
REDUCE
User’s Manual

Version 3.8

Anthony C. Hearn
Santa Monica, CA, USA

Email: reduce@rand.org

February 2004

Copyright c©2004 Anthony C. Hearn. All rights reserved.

Registered system holders may reproduce all or any part of this publication for
internal purposes, provided that the source of the material is clearly acknowledged,
and the copyright notice is retained.

Contents

Abstract 11

1 Introductory Information 15

2 Structure of Programs 19

2.1 The REDUCE Standard Character Set 19

2.2 Numbers . 19

2.3 Identifiers . 21

2.4 Variables . 22

2.5 Strings . 23

2.6 Comments . 23

2.7 Operators . 24

3 Expressions 27

3.1 Scalar Expressions . 27

3.2 Integer Expressions . 28

3.3 Boolean Expressions . 29

3.4 Equations . 30

3.5 Proper Statements as Expressions 31

4 Lists 33

4.1 Operations on Lists . 33

4.1.1 LIST . 34

4.1.2 FIRST . 34

1

2 CONTENTS

4.1.3 SECOND . 34

4.1.4 THIRD . 34

4.1.5 REST . 34

4.1.6 . (Cons) Operator . 34

4.1.7 APPEND . 34

4.1.8 REVERSE . 35

4.1.9 List Arguments of Other Operators 35

4.1.10 Caveats and Examples 35

5 Statements 37

5.1 Assignment Statements . 38

5.1.1 Set Statement . 38

5.2 Group Statements . 39

5.3 Conditional Statements . 39

5.4 FOR Statements . 40

5.5 WHILE . . . DO . 42

5.6 REPEAT . . . UNTIL . 43

5.7 Compound Statements . 43

5.7.1 Compound Statements with GO TO 45

5.7.2 Labels and GO TO Statements 45

5.7.3 RETURN Statements . 46

6 Commands and Declarations 49

6.1 Array Declarations . 49

6.2 Mode Handling Declarations . 50

6.3 END . 51

6.4 BYE Command . 51

6.5 SHOWTIME Command . 51

6.6 DEFINE Command . 51

7 Built-in Prefix Operators 53

7.1 Numerical Operators . 53

CONTENTS 3

7.1.1 ABS . 53

7.1.2 CEILING . 54

7.1.3 CONJ . 54

7.1.4 FACTORIAL . 54

7.1.5 FIX . 54

7.1.6 FLOOR . 55

7.1.7 IMPART . 55

7.1.8 MAX/MIN . 55

7.1.9 NEXTPRIME . 55

7.1.10 RANDOM . 56

7.1.11 RANDOM NEW SEED 56

7.1.12 REPART . 56

7.1.13 ROUND . 57

7.1.14 SIGN . 57

7.2 Mathematical Functions . 57

7.3 DF Operator . 61

7.3.1 Adding Differentiation Rules 61

7.4 INT Operator . 62

7.4.1 Options . 63

7.4.2 Advanced Use . 63

7.4.3 References . 63

7.5 LENGTH Operator . 64

7.6 MAP Operator . 64

7.7 MKID Operator . 65

7.8 PF Operator . 66

7.9 SELECT Operator . 67

7.10 SOLVE Operator . 68

7.10.1 Handling of Undetermined Solutions 69

7.10.2 Solutions of Equations Involving Cubics and Quartics . . 71

7.10.3 Other Options . 73

4 CONTENTS

7.10.4 Parameters and Variable Dependency 74

7.11 Even and Odd Operators . 78

7.12 Linear Operators . 78

7.13 Non-Commuting Operators . 79

7.14 Symmetric and Antisymmetric Operators 80

7.15 Declaring New Prefix Operators 80

7.16 Declaring New Infix Operators 81

7.17 Creating/Removing Variable Dependency 82

8 Display and Structuring of Expressions 83

8.1 Kernels . 83

8.2 The Expression Workspace . 84

8.3 Output of Expressions . 85

8.3.1 LINELENGTH Operator 86

8.3.2 Output Declarations . 86

8.3.3 Output Control Switches 87

8.3.4 WRITE Command . 91

8.3.5 Suppression of Zeros . 93

8.3.6 FORTRAN Style Output Of Expressions 93

8.3.7 Saving Expressions for Later Use as Input 96

8.3.8 Displaying Expression Structure 96

8.4 Changing the Internal Order of Variables 99

8.5 Obtaining Parts of Algebraic Expressions 99

8.5.1 COEFF Operator . 99

8.5.2 COEFFN Operator . 100

8.5.3 PART Operator . 100

8.5.4 Substituting for Parts of Expressions 102

9 Polynomials and Rationals 103

9.1 Controlling the Expansion of Expressions 104

9.2 Factorization of Polynomials . 104

CONTENTS 5

9.3 Cancellation of Common Factors 106

9.3.1 Determining the GCD of Two Polynomials 107

9.4 Working with Least Common Multiples 108

9.5 Controlling Use of Common Denominators 108

9.6 REMAINDER Operator . 108

9.7 RESULTANT Operator . 109

9.8 DECOMPOSE Operator . 110

9.9 INTERPOL operator . 111

9.10 Obtaining Parts of Polynomials and Rationals 111

9.10.1 DEG Operator . 111

9.10.2 DEN Operator . 112

9.10.3 LCOF Operator . 112

9.10.4 LPOWER Operator . 113

9.10.5 LTERM Operator . 113

9.10.6 MAINVAR Operator . 113

9.10.7 NUM Operator . 114

9.10.8 REDUCT Operator . 114

9.11 Polynomial Coefficient Arithmetic 115

9.11.1 Rational Coefficients in Polynomials 115

9.11.2 Real Coefficients in Polynomials 115

9.11.3 Modular Number Coefficients in Polynomials 117

