SPECFN package, 1076
SPECFN2 package, 1101
Special functions, 86, 1076
species shared variable

REACTEQN package, 1021
spextend operator

SPARSE package, 1050
spfind_companion operator

SPARSE package, 1051
spget_columns operator

SPARSE package, 1051
spget_rows operator

SPARSE package, 1052
spgram_schmidt operator

SPARSE package, 1052
Spherical and Solid Harmonics, 87, 1076, 1088
Spherical coordinates, 743

ORTHOVEC package, 942
SphericalHarmonicY, 87
SphericalHarmonicY operator, 1088
sphermitian_tp operator

SPARSE package, 1052
sphessian operator

SPARSE package, 1053
Spinor

CANTENS package, 492
Spiridonova, M., 850
spjacobian operator

SPARSE package, 1053
spjordan_block operator

SPARSE package, 1054
split operator

ASSIST package, 352
split_field function

ARNUM package, 182
splitext_list operator

CDE package, 534
splitext_opequ operator

CDE package, 533
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splitplusminus operator
ASSIST package, 369

splitterms operator
ASSIST package, 369

splitvars_opequ operator
CDE package, 528

splu_decom operator
SPARSE package, 1054

spmake_identity operator
SPARSE package, 1055

spmatrix_augment operator
SPARSE package, 1055

spmatrix_stack operator
SPARSE package, 1056

spminor operator
SPARSE package, 1056

spmult_columns operator
SPARSE package, 1057

spmult_rows operator
SPARSE package, 1057

spn Turtle function, 290
sppivot operator

SPARSE package, 1057
sppseudo_inverse operator

SPARSE package, 1058
spremove_columns operator

SPARSE package, 1059
spremove_rows operator

SPARSE package, 1059
sprow_dim operator

SPARSE package, 1059
sprows_pivot operator

SPARSE package, 1059
spstack_rows operator

SPARSE package, 1060
spsub_matrix operator

SPARSE package, 1061
spsvd operator

SPARSE package, 1061
spswap_columns operator

SPARSE package, 1062
spswap_entries operator

SPARSE package, 1062
spswap_rows operator
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SPARSE package, 1062
spur declaration, 1217
sqfrf, 187
sqrt numerical operator, 80
squarep predicate

LINALG package, 877
SPARSE package, 1060

srt Turtle function, 289
SSTOOLS package, 1104
stable quotient

CALI package, 418
stack_rows operator

LINALG package, 878
Standard form, 1205
Standard quotient, 1205
Startup file, 216
state declaration

PHYSOP package, 953
Statement, 57

assignment, 58
compound, 64
conditional, 60
for, 61
for each, 1203
go to, 66
Group, 59, 215
repeat, 64
return, 67
saveas, 131
Set, 58
Unset, 58
while, 63

Statement terminator, 57
Stirling numbers, 91, 1076, 1090
Stirling1, 91
Stirling1 operator, 1090
Stirling2, 91
Stirling2 operator, 1090
storegroup operator

SYMMETRY package, 1133
String, 42
STRUCTR operator, 142
structure_equations operator

EDS package, 661
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Structuring, 129
Struve functions, 87, 1076, 1085
StruveH operator, 87

SPECFN package, 1085
StruveH transform, 1274
struveh_transform operator, 1274
StruveL operator, 87

SPECFN package, 1085
Sturm Sequences, 184
Sturm, Thomas, 576, 788, 823, 886, 970, 1025
sub operator, 51, 195
sub_matrix operator

LINALG package, 878
sublist symbol

CALI package, 406
submat operator

ASSIST package, 373
submodulep operator

CALI package, 435
submodulep!* symbolic procedure

CALI package, 418
subset (ideal inclusion test) infix operator

IDEALS package, 840
subset operator

SETS package, 1037
subset_eq operator

SETS package, 1037
Subspaces

Cantens package, 480
subspaces, 459
substitute operator

ASSIST package, 355
Substitution, 195
such that, 200
sum keyword, 61
sum operator

SUM package, 1105
SUM package, 1105
sum!-sq operator

SUM package, 1105
sumrecursion operator

ZEILBERG package, 1173
sumtohyper operator

ZEILBERG package, 1181
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sumvect operator
ASSIST package, 370

super_product operator
CDE package, 514

super_vectorfield operator
CDIFF package, 553

suppress operator
ASSIST package, 366

SUSY2 package, 1107
svd operator

LINALG package, 878
svec procedure

ORTHOVEC package, 942
swap_columns operator

LINALG package, 879
swap_entries operator

LINALG package, 879
swap_rows operator

LINALG package, 880
Switch, 70, 71

adjprec, 176
algint, 103
allbranch, 116
allfac, 133–135, 960
allowdfint, 99
anticom, 958
arbvars, 116
balanced_mod, 177, 925
bcsimp, 403, 406
bezout, 169
bfspace, 176
checkord, 513
combineexpt, 84
combinelogs, 83
commutedf, 98
comp, 1221
complex, 85, 177, 187, 1084
contract, 957
cramer, 112, 225
cref, 1223, 1224
defn, 1204, 1225
demo, 70
detectunits, 403, 413
dfint, 99
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dfprint, 100
dispjacobian, 92
distribute, 351, 369
div, 134, 175
echo, 213
errcont, 217
evallhseqp, 51
exdelt, 488, 502
exp, 160, 163
expanddf, 98
expandlogs, 83
ezgcd, 163
factor, 160, 161
factorprimes, 403
factorunits, 404, 413
failhard, 102
fast_la, 1063
fastsimplex, 877
fort, 139
fortupper, 141
fullroots, 114
gcd, 162, 163
gltbasis, 798, 802
glterms, 798
groebfullreduction, 798, 802
groebopt, 797, 799, 802
groebprot, 807
groebstat, 798, 802
hardzerotest, 404
heugcd, 163
horner, 134
ifactor, 161
imaginary, 874
int, 221
intstr, 130
lasimp, 1028
latex, 1028
lcm, 164
lexefgb, 404, 417
lhyp, 850
list, 134
listargs, 55
lmon, 850
lower_matrix, 874