9.11.4 Complex Number Coefficients in Polynomials 117

10 Substitution Commands 119

10.1 SUB Operator . 119

10.2 LET Rules . 120

10.2.1 FOR ALL . . . LET . 122

10.2.2 FOR ALL . . . SUCH THAT . . . LET 123

10.2.3 Removing Assignments and Substitution Rules 124

10.2.4 Overlapping LET Rules 124

10.2.5 Substitutions for General Expressions 125

6 CONTENTS

10.3 Rule Lists . 127

10.4 Asymptotic Commands . 133

11 File Handling Commands 135

11.1 IN Command . 135

11.2 OUT Command . 136

11.3 SHUT Command . 136

12 Commands for Interactive Use 137

12.1 Referencing Previous Results . 137

12.2 Interactive Editing . 138

12.3 Interactive File Control . 139

13 Matrix Calculations 141

13.1 MAT Operator . 141

13.2 Matrix Variables . 142

13.3 Matrix Expressions . 142

13.4 Operators with Matrix Arguments 143

13.4.1 DET Operator . 143

13.4.2 MATEIGEN Operator 144

13.4.3 TP Operator . 145

13.4.4 Trace Operator . 145

13.4.5 Matrix Cofactors . 145

13.4.6 NULLSPACE Operator 146

13.4.7 RANK Operator . 147

13.5 Matrix Assignments . 147

13.6 Evaluating Matrix Elements . 147

14 Procedures 149

14.1 Procedure Heading . 150

14.2 Procedure Body . 151

14.3 Using LET Inside Procedures . 153

CONTENTS 7

14.4 LET Rules as Procedures . 154

15 User Contributed Packages 157

15.1 ALGINT: Integration of square roots 157

15.2 APPLYSYM: Infinitesimal symmetries of differential equations . 158

15.3 ARNUM: An algebraic number package 158

15.4 ASSIST: Useful utilities for various applications 158

15.5 AVECTOR: A vector algebra and calculus package 159

15.6 BOOLEAN: A package for boolean algebra 159

15.7 CALI: A package for computational commutative algebra 159

15.8 CAMAL: Calculations in celestial mechanics 159

15.9 CHANGEVR: Change of Independent Variable(s) in DEs 160

15.10COMPACT: Package for compacting expressions 160

15.11CRACK: Solving overdetermined systems of PDEs or ODEs . . . 160

15.12CVIT: Fast calculation of Dirac gamma matrix traces 161

15.13DEFINT: A definite integration interface 161

15.14DESIR: Differential linear homogeneous equation solutions in the
neighborhood of irregular and regular singular points 161

15.15DFPART: Derivatives of generic functions 161

15.16DUMMY: Canonical form of expressions with dummy variables . 162

15.17EXCALC: A differential geometry package 162

15.18FIDE: Finite difference method for partial differential equations . 162

15.19FPS: Automatic calculation of formal power series 162

15.20GENTRAN: A code generation package 163

15.21GNUPLOT: Display of functions and surfaces 163

15.22GROEBNER: A Gröbner basis package 163

15.23IDEALS: Arithmetic for polynomial ideals 164

15.24INEQ: Support for solving inequalities 164

15.25INVBASE: A package for computing involutive bases 164

15.26LAPLACE: Laplace transforms 164

8 CONTENTS

15.27LIE: Functions for the classification of real n-dimensional Lie al-
gebras . 164

15.28LIMITS: A package for finding limits 165

15.29LINALG: Linear algebra package 165

15.30MODSR: Modular solve and roots 165

15.31NCPOLY: Non–commutative polynomial ideals 166

15.32NORMFORM: Computation of matrix normal forms 166

15.33NUMERIC: Solving numerical problems 167

15.34ODESOLVE: Ordinary differential equations solver 167

15.35ORTHOVEC: Manipulation of scalars and vectors 168

15.36PHYSOP: Operator calculus in quantum theory 168

15.37PM: A REDUCE pattern matcher 168

15.38RANDPOLY: A random polynomial generator 169

15.39REACTEQN: Support for chemical reaction equation systems . . 169

15.40RESET: Code to reset REDUCE to its initial state 169

15.41RESIDUE: A residue package 169

15.42RLFI: REDUCE LaTeX formula interface 169

15.43ROOTS: A REDUCE root finding package 170

15.44RSOLVE: Rational/integer polynomial solvers 170

15.45SCOPE: REDUCE source code optimization package 170

15.46SETS: A basic set theory package 171

15.47SPDE: Finding symmetry groups of PDE’s 171

15.48SPECFN: Package for special functions 171

15.49SPECFN2: Package for special special functions 172

15.50SUM: A package for series summation 173

15.51SYMMETRY: Operations on symmetric matrices 173

15.52TAYLOR: Manipulation of Taylor series 173

15.53TPS: A truncated power series package 173

15.54TRI: TeX REDUCE interface . 174

15.55TRIGSIMP: Simplification and factorization of trigonometric and
hyperbolic functions . 174

CONTENTS 9

15.56WU: Wu algorithm for polynomial systems 174

15.57XCOLOR: Color factor in some field theories 174

15.58XIDEAL: Gröbner Bases for exterior algebra 175

15.59ZEILBERG: A package for indefinite and definite summation . . . 175

15.60ZTRANS: Z-transform package 175

16 Symbolic Mode 177

16.1 Symbolic Infix Operators . 179

16.2 Symbolic Expressions . 179

16.3 Quoted Expressions . 179

16.4 Lambda Expressions . 179

16.5 Symbolic Assignment Statements 180

16.6 FOR EACH Statement . 181

16.7 Symbolic Procedures . 181

16.8 Standard Lisp Equivalent of Reduce Input 182

16.9 Communicating with Algebraic Mode 182

16.9.1 Passing Algebraic Mode Values to Symbolic Mode 183

16.9.2 Passing Symbolic Mode Values to Algebraic Mode 185

16.9.3 Complete Example . 186

16.9.4 Defining Procedures for Intermode Communication 186

16.10Rlisp ’88 . 188

16.11References . 189

17 Calculations in High Energy Physics 191

17.1 High Energy Physics Operators 191

17.1.1 . (Cons) Operator . 191

17.1.2 G Operator for Gamma Matrices 192

17.1.3 EPS Operator . 193

17.2 Vector Variables . 193

17.3 Additional Expression Types . 194

17.3.1 Vector Expressions . 194

10 CONTENTS

17.3.2 Dirac Expressions . 194

17.4 Trace Calculations . 195

17.5 Mass Declarations . 195

17.6 Example . 196

17.7 Extensions to More Than Four Dimensions 197

18 REDUCE and Rlisp Utilities 199

18.1 The Standard Lisp Compiler . 199

18.2 Fast Loading Code Generation Program 200

18.3 The Standard Lisp Cross Reference Program 201

18.3.1 Restrictions . 202

18.3.2 Usage . 202

18.3.3 Options . 202

18.4 Prettyprinting Reduce Expressions 203

18.5 Prettyprinting Standard Lisp S-Expressions 203

19 Maintaining REDUCE 205

A Reserved Identifiers 207

Abstract

This document provides the user with a description of the algebraic programming
system REDUCE. The capabilities of this system include:

1. expansion and ordering of polynomials and rational functions,

2. substitutions and pattern matching in a wide variety of forms,

3. automatic and user controlled simplification of expressions,

4. calculations with symbolic matrices,

5. arbitrary precision integer and real arithmetic,

6. facilities for defining new functions and extending program syntax,

7. analytic differentiation and integration,

8. factorization of polynomials,

9. facilities for the solution of a variety of algebraic equations,

10. facilities for the output of expressions in a variety of formats,

11. facilities for generating numerical programs from symbolic input,

12. Dirac matrix calculations of interest to high energy physicists.

11

12 CONTENTS

Acknowledgment

The production of this version of the manual has been the result of the contribu-
tions of a large number of individuals who have taken the time and effort to suggest
improvements to previous versions, and to draft new sections. Particular thanks
are due to Gerry Rayna, who provided a draft rewrite of most of the first half of
the manual. Other people who have made significant contributions have included
John Fitch, Martin Griss, Stan Kameny, Jed Marti, Herbert Melenk, Don Morri-
son, Arthur Norman, Eberhard Schrüfer, Larry Seward and Walter Tietze. Finally,
Richard Hitt produced a TEX version of the REDUCE 3.3 manual, which has been
a useful guide for the production of the LATEX version of this manual.

13

14 CONTENTS

Chapter 1

Introductory Information

REDUCE is a system for carrying out algebraic operations accurately, no matter
how complicated the expressions become. It can manipulate polynomials in a va-
riety of forms, both expanding and factoring them, and extract various parts of
them as required. REDUCE can also do differentiation and integration, but we
shall only show trivial examples of this in this introduction. Other topics not con-
sidered include the use of arrays, the definition of procedures and operators, the
specific routines for high energy physics calculations, the use of files to eliminate
repetitious typing and for saving results, and the editing of the input text.

Also not considered in any detail in this introduction are the many options that
are available for varying computational procedures, output forms, number systems
used, and so on.

REDUCE is designed to be an interactive system, so that the user can input an al-
gebraic expression and see its value before moving on to the next calculation. For
those systems that do not support interactive use, or for those calculations, espe-
cially long ones, for which a standard script can be defined, REDUCE can also be
used in batch mode. In this case, a sequence of commands can be given to RE-
DUCE and results obtained without any user interaction during the computation.