S 1371

ltrig, 850
mcd, 162, 164
modular, 162, 177, 925
msg, 1225
multiplicities, 113
multiroot, 187
nat, 141, 738
nero, 139
nocommutedf, 98
noconvert, 176
noerrsimplex, 877
Noetherian, 393, 398, 404, 407
nointsubst, 102
nolnr, 102
nosplit, 135
nosum, 741
not_negative, 874
odesolve_basis, 930
odesolve_check, 930
odesolve_expand, 930
odesolve_explicit, 930
odesolve_fast, 930
odesolve_full, 930
odesolve_implicit, 930
odesolve_noint, 930
odesolve_verbose, 930
onespace, 456, 464, 470, 474
only_integer, 874
output, 131
overview, 162
period, 141
pgwd, 1221
plap, 1221
plotkeep, 280
precise, 84, 85
precise_complex, 85
pret, 1224, 1225
pri, 132
psprintorder, 252
pwrds, 1221
qgosper_down, 975, 982
qgosper_specialsol, 982
qsum_nullspace, 981, 982
qsum_trace, 982
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qsumrecursion_certificate, 977, 982
qsumrecursion_down, 982
qsumrecursion_exp, 982
rat, 135
ratarg, 144, 171
rational, 175
rationalize, 178
ratpri, 136
ratroot, 187
red_total, 404, 412
revpri, 136
rootmsg, 188
roundall, 176
roundbf, 176
rounded, 40, 41, 48, 85, 139, 175, 187, 1078, 1084
rtrace, 317, 324
savesfs, 1079
savestructr, 143
simpnoncomdf, 98
solvesingular, 116
symantic, 969
symmetric, 874
sysm!-assoc, 969
taylorautocombine, 243
taylorautoexpand, 242, 243
taylorkeeporiginal, 241–243, 246
taylorprintorder, 243
time, 70, 71
tr_lie, 853
tra, 103
traceratint, 1019
tracetrig, 1145
trcompact, 147
trdefint, 102
trfac, 162
trgroeb, 798, 802
trgroeb1, 798, 802
trgroebr, 803
trgroebs, 798, 802
trigform, 114
trint, 102, 103
trintsubst, 102
trnumeric, 264
trode, 930
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trplot, 280
trpm, 968
trroot, 188
trsolve, 122
trsum, 1106
trwu, 1158
trxideal, 1165
trxmod, 1165
upper_matrix, 874
varopt, 118, 914
verbatim, 1028
verboseload, 244
xfullreduce, 1165
zb_factor, 1185
zb_proof, 1185
zb_trace, 1183, 1185

switch hardzerotest
CALI package, 402

switch lexefgb
CALI package, 405

Switches by package
REDUCE Core
adjprec, 176
allbranch, 116
allfac, 133–135, 960
allowdfint, 99
arbvars, 116
balanced_mod, 177, 925
bezout, 169
bfspace, 176
combineexpt, 84
combinelogs, 83
commutedf, 98
comp, 1221
complex, 85, 177, 187, 1084
cramer, 112, 225
cref, 1223, 1224
defn, 1204, 1225
demo, 70
dfint, 99
dfprint, 100
dispjacobian, 92
div, 134, 175
echo, 213
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errcont, 217
evallhseqp, 51
exp, 160, 163
expanddf, 98
expandlogs, 83
ezgcd, 163
factor, 160, 161
failhard, 102
fort, 139
fortupper, 141
fullroots, 114
gcd, 162, 163
heugcd, 163
horner, 134
ifactor, 161
int, 221
intstr, 130
lcm, 164
list, 134
listargs, 55
mcd, 162, 164
modular, 162, 177, 925
msg, 1225
multiplicities, 113
nat, 141, 738
nero, 139
nocommutedf, 98
noconvert, 176
nointsubst, 102
nolnr, 102
nosplit, 135
output, 131
overview, 162
period, 141
pgwd, 1221
plap, 1221
precise, 84, 85
precise_complex, 85
pret, 1224, 1225
pri, 132
pwrds, 1221
rat, 135
ratarg, 144, 171
rational, 175
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rationalize, 178
ratpri, 136
revpri, 136
roundall, 176
roundbf, 176
rounded, 40, 41, 48, 85, 139, 175, 187, 1078, 1084
savesfs, 1079
savestructr, 143
simpnoncomdf, 98
solvesingular, 116
time, 70, 71
trcompact, 147
trdefint, 102
trfac, 162
trigform, 114
trint, 102
trintsubst, 102
varopt, 118, 914

ALGINT package
algint, 103
tra, 103
trint, 103

ASSIST package
distribute, 351, 369

CALI package
bcsimp, 403, 406
detectunits, 403, 413
factorprimes, 403
factorunits, 404, 413
hardzerotest, 404
lexefgb, 404, 417
Noetherian, 393, 398, 404, 407
red_total, 404, 412

CANTENS package
exdelt, 488, 502
onespace, 456, 464, 470, 474

CDE package
checkord, 513

EXCALC package
nosum, 741

GNUPLOT package
plotkeep, 280
trplot, 280

GROEBNER package



1376 INDEX

gltbasis, 798, 802
glterms, 798
groebfullreduction, 798, 802
groebopt, 797, 799, 802
groebprot, 807
groebstat, 798, 802
trgroeb, 798, 802
trgroeb1, 798, 802
trgroebr, 803
trgroebs, 798, 802

LAPLACE package
lhyp, 850
lmon, 850
ltrig, 850

LIE package
tr_lie, 853

LINALG package
fastsimplex, 877
imaginary, 874
lower_matrix, 874
noerrsimplex, 877
not_negative, 874
only_integer, 874
symmetric, 874
upper_matrix, 874

NUMERIC package
trnumeric, 264

ODESOLVE package
odesolve_basis, 930
odesolve_check, 930
odesolve_expand, 930
odesolve_explicit, 930
odesolve_fast, 930
odesolve_full, 930
odesolve_implicit, 930
odesolve_noint, 930
odesolve_verbose, 930
trode, 930

PHYSOP package
anticom, 958
contract, 957

PM package
symantic, 969
sysm!-assoc, 969
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trpm, 968
QSUM package
qgosper_down, 975, 982
qgosper_specialsol, 982
qsum_nullspace, 981, 982
qsum_trace, 982
qsumrecursion_certificate, 977, 982
qsumrecursion_down, 982
qsumrecursion_exp, 982

RATINT package
traceratint, 1019

RLFI package
lasimp, 1028
latex, 1028
verbatim, 1028

ROOTS package
multiroot, 187
ratroot, 187
rootmsg, 188
trroot, 188

RSOLVE package
trsolve, 122

RTRACE package
rtrace, 317, 324

SPARSE package
fast_la, 1063

SUM package
trsum, 1106

TAYLOR package
taylorautocombine, 243
taylorautoexpand, 242, 243
taylorkeeporiginal, 241–243, 246
taylorprintorder, 243
verboseload, 244

TPS package
psprintorder, 252

TRIGINT package
tracetrig, 1145

WU package
trwu, 1158

XIDEAL package
trxideal, 1165
trxmod, 1165
xfullreduce, 1165
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ZEILBERG package
zb_factor, 1185
zb_proof, 1185
zb_trace, 1183, 1185

switches operator
ASSIST package, 350

switchorg operator
ASSIST package, 350

sx Turtle function, 289
sy Turtle function, 289
sym

CALI package, 438
sym operator

CALI package, 435
sym!* symbolic procedure

CALI package, 425
symantic switch, 969
symb_to_alg operator

ASSIST package, 368
symbol_matrix operator

EDS package, 690
symbol_relations operator

EDS package, 690
symbolic, 1199
Symbolic indices

Cantens package, 484
Symbolic mode, 1199, 1200, 1204, 1205

assignment, 1202
Symbolic procedure, 1203
symbolic_power operator

CALI package, 435
symbolic_power!* symbolic procedure

CALI package, 426
symdiff operator

ASSIST package, 358
symmetric

tensor, 480
symmetric declaration, 125

CANTENS package, 503
Symmetric Elliptic Integrals, 709
Symmetric operator, 125
symmetric switch, 874
symmetricp predicate

LINALG package, 880
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SPARSE package, 1062
Symmetries

Cantens package, 503
symmetrize operator

ASSIST package, 361
CANTENS package, 506

SYMMETRY package, 1129
symmetrybasis operator

SYMMETRY package, 1130
symmetrybasispart operator

SYMMETRY package, 1130
symtree command

DUMMY package, 644
symtree declaration

CANTENS package, 503
sysm!-assoc switch, 969
system command, 215
system operator

EDS package, 662
system precision, 75, 188
syzygies operator

CALI package, 435
syzygies!* symbolic procedure

CALI package, 414
syzygies1!* symbolic procedure

CALI package, 414

T

t reserved variable, 41
tableau operator

EDS package, 676
tan, 102
tan numerical operator, 80
tand numerical operator, 80
Tangent vector, 733
tangentcone operator

CALI package, 435
tanh numerical operator, 80
Taranov, A., 1278
taylor operator, 239
Taylor series

arithmetic, 242



1380 INDEX

differentiation, 243
integration, 243
reversion, 243
substitution, 243

taylorautocombine switch, 243
taylorautoexpand switch, 242, 243
taylorcoefflist operator, 241
taylorcombine operator, 242
taylorkeeporiginal switch, 241–243, 246
taylororiginal operator, 246
taylorprintorder switch, 243
taylorprintterms variable, 241, 246
taylorrevert operator, 243, 246
taylorseriesp operator, 242
taylortemplate operator, 241, 246
taylortostandard operator, 242
Temme, Lisa, 995, 1189
tensop declaration

PHYSOP package, 953
Tensor contractions

Cantens package, 496
tensor declaration

CANTENS package, 460
Tensor derivatives

Cantens package, 507
Tensor polynomial

Cantens package, 490
term

CALI package, 408
Terminator, statement, 57
testbool operator

BOOLEAN package, 391
Theta function derivatives, 698, 716
theta1d operator

ELLIPFN package, 716
theta2d operator

ELLIPFN package, 716
theta3d operator

ELLIPFN package, 716
theta4d operator

ELLIPFN package, 716
third operator, 54
ThreejSymbol operator, 1089
time switch, 70, 71
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to_cn rule list
ELLIPFN package, 701

to_dn rule list
ELLIPFN package, 701

to_sn rule list
ELLIPFN package, 701

toeplitz operator
LINALG package, 880

Tomov, V., 850
torder, 812, 814
torder command

GROEBNER package, 796
torder operator, 577

GROEBNER package, 813
torder opreator, 840
torder_compile operator

GROEBNER package, 814
torsion operator

EDS package, 676
total, 100
total_order global variable

CDE package, 511
totaldeg operator, 174
Tournier, E., 628
tp operator, 227
tpmat operators

ASSIST package, 374
tr_lie switch, 853
tra switch, 103
Trace

Cantens package, 490
trace operator, 227
trace symbol

CALI package, 405
tracefps switch, 261
traceratint switch, 1019
tracetrig switch, 1145
Tracing

SPDE package, 1066
CALI package, 439
EXCALC package, 745
GNUPLOT package, 280
ROOTS package, 188
SUM package, 1106
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transform operator
EDS package, 666

trcompact switch, 147
trdefint switch, 102
trfac switch, 162
trgroeb switch, 798, 802
trgroeb1 switch, 798, 802
trgroebr switch, 803
trgroebs switch, 798, 802
TRI package, 1134
triang

CALI package, 439
triang_adjoint operator

LINALG package, 881
triangular systems

CALI package, 417, 439
trig functions, 1135
TRIGD package, 1135
trigexpand operator

ASSIST package, 369
trigfactorize operator, 151
trigform switch, 114
triggcd operator, 152
trigint operator

TRIGINT package, 1143
TRIGINT package, 1141
trigonometric_base procedure, 1095
trigreduce operator

ASSIST package, 369
trigsimp operator, 148
trint switch, 102, 103
trintsubst switch, 102
trnumeric switch, 264
trode switch, 930
trplot switch, 280
trpm switch, 968
trrl command, 322
trrlid command, 323
trroot switch, 188
trsolve switch, 122
trsum switch, 1106
true identifier

SETS package, 1036
trwu switch, 1158
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trxideal switch, 1165
trxmod switch, 1165
turnleft Turtle function, 289
turnright Turtle function, 289
TURTLE package, 288
tvector command

EXCALC package, 730, 749

U

u(alfa) operator
SPDE package, 1065

U(ALFA,I) operator
SPDE package, 1065

Unary prefix operator, 43
union operator

ASSIST package, 358
SETS package, 1034

unit operator
PHYSOP package, 954

unitmatrix command
ASSIST package, 372

unmixedradical operator
CALI package, 435

unmixedradical!* symbolic procedure
CALI package, 423

unrtr command, 318
unrtrst command, 320
Unset Statement, 58
unset statement, 59, 105
until, 61
untrrl command, 322
untrrlid command, 323
up_qratio operator

QSUM package, 981
upper_matrix switch, 874
upward_antidifference, 982
User packages, 325

V

V3TOOLS package, 1146
van Hulzen, J. A., 1031



1384 INDEX

vandermonde operator
LINALG package, 881

vardf (variational derivative) operator)
EXCALC package, 737

vardf operator
EXCALC package, 749

Variable, 40
double tilde, 208

Variable elimination, 792
Variational derivative, 737
varlessp symbol

CALI package, 406
varname operator, 141, 142
varnames symbol

CALI package, 406
varopt operator

CALI package, 435
varopt switch, 118, 914
varopt!* symbolic procedure

CALI package, 426
vconcmat operators

ASSIST package, 374
vdf operator

ORTHOVEC package, 945
vec command

AVECTOR package, 376
vecdim command, 1219
vecop declaration

PHYSOP package, 953
Vector

addition, 943
cross product, 944
differentiation, 378
division, 943
dot product, 944
exponentiation, 944
inner product, 944
integration, 378
modulus, 944
multiplication, 944
subtraction, 943

vector declaration, 1215
vectoradd operator

ORTHOVEC package, 943
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vectorcross operator
ORTHOVEC package, 944

vectordifference operator
ORTHOVEC package, 943

vectorexpt operator
ORTHOVEC package, 944

vectorminus operator
ORTHOVEC package, 943

vectorplus operator
ORTHOVEC package, 943

vectorquotient operator
ORTHOVEC package, 943

vectorrecip operator
ORTHOVEC package, 943

vectortimes operator
ORTHOVEC package, 944

verbatim switch, 1028
verboseload switch, 244
vint operator

ORTHOVEC package, 947
Vitolo, Raffaele, 509, 551
vmod operator

AVECTOR package, 377
ORTHOVEC package, 944

volint operator
ORTHOVEC package, 947

volintegral function
AVECTOR package, 380

volintorder vector
AVECTOR package, 380

VOUT procedure
ORTHOVEC package, 942

vstart procedure
ORTHOVEC package, 942

vtaylor operator
ORTHOVEC package, 945

W

Warnings
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SPECFN package, 1086
Zeta function of Jacobi, 89