In this introduction, we shall limit ourselves to the interactive use of REDUCE,
since this illustrates most completely the capabilities of the system. When RE-
DUCE is called, it begins by printing a banner message like:

REDUCE 3.8, 15-Jul-2003 ...

where the version number and the system release date will change from time to
time. It then prompts the user for input by:

1:

15

16 CHAPTER 1. INTRODUCTORY INFORMATION

You can now type a REDUCE statement, terminated by a semicolon to indicate the
end of the expression, for example:

(x+y+z)ˆ2;

This expression would normally be followed by another character (a Return on
an ASCII keyboard) to “wake up” the system, which would then input the expres-
sion, evaluate it, and return the result:

2 2 2
X + 2*X*Y + 2*X*Z + Y + 2*Y*Z + Z

Let us review this simple example to learn a little more about the way that RE-
DUCE works. First, we note that REDUCE deals with variables, and constants
like other computer languages, but that in evaluating the former, a variable can
stand for itself. Expression evaluation normally follows the rules of high school
algebra, so the only surprise in the above example might be that the expression was
expanded. REDUCE normally expands expressions where possible, collecting like
terms and ordering the variables in a specific manner. However, expansion, order-
ing of variables, format of output and so on is under control of the user, and various
declarations are available to manipulate these.

Another characteristic of the above example is the use of lower case on input and
upper case on output. In fact, input may be in either mode, but output is usually in
lower case. To make the difference between input and output more distinct in this
manual, all expressions intended for input will be shown in lower case and output
in upper case. However, for stylistic reasons, we represent all single identifiers in
the text in upper case.

Finally, the numerical prompt can be used to reference the result in a later compu-
tation.

As a further illustration of the system features, the user should try:

for i:= 1:40 product i;

The result in this case is the value of 40!,

815915283247897734345611269596115894272000000000

You can also get the same result by saying

factorial 40;

Since we want exact results in algebraic calculations, it is essential that integer
arithmetic be performed to arbitrary precision, as in the above example. Further-

17

more, the FOR statement in the above is illustrative of a whole range of combining
forms that REDUCE supports for the convenience of the user.

Among the many options in REDUCE is the use of other number systems, such as
multiple precision floating point with any specified number of digits — of use if
roundoff in, say, the 100th digit is all that can be tolerated.

In many cases, it is necessary to use the results of one calculation in succeeding
calculations. One way to do this is via an assignment for a variable, such as

u := (x+y+z)ˆ2;

If we now use U in later calculations, the value of the right-hand side of the above
will be used.

The results of a given calculation are also saved in the variable WS (for WorkSpace),
so this can be used in the next calculation for further processing.

For example, the expression

df(ws,x);

following the previous evaluation will calculate the derivative of (x+y+z)ˆ2with
respect to X. Alternatively,

int(ws,y);

would calculate the integral of the same expression with respect to y.

REDUCE is also capable of handling symbolic matrices. For example,

matrix m(2,2);

declares m to be a two by two matrix, and

m := mat((a,b),(c,d));

gives its elements values. Expressions that include M and make algebraic sense
may now be evaluated, such as 1/m to give the inverse, 2*m - u*mˆ2 to give us
another matrix and det(m) to give us the determinant of M.

REDUCE has a wide range of substitution capabilities. The system knows about
elementary functions, but does not automatically invoke many of their well-known
properties. For example, products of trigonometrical functions are not converted
automatically into multiple angle expressions, but if the user wants this, he can say,
for example:

(sin(a+b)+cos(a+b))*(sin(a-b)-cos(a-b))

18 CHAPTER 1. INTRODUCTORY INFORMATION

where cos(˜x)*cos(˜y) = (cos(x+y)+cos(x-y))/2,
cos(˜x)*sin(˜y) = (sin(x+y)-sin(x-y))/2,
sin(˜x)*sin(˜y) = (cos(x-y)-cos(x+y))/2;

where the tilde in front of the variables X and Y indicates that the rules apply for
all values of those variables. The result of this calculation is

-(COS(2*A) + SIN(2*B))

See also the user-contributed packages ASSIST (chapter 15.4), CAMAL (chap-
ter 15.8) and TRIGSIMP (chapter 15.55).

Another very commonly used capability of the system, and an illustration of one of
the many output modes of REDUCE, is the ability to output results in a FORTRAN
compatible form. Such results can then be used in a FORTRAN based numerical
calculation. This is particularly useful as a way of generating algebraic formulas
to be used as the basis of extensive numerical calculations.

For example, the statements

on fort;
df(log(x)*(sin(x)+cos(x))/sqrt(x),x,2);

will result in the output

ANS=(-4.*LOG(X)*COS(X)*X**2-4.*LOG(X)*COS(X)*X+3.*
. LOG(X)*COS(X)-4.*LOG(X)*SIN(X)*X**2+4.*LOG(X)*
. SIN(X)*X+3.*LOG(X)*SIN(X)+8.*COS(X)*X-8.*COS(X)-8.
. *SIN(X)*X-8.*SIN(X))/(4.*SQRT(X)*X**2)

These algebraic manipulations illustrate the algebraic mode of REDUCE. RE-
DUCE is based on Standard Lisp. A symbolic mode is also available for executing
Lisp statements. These statements follow the syntax of Lisp, e.g.

symbolic car ’(a);

Communication between the two modes is possible.

With this simple introduction, you are now in a position to study the material in the
full REDUCE manual in order to learn just how extensive the range of facilities
really is. If further tutorial material is desired, the seven REDUCE Interactive
Lessons by David R. Stoutemyer are recommended. These are normally distributed
with the system.

Chapter 2

Structure of Programs

A REDUCE program consists of a set of functional commands which are evaluated
sequentially by the computer. These commands are built up from declarations,
statements and expressions. Such entities are composed of sequences of numbers,
variables, operators, strings, reserved words and delimiters (such as commas and
parentheses), which in turn are sequences of basic characters.

2.1 The REDUCE Standard Character Set

The basic characters which are used to build REDUCE symbols are the following:

1. The 26 letters a through z

2. The 10 decimal digits 0 through 9

3. The special characters ! ” $ % ’ () * + , - . / : ; < > = { } <blank>

With the exception of strings and characters preceded by an exclamation mark, the
case of characters is ignored: depending of the underlying LISP they will all be
converted internally into lower case or upper case: ALPHA, Alpha and alpha
represent the same symbol. Most implementations allow you to switch this con-
version off. The operating instructions for a particular implementation should be
consulted on this point. For portability, we shall limit ourselves to the standard
character set in this exposition.

2.2 Numbers

There are several different types of numbers available in REDUCE. Integers consist
of a signed or unsigned sequence of decimal digits written without a decimal point,

19

20 CHAPTER 2. STRUCTURE OF PROGRAMS

for example:

-2, 5396, +32

In principle, there is no practical limit on the number of digits permitted as ex-
act arithmetic is used in most implementations. (You should however check the
specific instructions for your particular system implementation to make sure that
this is true.) For example, if you ask for the value of 22000 you get it displayed
as a number of 603 decimal digits, taking up nine lines of output on an interactive
display. It should be borne in mind of course that computations with such long
numbers can be quite slow.

Numbers that aren’t integers are usually represented as the quotient of two integers,
in lowest terms: that is, as rational numbers.

In essentially all versions of REDUCE it is also possible (but not always desirable!)
to ask REDUCE to work with floating point approximations to numbers again, to
any precision. Such numbers are called real. They can be input in two ways:

1. as a signed or unsigned sequence of any number of decimal digits with an
embedded or trailing decimal point.

2. as in 1. followed by a decimal exponent which is written as the letter E
followed by a signed or unsigned integer.

e.g. 32. +32.0 0.32E2 and 320.E-1 are all representations of 32.

The declaration SCIENTIFIC NOTATION controls the output format of floating
point numbers. At the default settings, any number with five or less digits before the
decimal point is printed in a fixed-point notation, e.g., 12345.6. Numbers with
more than five digits are printed in scientific notation, e.g., 1.234567E+5. Sim-
ilarly, by default, any number with eleven or more zeros after the decimal point is
printed in scientific notation. To change these defaults, SCIENTIFIC NOTATION
can be used in one of two ways. SCIENTIFIC NOTATION m;, where m is a posi-
tive integer, sets the printing format so that a number with more than m digits before
the decimal point, or m or more zeros after the decimal point, is printed in scientific
notation. SCIENTIFIC NOTATION {m,n}, with m and n both positive integers,
sets the format so that a number with more than m digits before the decimal point,
or n or more zeros after the decimal point is printed in scientific notation.

CAUTION: The unsigned part of any number may not begin with a decimal point,
as this causes confusion with the CONS (.) operator, i.e., NOT ALLOWED: .5
-.23 +.12; use 0.5 -0.23 +0.12 instead.

2.3. IDENTIFIERS 21

2.3 Identifiers

Identifiers in REDUCE consist of one or more alphanumeric characters (i.e. alpha-
betic letters or decimal digits) the first of which must be alphabetic. The maximum
number of characters allowed is implementation dependent, although twenty-four
is permitted in most implementations. In addition, the underscore character () is
considered a letter if it is within an identifier. For example,

a az p1 q23p a_very_long_variable

are all identifiers, whereas

_a

is not.

A sequence of alphanumeric characters in which the first is a digit is interpreted as
a product. For example, 2ab3c is interpreted as 2*ab3c. There is one exception
to this: If the first letter after a digit is E, the system will try to interpret that part of
the sequence as a real number, which may fail in some cases. For example, 2E12
is the real number 2.0 ∗ 1012, 2e3c is 2000.0*C, and 2ebc gives an error.

Special characters, such as −, *, and blank, may be used in identifiers too, even as
the first character, but each must be preceded by an exclamation mark in input. For
example:

light!-years d!*!*n good! morning
!$sign !5goldrings

CAUTION: Many system identifiers have such special characters in their names
(especially * and =). If the user accidentally picks the name of one of them for his
own purposes it may have catastrophic consequences for his REDUCE run. Users
are therefore advised to avoid such names.

Identifiers are used as variables, labels and to name arrays, operators and proce-
dures.

Restrictions

The reserved words listed in another section may not be used as identifiers. No
spaces may appear within an identifier, and an identifier may not extend over a line
of text. (Hyphenation of an identifier, by using a reserved character as a hyphen
before an end-of-line character is possible in some versions of REDUCE).

22 CHAPTER 2. STRUCTURE OF PROGRAMS

2.4 Variables

Every variable is named by an identifier, and is given a specific type. The type is
of no concern to the ordinary user. Most variables are allowed to have the default
type, called scalar. These can receive, as values, the representation of any ordinary
algebraic expression. In the absence of such a value, they stand for themselves.

Reserved Variables

Several variables in REDUCE have particular properties which should not be
changed by the user. These variables include:

E Intended to represent the base of the natural logarithms. log(e),
if it occurs in an expression, is automatically replaced by 1. If
ROUNDED is on, E is replaced by the value of E to the current degree
of floating point precision.