ELLIPFN package, 708
zeta operator

SPECFN package, 1086
ZETA(ALFA,I) operator

SPDE package, 1065
Zharkov, A. Yu., 842
ztrans operator

ZTRANS package, 1189
ZTRANS package, 1189


	Contents
	Abstract
	1 Introductory Information
	2 Structure of Programs
	2.1 The REDUCE Standard Character Set
	2.2 Numbers
	2.3 Identifiers
	2.4 Variables
	2.5 Strings
	2.6 Comments
	2.7 Operators

	3 Expressions
	3.1 Scalar Expressions
	3.2 Integer Expressions
	3.3 Boolean Expressions
	3.4 Equations
	3.5 Proper Statements as Expressions

	4 Lists
	4.1 Operations on Lists
	4.1.1 list
	4.1.2 FIRST
	4.1.3 SECOND
	4.1.4 THIRD
	4.1.5 REST
	4.1.6 . (Cons) Operator
	4.1.7 APPEND
	4.1.8 REVERSE
	4.1.9 List Arguments of Other Operators
	4.1.10 Caveats and Examples


	5 Statements
	5.1 Assignment Statements
	5.1.1 Set and Unset Statements

	5.2 Group Statements
	5.3 Conditional Statements
	5.4 FOR Statements
	5.5 WHILE … DO
	5.6 REPEAT … UNTIL
	5.7 Compound Statements
	5.7.1 Compound Statements with GO TO
	5.7.2 Labels and GO TO Statements
	5.7.3 RETURN Statements


	6 Commands and Declarations
	6.1 Array Declarations
	6.2 Mode Handling Declarations
	6.3 END
	6.4 BYE Command
	6.5 Timing Facilities
	6.6 DEFINE Command
	6.7 RESETREDUCE Command

	7 Built-in Prefix Operators
	7.1 Numerical Operators
	7.1.1 ABS
	7.1.2 CEILING
	7.1.3 CONJ
	7.1.4 Conversion between degree and radians
	7.1.5 FACTORIAL
	7.1.6 FIX
	7.1.7 FLOOR
	7.1.8 IMPART
	7.1.9 LEGENDRE_SYMBOL
	7.1.10 MAX/MIN
	7.1.11 NEXTPRIME
	7.1.12 RANDOM
	7.1.13 RANDOM_NEW_SEED
	7.1.14 REIMPART
	7.1.15 REPART
	7.1.16 ROUND
	7.1.17 SIGN

	7.2 Mathematical Functions
	7.2.1 Elementary Functions
	7.2.2 Special Functions
	7.2.3 Polynomial Functions
	7.2.4 Elliptic Functions and Integrals

	7.3 Combinatorial Numbers
	7.4 Bernoulli, Euler and Fibonacci Numbers
	7.5 CHANGEVAR Operator
	7.5.1 CHANGEVAR example: The 2-dim. Laplace Equation
	7.5.2 Another CHANGEVAR example: An Euler Equation

	7.6 CONTINUED_FRACTION Operator
	7.7 DF Operator
	7.7.1 Switches influencing differentiation
	7.7.2 Adding Differentiation Rules
	7.7.3 Options controlling display of derivatives

	7.8 INT Operator
	7.8.1 Indefinite integration
	7.8.2 Definite Integration
	7.8.3 Options
	7.8.4 Advanced Use

	7.9 LENGTH Operator
	7.10 LIMIT Operator
	7.11 MAP Operator
	7.12 MKID Operator
	7.13 The Pochhammer Notation
	7.14 PF Operator
	7.15 RESIDUE and POLEORDER Operators
	7.16 SELECT Operator
	7.17 SOLVE Operator
	7.17.1 Handling of Undetermined Solutions
	7.17.2 Solutions of Equations Involving Cubics and Quartics
	7.17.3 Other Options
	7.17.4 Parameters and Variable Dependency

	7.18 Support for Solving Inequalities
	7.19 Finding Rational or Integer Zeros
	7.19.1 The user interface
	7.19.2 Examples
	7.19.3 Tracing

	7.20 Modular Solve and Roots
	7.21 Even and Odd Operators
	7.22 Linear Operators
	7.23 Non-Commuting Operators
	7.24 Symmetric and Antisymmetric Operators
	7.25 Declaring New Prefix Operators
	7.26 Declaring New Infix Operators
	7.27 Creating / Removing Variable Dependency

	8 Display and Structuring of Expressions
	8.1 Kernels
	8.2 The Expression Workspace
	8.3 Output of Expressions
	8.3.1 LINELENGTH Operator
	8.3.2 Output Declarations
	8.3.3 Output Control Switches
	8.3.4 WRITE Command
	8.3.5 Suppression of Zeros
	8.3.6 FORTRAN Style Output Of Expressions
	8.3.7 Saving Expressions for Later Use as Input
	8.3.8 Displaying Expression Structure

	8.4 Changing the Internal Order of Variables
	8.5 Obtaining Parts of Algebraic Expressions
	8.5.1 COEFF Operator
	8.5.2 COEFFN Operator
	8.5.3 PART Operator
	8.5.4 Substituting for Parts of Expressions

	8.6 COMPACT Operator
	8.7 TRIGSIMP package
	8.7.1 Simplifying trigonometric expressions
	8.7.2 Factorizing trigonometric expressions
	8.7.3 GCDs of trigonometric expressions
	8.7.4 Further Examples


	9 Polynomials and Rationals
	9.1 Controlling the Expansion of Expressions
	9.2 Factorization of Polynomials
	9.3 Cancellation of Common Factors
	9.3.1 Determining the GCD of Two Polynomials

	9.4 Working with Least Common Multiples
	9.5 Controlling Use of Common Denominators
	9.6 Euclidean Division
	9.7 Polynomial Pseudo-Division
	9.8 RESULTANT Operator
	9.9 DECOMPOSE Operator
	9.10 INTERPOL Operator
	9.11 Obtaining Parts of Polynomials and Rationals
	9.11.1 DEG Operator
	9.11.2 DEN Operator
	9.11.3 LCOF Operator
	9.11.4 LPOWER Operator
	9.11.5 LTERM Operator
	9.11.6 MAINVAR Operator
	9.11.7 NUM Operator
	9.11.8 REDUCT Operator
	9.11.9 TOTALDEG Operator