I Intended to represent the square root of −1. iˆ2 is replaced by
−1, and appropriately for higher powers of I. This applies only to
the symbol I used on the top level, not as a formal parameter in a
procedure, a local variable, nor in the context for i:= ...

INFINITY Intended to represent ∞ in limit and power series calculations
for example. Note however that the current system does not do
proper arithmetic on∞. For example, infinity + infinity
is 2*infinity.

NIL In REDUCE (algebraic mode only) taken as a synonym for zero.
Therefore NIL cannot be used as a variable.

PI Intended to represent the circular constant. With ROUNDED on, it
is replaced by the value of π to the current degree of floating point
precision.

T Should not be used as a formal parameter or local variable in pro-
cedures, since conflict arises with the symbolic mode meaning of T
as true.

Other reserved variables, such as LOW POW, described in other sections, are listed
in Appendix A.

Using these reserved variables inappropriately will lead to errors.

There are also internal variables used by REDUCE that have similar restrictions.
These usually have an asterisk in their names, so it is unlikely a casual user would

2.5. STRINGS 23

use one. An example of such a variable is K!* used in the asymptotic command
package.

Certain words are reserved in REDUCE. They may only be used in the manner
intended. A list of these is given in the section “Reserved Identifiers”. There are,
of course, an impossibly large number of such names to keep in mind. The reader
may therefore want to make himself a copy of the list, deleting the names he doesn’t
think he is likely to use by mistake.

2.5 Strings

Strings are used in WRITE statements, in other output statements (such as error
messages), and to name files. A string consists of any number of characters en-
closed in double quotes. For example:

"A String".

Lower case characters within a string are not converted to upper case.

The string "" represents the empty string. A double quote may be included in a
string by preceding it by another double quote. Thus "a""b" is the string a"b,
and """" is the string ".

2.6 Comments

Text can be included in program listings for the convenience of human readers, in
such a way that REDUCE pays no attention to it. There are two ways to do this:

1. Everything from the word COMMENT to the next statement terminator, nor-
mally ; or $, is ignored. Such comments can be placed anywhere a blank
could properly appear. (Note that END and >> are not treated as COMMENT
delimiters!)

2. Everything from the symbol % to the end of the line on which it appears is
ignored. Such comments can be placed as the last part of any line. Statement
terminators have no special meaning in such comments. Remember to put
a semicolon before the % if the earlier part of the line is intended to be so
terminated. Remember also to begin each line of a multi-line % comment
with a % sign.

24 CHAPTER 2. STRUCTURE OF PROGRAMS

2.7 Operators

Operators in REDUCE are specified by name and type. There are two types, in-
fix and prefix. Operators can be purely abstract, just symbols with no properties;
they can have values assigned (using := or simple LET declarations) for specific
arguments; they can have properties declared for some collection of arguments
(using more general LET declarations); or they can be fully defined (usually by a
procedure declaration).

Infix operators have a definite precedence with respect to one another, and normally
occur between their arguments. For example:

a + b - c (spaces optional)
x<y and y=z (spaces required where shown)

Spaces can be freely inserted between operators and variables or operators and
operators. They are required only where operator names are spelled out with let-
ters (such as the AND in the example) and must be unambiguously separated from
another such or from a variable (like Y). Wherever one space can be used, so can
any larger number.

Prefix operators occur to the left of their arguments, which are written as a list
enclosed in parentheses and separated by commas, as with normal mathematical
functions, e.g.,

cos(u)
df(xˆ2,x)
q(v+w)

Unmatched parentheses, incorrect groupings of infix operators and the like, natu-
rally lead to syntax errors. The parentheses can be omitted (replaced by a space
following the operator name) if the operator is unary and the argument is a single
symbol or begins with a prefix operator name:

cos y means cos(y)
cos (-y) – parentheses necessary
log cos y means log(cos(y))
log cos (a+b) means log(cos(a+b))

but

cos a*b means (cos a)*b
cos -y is erroneous (treated as a variable

“cos” minus the variable y)

2.7. OPERATORS 25

A unary prefix operator has a precedence higher than any infix operator, including
unary infix operators. In other words, REDUCE will always interpret cos y +
3 as (cos y) + 3 rather than as cos(y + 3).

Infix operators may also be used in a prefix format on input, e.g., +(a,b,c). On
output, however, such expressions will always be printed in infix form (i.e., a +
b + c for this example).

A number of prefix operators are built into the system with predefined properties.
Users may also add new operators and define their rules for simplification. The
built in operators are described in another section.

Built-In Infix Operators

The following infix operators are built into the system. They are all defined inter-
nally as procedures.

<infix operator>::= where|:=|or|and|member|memq|=|neq|eq|
>=|>|<=|<|+|-|*|/|ˆ|**|.

These operators may be further divided into the following subclasses:

<assignment operator> ::= :=
<logical operator> ::= or|and|member|memq
<relational operator> ::= =|neq|eq|>=|>|<=|<
<substitution operator> ::= where
<arithmetic operator> ::= +|-|*|/|ˆ|**
<construction operator> ::= .

MEMQ and EQ are not used in the algebraic mode of REDUCE. They are explained
in the section on symbolic mode. WHERE is described in the section on substitu-
tions.

In previous versions of REDUCE, not was also defined as an infix operator. In the
present version it is a regular prefix operator, and interchangeable with null.

For compatibility with the intermediate language used by REDUCE, each special
character infix operator has an alternative alphanumeric identifier associated with
it. These identifiers may be used interchangeably with the corresponding special
character names on input. This correspondence is as follows:

:= setq (the assignment operator)
= equal
>= geq
> greaterp
<= leq

26 CHAPTER 2. STRUCTURE OF PROGRAMS

< lessp
+ plus
- difference (if unary, minus)
* times
/ quotient (if unary, recip)
ˆ or ** expt (raising to a power)
. cons

Note: NEQ is used to mean not equal. There is no special symbol provided for it.

The above operators are binary, except NOT which is unary and + and * which
are nary (i.e., taking an arbitrary number of arguments). In addition, - and / may
be used as unary operators, e.g., /2 means the same as 1/2. Any other operator is
parsed as a binary operator using a left association rule. Thus a/b/c is interpreted
as (a/b)/c. There are two exceptions to this rule: := and . are right associa-
tive. Example: a:=b:=c is interpreted as a:=(b:=c). Unlike ALGOL and
PASCAL, ˆ is left associative. In other words, aˆbˆc is interpreted as (aˆb)ˆc.

The operators <, <=, >, >= can only be used for making comparisons between
numbers. No meaning is currently assigned to this kind of comparison between
general expressions.

Parentheses may be used to specify the order of combination. If parentheses are
omitted then this order is by the ordering of the precedence list defined by the right-
hand side of the <infix operator> table at the beginning of this section, from
lowest to highest. In other words, WHERE has the lowest precedence, and . (the
dot operator) the highest.

Chapter 3

Expressions

REDUCE expressions may be of several types and consist of sequences of num-
bers, variables, operators, left and right parentheses and commas. The most com-
mon types are as follows:

3.1 Scalar Expressions

Using the arithmetic operations + - * / ˆ (power) and parentheses, scalar ex-
pressions are composed from numbers, ordinary “scalar” variables (identifiers), ar-
ray names with subscripts, operator or procedure names with arguments and state-
ment expressions.

Examples:

x
xˆ3 - 2*y/(2*zˆ2 - df(x,z))
(pˆ2 + mˆ2)ˆ(1/2)*log (y/m)
a(5) + b(i,q)

The symbol ** may be used as an alternative to the caret symbol (ˆ) for forming
powers, particularly in those systems that do not support a caret symbol.

Statement expressions, usually in parentheses, can also form part of a scalar ex-
pression, as in the example

w + (c:=x+y) + z .

When the algebraic value of an expression is needed, REDUCE determines it, start-
ing with the algebraic values of the parts, roughly as follows:

27

28 CHAPTER 3. EXPRESSIONS

Variables and operator symbols with an argument list have the algebraic values
they were last assigned, or if never assigned stand for themselves. However, array
elements have the algebraic values they were last assigned, or, if never assigned,
are taken to be 0.

Procedures are evaluated with the values of their actual parameters.

In evaluating expressions, the standard rules of algebra are applied. Unfortunately,
this algebraic evaluation of an expression is not as unambiguous as is numerical
evaluation. This process is generally referred to as “simplification” in the sense that
the evaluation usually but not always produces a simplified form for the expression.

There are many options available to the user for carrying out such simplification.
If the user doesn’t specify any method, the default method is used. The default
evaluation of an expression involves expansion of the expression and collection
of like terms, ordering of the terms, evaluation of derivatives and other functions
and substitution for any expressions which have values assigned or declared (see
assignments and LET statements). In many cases, this is all that the user needs.

The declarations by which the user can exercise some control over the way in which
the evaluation is performed are explained in other sections. For example, if a real
(floating point) number is encountered during evaluation, the system will normally
convert it into a ratio of two integers. If the user wants to use real arithmetic,
he can effect this by the command on rounded;. Other modes for coefficient
arithmetic are described elsewhere.

If an illegal action occurs during evaluation (such as division by zero) or functions
are called with the wrong number of arguments, and so on, an appropriate error
message is generated.

3.2 Integer Expressions

These are expressions which, because of the values of the constants and variables
in them, evaluate to whole numbers.

Examples:

2, 37 * 999, (x + 3)ˆ2 - xˆ2 - 6*x

are obviously integer expressions.

j + k - 2 * jˆ2

is an integer expression when J and K have values that are integers, or if not integers
are such that “the variables and fractions cancel out”, as in

3.3. BOOLEAN EXPRESSIONS 29

k - 7/3 - j + 2/3 + 2*jˆ2.

3.3 Boolean Expressions

A boolean expression returns a truth value. In the algebraic mode of REDUCE,
boolean expressions have the syntactical form:

<expression> <relational operator> <expression>

or

<boolean operator> (<arguments>)

or

<boolean expression> <logical operator>
<boolean expression>.

Parentheses can also be used to control the precedence of expressions.

In addition to the logical and relational operators defined earlier as infix operators,
the following boolean operators are also defined:

EVENP(U) determines if the number U is even or not;

FIXP(U) determines if the expression U is integer or not;

FREEOF(U,V) determines if the expression U does not contain the kernel
V anywhere in its structure;

NUMBERP(U) determines if U is a number or not;

ORDP(U,V) determines if U is ordered ahead of V by some canonical
ordering (based on the expression structure and an internal
ordering of identifiers);

PRIMEP(U) true if U is a prime object, i.e., any object other than 0 and
plus or minus 1 which is only exactly divisible by itself or
a unit.