	9.12 Polynomial Coefficient Arithmetic
	9.12.1 Rational Coefficients in Polynomials
	9.12.2 Real Coefficients in Polynomials
	9.12.3 Modular Number Coefficients in Polynomials
	9.12.4 Complex Number Coefficients in Polynomials
	9.12.5 Algebraic Numbers as Coefficients in Polynomial

	9.13 Finding Roots
	9.13.1 Root Finding Strategies
	9.13.2 Top Level Functions
	9.13.3 Switches Used in Input
	9.13.4 Internal and Output Use of Switches
	9.13.5 Root Package Switches
	9.13.6 Operational Parameters and Parameter Setting.
	9.13.7 Avoiding truncation of polynomials on input


	10 Assigning and Testing Algebraic Properties
	10.1 REALVALUED Declaration and Check
	10.2 SELFCONJUGATE Declaration
	10.3 Declaring Complex Conjugates
	10.4 Declaring Expressions Positive or Negative

	11 Substitution Commands
	11.1 SUB Operator
	11.2 LET Rules
	11.2.1 FOR ALL … LET
	11.2.2 FOR ALL … SUCH THAT … LET
	11.2.3 Removing Assignments and Substitution Rules
	11.2.4 Overlapping LET Rules
	11.2.5 Substitutions for General Expressions

	11.3 Rule Lists
	11.4 Asymptotic Commands

	12 File Handling Commands
	12.1 IN Command
	12.2 IN_TEX Command
	12.3 OUT Command
	12.4 SHUT Command
	12.5 Using Variables as Filenames
	12.6 Accessing the Operating System
	12.7 REDUCE Startup File

	13 Commands for Interactive Use
	13.1 Error Handling: errcont, retry
	13.2 Referencing Previous Results: input, ws, display
	13.3 Interactive Editing: ed, editdef
	13.4 Interactive File Control: int, pause, cont

	14 Matrix Calculations
	14.1 MAT Operator
	14.2 Matrix Variables
	14.3 Matrix Expressions
	14.4 Operators with Matrix Arguments
	14.4.1 DET Operator
	14.4.2 MATEIGEN Operator
	14.4.3 TP Operator
	14.4.4 Trace Operator
	14.4.5 Matrix Cofactors
	14.4.6 NULLSPACE Operator
	14.4.7 RANK Operator

	14.5 Matrix Assignments
	14.6 Evaluating Matrix Elements

	15 Procedures
	15.1 Procedure Heading
	15.2 Procedure Body
	15.3 Matrix- and List-valued Procedures
	15.4 Using LET Inside Procedures
	15.5 LET Rules as Procedures
	15.6 REMEMBER Statement

	16 Series Expansion
	16.1 Taylor Expansion
	16.1.1 Caveats
	16.1.2 Warning messages
	16.1.3 Error messages
	16.1.4 Comparison to other packages

	16.2 TPS: Extendible Power Series
	16.2.1 Introduction
	16.2.2 Basic Use
	16.2.3 Printing Power Series
	16.2.4 Accessor Functions
	16.2.5 Power Series Reversion
	16.2.6 Power Series Composition
	16.2.7 pssum Operator
	16.2.8 Miscellaneous Operators

	16.3 FPS: Automatic Calculation of Formal Power Series
	16.3.1 Introduction
	16.3.2 REDUCE operator FPS
	16.3.3 REDUCE operator SimpleDE
	16.3.4 Problems in the current version


	17 Solving Numerical Problems
	17.1 Syntax
	17.1.1 Intervals, Starting Points
	17.1.2 Accuracy Control
	17.1.3 Tracing

	17.2 Minima
	17.3 Roots of Functions / Solutions of Equations
	17.4 Integrals
	17.5 Ordinary Differential Equations
	17.6 Bounds of a Function
	17.7 Chebyshev Curve Fitting
	17.8 General Curve Fitting

	18 Graphical Display
	18.1 GNUPLOT: Display of Functions and Surfaces
	18.1.1 Command plot
	18.1.2 Paper output
	18.1.3 Mesh generation for implicit curves
	18.1.4 Mesh generation for surfaces
	18.1.5 gnuplot operation
	18.1.6 Saving gnuplot command sequences
	18.1.7 Direct Call of gnuplot
	18.1.8 Examples

	18.2 Turtle Graphics
	18.2.1 Turtle Graphics
	18.2.2 Turtle Functions
	18.2.3 Global variables
	18.2.4 Examples

	18.3 Logo Turtle Graphics
	18.3.1 Introduction
	18.3.2 Design
	18.3.3 User Interface
	18.3.4 A Simple Example
	18.3.5 Turtle
	18.3.6 Colours
	18.3.7 Displaying Logo Turtle Graphics
	18.3.8 Turtle Motion
	18.3.9 Turtle Motion Queries
	18.3.10 Turtle and Window Control
	18.3.11 Turtle and Window Queries
	18.3.12 Pen and Background Control
	18.3.13 Pen and Background Queries
	18.3.14 Saving and Loading Pictures


	19 Tracing in REDUCE
	19.1 Introduction
	19.2 RTrace versus RDebug
	19.3 Procedure Tracing: RTR, UNRTR
	19.4 Assignment Tracing: RTRST, UNRTRST
	19.5 Tracing Active Rules: TRRL, UNTRRL
	19.6 Tracing Inactive Rules: TRRLID, UNTRRLID
	19.7 Output Control: RTROUT

	20 User Contributed Packages
	20.1 APPLYSYM: Infinitesimal Symmetries of Differential Equations
	20.1.1 Introduction and overview of the symmetry method
	20.1.2 Applying symmetries with APPLYSYM
	20.1.3 Solving quasilinear PDEs
	20.1.4 Transformation of DEs

	20.2 ASSIST: Useful Utilities for Various Applications
	20.2.1 Introduction
	20.2.2 Survey of the Available New Facilities
	20.2.3 Control of Switches
	20.2.4 Manipulation of the List Structure
	20.2.5  The Bag Structure and its Associated Functions
	20.2.6 Sets and their Manipulation Functions
	20.2.7 General Purpose Utility Functions
	20.2.8 Properties and Flags
	20.2.9 Control Functions
	20.2.10 Handling of Polynomials
	20.2.11 Handling of Transcendental Functions
	20.2.12 Handling of n-dimensional Vectors
	20.2.13 Handling of Grassmann Operators
	20.2.14 Handling of Matrices

	20.3 ATENSOR: A REDUCE Program for Tensor Simplification
	20.4 AVECTOR: A Vector Algebra and Calculus Package
	20.4.1 Introduction
	20.4.2 Vector declaration and initialisation
	20.4.3 Vector algebra
	20.4.4  Vector calculus
	20.4.5 Volume and Line Integration
	20.4.6 Defining new functions and procedures
	20.4.7 Acknowledgements

	20.5 BIBASIS: A Package for Calculating Boolean Involutive Bases
	20.5.1 Introduction
	20.5.2 Boolean Ring
	20.5.3 Pommaret Involutive Algorithm
	20.5.4 BIBASIS Package
	20.5.5 Examples

	20.6 BOOLEAN: A Package for Boolean Algebra
	20.6.1 Introduction
	20.6.2 Entering boolean expressions
	20.6.3 Normal forms
	20.6.4 Evaluation of a boolean expression

	20.7 CALI: A Package for Computational Commutative Algebra
	20.7.1 Introduction
	20.7.2 The Computational Model
	20.7.3 Basic Data Structures
	20.7.4 About the Algorithms Implemented in Cali
	20.7.5 Procedures for Algebraic Mode
	20.7.6 The Cali Module Structure
	20.7.7 Changelog

	20.8 CAMAL: Calculations in Celestial Mechanics
	20.8.1 Introduction
	20.8.2 How CAMAL Worked
	20.8.3 Towards a CAMAL Module
	20.8.4 Integration with REDUCE
	20.8.5 The Simple Experiments
	20.8.6 A Medium-Sized Problem
	20.8.7 Conclusion

	20.9 CANTENS: A Package for Manipulations and Simplifications of Indexed Objects
	20.9.1 Introduction
	20.9.2 Handling of space(s)
	20.9.3 Generic tensors and their manipulation
	20.9.4 Specific tensors
	20.9.5 The simplification function canonical

	20.10 CDE: A Package for Integrability of PDEs
	20.10.1 Introduction: why CDE?
	20.10.2 Jet space of even and odd variables, and total derivatives
	20.10.3 Differential equations in even and odd variables
	20.10.4 Calculus of variations
	20.10.5 C-differential operators
	20.10.6 C-differential operators as superfunctions
	20.10.7 The Schouten bracket
	20.10.8 Computing linearization and its adjoint
	20.10.9 Higher symmetries
	20.10.10 Local conservation laws
	20.10.11 Local Hamiltonian operators
	20.10.12 Examples of Schouten bracket of local Hamiltonian operators
	20.10.13 Non-local operators
	20.10.14 Non-local recursion operator for the Korteweg–de Vries equation.
	20.10.15 Non-local Hamiltonian-recursion operators for Plebanski equation.

	20.11 CDIFF: A Package for Computations in Geometry of Differential Equations
	20.11.1 Introduction
	20.11.2 Computing with CDIFF

	20.12 CGB: Computing Comprehensive Gröbner Bases
	20.12.1 Introduction
	20.12.2 Using the REDLOG Package
	20.12.3 Term Ordering Mode
	20.12.4 CGB: Comprehensive Gröbner Basis
	20.12.5 GSYS: Gröbner System
	20.12.6 GSYS2CGB: Gröbner System to CGB
	20.12.7 Switch CGBREAL: Computing over the Real Numbers
	20.12.8 Switches

	20.13 COEFF2: A Variant of the coeff Operator
	20.14 CONLAW: Find Conservation Laws for Differential Equations
	20.14.1 Purpose
	20.14.2 Syntax
	20.14.3 Flags and Parameters
	20.14.4 Requirements
	20.14.5 Examples

	20.15 CRACK: Solving Overdetermined Systems of ODEs or PDEs
	20.15.1 Introduction
	20.15.2 Syntax
	20.15.3 Modules
	20.15.4 Features
	20.15.5 Technical issues
	20.15.6 Reference
	20.15.7 A More Detailed Description of Some of the Modules

	20.16 DESIR: Differential Linear Homogeneous Equation Solutions in the Neighborhood of Irregular and Regular Singular Points
	20.16.1 INTRODUCTION
	20.16.2 FORMS OF SOLUTIONS
	20.16.3 INTERACTIVE USE
	20.16.4 DIRECT USE
	20.16.5 USEFUL FUNCTIONS
	20.16.6 LIMITATIONS

	20.17 DFPART: Derivatives of Generic Functions
	20.17.1 Generic Functions
	20.17.2 Partial Derivatives
	20.17.3 Substitutions

	20.18 DUMMY: Canonical Form of Expressions with Dummy Variables
	20.18.1 Introduction
	20.18.2 Dummy variables and dummy summations
	20.18.3 The Operators and their Properties
	20.18.4 The canonical Operator

	20.19 EDS: A Package for Exterior Differential Systems
	20.19.1 Introduction
	20.19.2 EDS data structures and concepts
	20.19.3 Exterior differential systems
	20.19.4 Constructing EDS objects
	20.19.5 Inspecting EDS objects
	20.19.6 Manipulating EDS objects
	20.19.7 Analysing exterior systems
	20.19.8 Testing exterior systems
	20.19.9 Switches
	20.19.10 edsdebug
	20.19.11 edssloppy
	20.19.12 edsdisjoint
	20.19.13 ranpos, genpos
	20.19.14 Auxiliary functions
	20.19.15 Experimental facilities
	20.19.16 Command tables

	20.20 ELLIPFN: A Package for Elliptic Functions and Integrals
	20.20.1 Elliptic Functions: Introduction
	20.20.2 Jacobi Elliptic Functions
	20.20.3 Some Numerical Procedures
	20.20.4 Legendre's Elliptic Integrals
	20.20.5 Jacobi's Elliptic Integrals
	20.20.6 Symmetric Elliptic Integrals
	20.20.7 Some Numerical Utility Functions
	20.20.8 Jacobi Theta Functions
	20.20.9 Weierstrass Elliptic & Sigma Functions
	20.20.10 Inverse Jacobi Elliptic Functions
	20.20.11 Table of Elliptic Functions and Integrals

	20.21 EXCALC: A Differential Geometry Package
	20.21.1 Introduction
	20.21.2 Declarations
	20.21.3 Exterior Multiplication
	20.21.4 Partial Differentiation
	20.21.5 Exterior Differentiation
	20.21.6 Inner Product
	20.21.7 Lie Derivative
	20.21.8 Hodge-* Duality Operator
	20.21.9 Variational Derivative
	20.21.10 Handling of Indices
	20.21.11 Metric Structures
	20.21.12 Riemannian Connections
	20.21.13 Killing Vectors
	20.21.14 Ordering and Structuring
	20.21.15 Summary of Operators and Commands
	20.21.16 Examples

	20.22 FIDE: Finite Difference Method for Partial Differential Equations
	20.22.1 Abstract
	20.22.2 EXPRES
	20.22.3 IIMET
	20.22.4 APPROX
	20.22.5 CHARPOL
	20.22.6 HURWP
	20.22.7 LINBAND

	20.23 GCREF: A Graph Cross Referencer
	20.23.1 Basic Usage
	20.23.2 Shell Script "gcref"
	20.23.3 Rendering with yED

	20.24 GENTRAN: A Code Generation Package
	20.25 GRINDER: Calculation of three-loop diagrams in Heavy Quark Effective Theory
	20.26 GROEBNER: A Gröbner Basis Package
	20.26.1 Background
	20.26.2 Loading of the Package
	20.26.3 The Basic Operators
	20.26.4 Ideal Decomposition & Equation System Solving
	20.26.5 Calculations ``by Hand''

	20.27 GUARDIAN: Guarded Expressions in Practice
	20.27.1 Introduction
	20.27.2 An outline of our method
	20.27.3 Examples
	20.27.4 Outlook
	20.27.5 Conclusions

	20.28 IDEALS: Arithmetic for Polynomial Ideals
	20.28.1 Introduction
	20.28.2 Initialization
	20.28.3 Bases
	20.28.4 Algorithms
	20.28.5 Examples

	20.29 INVBASE: A Package for Computing Involutive Bases
	20.29.1 Introduction
	20.29.2 The Basic Operators

	20.30 LALR: A Parser Generator
	20.30.1 Limitations
	20.30.2 An example

	20.31 LAPLACE: Laplace Transforms
	20.32 LIE: Functions for the Classification of Real n-Dimensional Lie Algebras
	20.32.1 liendmc1
	20.32.2 lie1234
	20.32.3 Enumeration schemes for lie1234

	20.33 LINALG: Linear Algebra Package
	20.33.1 Introduction
	20.33.2 Getting started
	20.33.3 What's available
	20.33.4 Acknowledgments

	20.34 LISTVECOPS: Vector Operations on Lists
	20.35 LPDO: Linear Partial Differential Operators
	20.35.1 Introduction
	20.35.2 Operators
	20.35.3 Shapes of F-elements
	20.35.4 Commands

	20.36 MATHML: REDUCE-MathML Interface
	20.36.1 Introduction
	20.36.2 Loading
	20.36.3 Switches
	20.36.4 Entering MathML
	20.36.5 The Evaluation of MathML
	20.36.6 Interpretation of Error Messages
	20.36.7 Limitations of the Interface
	20.36.8 Examples
	20.36.9 An Overview of How the Interface Works

	20.37 MATHMLOM: REDUCE OpenMath/MathML Interface
	20.38 MRVLIMIT: A New Exp-Log Limits Package
	20.38.1 The Exp-Log Limits package
	20.38.2 The Algorithm
	20.38.3 Tracing the algorihm

	20.39 NCPOLY: Non-commutative Polynomial Ideals
	20.39.1 Introduction
	20.39.2 Setup, Cleanup
	20.39.3 Left and right ideals
	20.39.4 Gröbner bases
	20.39.5 Left or right polynomial division
	20.39.6 Left or right polynomial reduction
	20.39.7 Factorization
	20.39.8 Output of expressions

	20.40 NORMFORM: Computation of Matrix Normal Forms
	20.40.1 Introduction
	20.40.2 Smith normal form
	20.40.3 smithex_int
	20.40.4 frobenius
	20.40.5 ratjordan
	20.40.6 jordansymbolic
	20.40.7 jordan
	20.40.8 Algebraic extensions: Using the arnum package
	20.40.9 Modular arithmetic

	20.41 ODESOLVE: Ordinary Differential Equation Solver
	20.41.1 Introduction
	20.41.2 User interface
	20.41.3 Output syntax
	20.41.4 Solution techniques
	20.41.5 Extension interface

	20.42 ORTHOVEC: Manipulation of Scalars and Vectors
	20.42.1 Introduction
	20.42.2 Initialisation
	20.42.3 Input-Output
	20.42.4 Algebraic Operations
	20.42.5 Differential Operations
	20.42.6 Integral Operations
	20.42.7 Test Cases

	20.43 PHYSOP: Operator Calculus in Quantum Theory
	20.43.1 Introduction
	20.43.2 The NONCOM2 Package
	20.43.3 The PHYSOP package
	20.43.4 Known problems in the current release of PHYSOP
	20.43.5 Final remarks
	20.43.6 Appendix: List of error and warning messages

	20.44 PM: A REDUCE Pattern Matcher
	20.44.1 M(exp,temp)
	20.44.2 temp _= logical_exp
	20.44.3 S(exp,{temp1 -> sub1, temp2 -> sub2, …}, rept, depth)
	20.44.4 temp :- exp and temp ::- exp
	20.44.5 Arep({rep1,rep2,…})
	20.44.6 Drep({rep1,rep2,..})
	20.44.7 Switches

	20.45 QHULL: Compute the Complex Hull
	20.46 QSUM: Indefinite and Definite Summation of q-Hypergeometric Terms
	20.46.1 Introduction
	20.46.2 Elementary q-Functions
	20.46.3 q-Gosper Algorithm
	20.46.4 q-Zeilberger Algorithm
	20.46.5 REDUCE operator qgosper
	20.46.6 REDUCE operator qsumrecursion
	20.46.7 Simplification Operators
	20.46.8 Global Variables and Switches
	20.46.9 Messages

	20.47 RANDPOLY: A Random Polynomial Generator
	20.47.1 Introduction
	20.47.2 Basic use of randpoly
	20.47.3 Advanced use of randpoly
	20.47.4 Subsidiary functions: rand, proc, random
	20.47.5 Examples
	20.47.6 Appendix: Algorithmic background

	20.48 RATAPRX: Rational Approximations Package for REDUCE
	20.48.1 Periodic Decimal Representation
	20.48.2 Continued Fractions
	20.48.3 Padé Approximation

	20.49 RATINT: Integrate Rational Functions using the Minimal Algebraic Extension to the Constant Field
	20.49.1 Rational Integration
	20.49.2 The Algorithm
	20.49.3 The log_sum operator
	20.49.4 Options
	20.49.5 Hermite's method
	20.49.6 Tracing the ratint program
	20.49.7 Bugs, suggestions and comments

	20.50 REACTEQN: Support for Chemical Reaction Equation Systems
	20.51 REDLOG: Extend REDUCE to a Computer Logic System
	20.52 RLFI: REDUCE LaTeX Formula Interface
	20.52.1 APPENDIX: Summary and syntax

	20.53 SCOPE: REDUCE Source Code Optimization Package
	20.54 SETS: A Basic Set Theory Package
	20.54.1 Introduction
	20.54.2 Infix operator precedence
	20.54.3 Explicit set representation and mkset
	20.54.4 Union and intersection
	20.54.5 Symbolic set expressions
	20.54.6 Set difference
	20.54.7 Predicates on sets
	20.54.8 Possible future developments

	20.55 SPARSE: Sparse Matrix Calculations
	20.55.1 Introduction
	20.55.2 Sparse Matrix Calculations
	20.55.3 Sparse Matrix Expressions
	20.55.4 Operators with Sparse Matrix Arguments
	20.55.5 The Linear Algebra Package for Sparse Matrices
	20.55.6 Available Functions
	20.55.7 Fast Linear Algebra
	20.55.8 Acknowledgments

	20.56 SPDE: Finding Symmetry Groups of PDEs
	20.56.1 Description of the System Functions and Variables
	20.56.2 How to Use the Package
	20.56.3 Test File

	20.57 SPECFN: Package for Special Functions
	20.57.1 Special Functions: Introduction
	20.57.2 Polynomial Functions: Introduction
	20.57.3 Simplification and Approximation
	20.57.4 Integral Functions
	20.57.5 The Gamma Function and Related Functions
	20.57.6 Bessel Functions
	20.57.7 Airy Functions
	20.57.8 Hypergeometric and Other Functions
	20.57.9 The Riemann Zeta Function
	20.57.10 Polylogarithm and Related Functions
	20.57.11 Lambert's W Function
	20.57.12 Spherical and Solid Harmonics
	20.57.13 3j symbols and Clebsch-Gordan Coefficients
	20.57.14 6j symbols 
	20.57.15 Stirling Numbers
	20.57.16 Constants
	20.57.17 Orthogonal Polynomials
	20.57.18 Other Polynomials and Related Numbers
	20.57.19 Function Bases
	20.57.20 Acknowledgements
	20.57.21 Tables of Operators and Constants

	20.58 SPECFN2: Package for Special Special Functions
	20.58.1 Hypergeometric Functions: Introduction
	20.58.2 The Hypergeometric Operator
	20.58.3 Meijer's G Function

	20.59 SSTOOLS: Computations with Supersymmetric Algebraic and Differential Expressions
	20.60 SUM: A Package for Series Summation
	20.61 SUSY2: Supersymmetric Functions and Algebra of Supersymmetric Operators
	20.61.1 Introduction
	20.61.2 Supersymmetry
	20.61.3 Superfunctions
	20.61.4 The Inverse and Exponentials of Superfunctions
	20.61.5 Ordering
	20.61.6 (Super)Differential Operators
	20.61.7 Action of the Operators
	20.61.8 Supersymmetric Integration
	20.61.9 Integration Operators
	20.61.10 Useful Commands
	20.61.11 Functional Gradients
	20.61.12 Conservation Laws
	20.61.13 Jacobi Identity
	20.61.14 Objects, Commands and Let Rules

	20.62 SYMMETRY: Operations on Symmetric Matrices
	20.62.1 Introduction
	20.62.2 Operators for linear representations
	20.62.3 Display Operators
	20.62.4 Storing a new group

	20.63 TRI: TeX REDUCE Interface
	20.64 TRIGD: Trigonometrical Functions with Degree Arguments
	20.64.1 Introduction
	20.64.2 Simplification
	20.64.3 Numerical Evaluation
	20.64.4 Bugs, Restrictions and Planned Extensions

	20.65 TRIGINT: Weierstraß Substitution in REDUCE
	20.65.1 Introduction
	20.65.2 Statement of the Algorithm
	20.65.3 REDUCE implementation
	20.65.4 Definite Integration
	20.65.5 Tracing the trigint function
	20.65.6 Bugs, comments, suggestions

	20.66 V3TOOLS: Computations with Polynomials of Scalar Vector Products
	20.66.1 Purpose
	20.66.2 Notation
	20.66.3 Initialization
	20.66.4 Main Routines
	20.66.5 Complete list of global variables
	20.66.6 Requirements

	20.67 WITH: Local Switch Settings
	20.68 WU: Wu Algorithm for Polynomial Systems
	20.69 XCOLOR: Color Factor in some Field Theories
	20.70 XIDEAL: Gröbner Bases for Exterior Algebra
	20.70.1 Description
	20.70.2 Declarations
	20.70.3 Operators
	20.70.4 Switches
	20.70.5 Examples

	20.71 ZEILBERG: Indefinite and Definite Summation
	20.71.1 Introduction
	20.71.2 Gosper Algorithm
	20.71.3 Zeilberger Algorithm
	20.71.4 REDUCE operator GOSPER
	20.71.5 REDUCE operator EXTENDED_GOSPER
	20.71.6 REDUCE operator SUMRECURSION
	20.71.7 REDUCE operator EXTENDED_SUMRECURSION
	20.71.8 REDUCE operator HYPERRECURSION
	20.71.9 REDUCE operator HYPERSUM
	20.71.10 REDUCE operator SUMTOHYPER
	20.71.11 Simplification Operators
	20.71.12 Tracing
	20.71.13 Global Variables and Switches
	20.71.14 Messages

	20.72 ZTRANS: Z-Transform Package
	20.72.1 Z-Transform
	20.72.2 Inverse Z-Transform
	20.72.3 Input for the Z-Transform
	20.72.4 Input for the Inverse Z-Transform
	20.72.5 Application of the Z-Transform
	20.72.6 EXAMPLES


	21 Symbolic Mode
	21.1 Symbolic Infix Operators
	21.2 Symbolic Expressions
	21.3 Quoted Expressions
	21.4 Lambda Expressions
	21.5 Symbolic Assignment Statements
	21.6 FOR EACH Statement
	21.7 Symbolic Procedures
	21.8 Standard Lisp Equivalent of REDUCE Input
	21.9 Communicating with Algebraic Mode
	21.9.1 Passing Algebraic Mode Values to Symbolic Mode
	21.9.2 Passing Symbolic Mode Values to Algebraic Mode
	21.9.3 Complete Example
	21.9.4 Defining Procedures for Intermode Communication

	21.10 Rlisp '88
	21.11 References

	22 Calculations in High Energy Physics
	22.1 High Energy Physics Operators
	22.1.1 . (Cons) Operator
	22.1.2 G Operator for Gamma Matrices
	22.1.3 EPS Operator

	22.2 Vector Variables
	22.3 Additional Expression Types
	22.3.1 Vector Expressions
	22.3.2 Dirac Expressions

	22.4 Trace Calculations
	22.5 Mass Declarations
	22.6 Example
	22.7 Extensions to More Than Four Dimensions
	22.8 The CVIT algorithm

	23 REDUCE and Rlisp Utilities
	23.1 The Standard Lisp Compiler
	23.2 Fast Loading Code Generation Program
	23.3 The Standard Lisp Cross Reference Program
	23.3.1 Restrictions
	23.3.2 Usage
	23.3.3 Options

	23.4 Prettyprinting REDUCE Expressions
	23.5 Prettyprinting Standard Lisp S-Expressions

	24 Maintaining REDUCE
	A Reserved Identifiers
	A.1 Commands
	A.2 Boolean Operators
	A.3 Infix Operators
	A.4 Numerical Operators
	A.5 Prefix Operators
	A.6 Reserved Variables
	A.7 Switches
	A.8 Other Reserved Ids

	B Bibliography
	C Changes since Version 3.8
	D Description of Algorithms
	D.1 Definite Integration
	D.1.1 Integration between zero and infinity
	D.1.2 Integration over other ranges
	D.1.3 Integral Transforms
	D.1.4 Extending the Tables
	D.1.5 Acknowledgements

	D.2 The CVIT package

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