Examples:

j<1

30 CHAPTER 3. EXPRESSIONS

x>0 or x=-2
numberp x
fixp x and evenp x
numberp x and x neq 0

Boolean expressions can only appear directly within IF, FOR, WHILE, and UNTIL
statements, as described in other sections. Such expressions cannot be used in place
of ordinary algebraic expressions, or assigned to a variable.

NB: For those familiar with symbolic mode, the meaning of some of these oper-
ators is different in that mode. For example, NUMBERP is true only for integers and
reals in symbolic mode.

When two or more boolean expressions are combined with AND, they are evaluated
one by one until a false expression is found. The rest are not evaluated. Thus

numberp x and numberp y and x>y

does not attempt to make the x>y comparison unless X and Y are both verified to
be numbers.

Similarly, evaluation of a sequence of boolean expressions connected by OR stops
as soon as a true expression is found.

NB: In a boolean expression, and in a place where a boolean expression is expected,
the algebraic value 0 is interpreted as false, while all other algebraic values are
converted to true. So in algebraic mode a procedure can be written for direct usage
in boolean expressions, returning say 1 or 0 as its value as in

procedure polynomialp(u,x);
if den(u)=1 and deg(u,x)>=1 then 1 else 0;

One can then use this in a boolean construct, such as

if polynomialp(q,z) and not polynomialp(q,y) then ...

In addition, any procedure that does not have a defined return value (for example,
a block without a RETURN statement in it) has the boolean value false.

3.4 Equations

Equations are a particular type of expression with the syntax

<expression> = <expression>.

3.5. PROPER STATEMENTS AS EXPRESSIONS 31

In addition to their role as boolean expressions, they can also be used as arguments
to several operators (e.g., SOLVE), and can be returned as values.

Under normal circumstances, the right-hand-side of the equation is evaluated but
not the left-hand-side. This also applies to any substitutions made by the SUB
operator. If both sides are to be evaluated, the switch EVALLHSEQP should be
turned on.

To facilitate the handling of equations, two selectors, LHS and RHS, which return
the left- and right-hand sides of a equation respectively, are provided. For example,

lhs(a+b=c) -> a+b
and

rhs(a+b=c) -> c.

3.5 Proper Statements as Expressions

Several kinds of proper statements deliver an algebraic or numerical result of some
kind, which can in turn be used as an expression or part of an expression. For
example, an assignment statement itself has a value, namely the value assigned. So

2 * (x := a+b)

is equal to 2*(a+b), as well as having the “side-effect” of assigning the value
a+b to X. In context,

y := 2 * (x := a+b);

sets X to a+b and Y to 2*(a+b).

The sections on the various proper statement types indicate which of these state-
ments are also useful as expressions.

32 CHAPTER 3. EXPRESSIONS

Chapter 4

Lists

A list is an object consisting of a sequence of other objects (including lists them-
selves), separated by commas and surrounded by braces. Examples of lists are:

{a,b,c}

{1,a-b,c=d}

{{a},{{b,c},d},e}.

The empty list is represented as

{}.

4.1 Operations on Lists

Several operators in the system return their results as lists, and a user can create
new lists using braces and commas. Alternatively, one can use the operator LIST
to construct a list. An important class of operations on lists are MAP and SELECT
operations. For details, please refer to the chapters on MAP, SELECT and the FOR
command. See also the documentation on the ASSIST package.

To facilitate the use of lists, a number of operators are also available for manipu-
lating them. PART(<list>,n) for example will return the nth element of a list.
LENGTH will return the length of a list. Several operators are also defined uniquely
for lists. For those familiar with them, these operators in fact mirror the operations
defined for Lisp lists. These operators are as follows:

33

34 CHAPTER 4. LISTS

4.1.1 LIST

The operator LIST is an alternative to the usage of curly brackets. LIST accepts an
arbitrary number of arguments and returns a list of its arguments. This operator is
useful in cases where operators have to be passed as arguments. E.g.,

list(a,list(list(b,c),d),e); -> {{a},{{b,c},d},e}

4.1.2 FIRST

This operator returns the first member of a list. An error occurs if the argument is
not a list, or the list is empty.

4.1.3 SECOND

SECOND returns the second member of a list. An error occurs if the argument is
not a list or has no second element.

4.1.4 THIRD

This operator returns the third member of a list. An error occurs if the argument is
not a list or has no third element.

4.1.5 REST

REST returns its argument with the first element removed. An error occurs if the
argument is not a list, or is empty.

4.1.6 . (Cons) Operator

This operator adds (“conses”) an expression to the front of a list. For example:

a . {b,c} -> {a,b,c}.

4.1.7 APPEND

This operator appends its first argument to its second to form a new list. Examples:

append({a,b},{c,d}) -> {a,b,c,d}
append({{a,b}},{c,d}) -> {{a,b},c,d}.

4.1. OPERATIONS ON LISTS 35

4.1.8 REVERSE

The operator REVERSE returns its argument with the elements in the reverse or-
der. It only applies to the top level list, not any lower level lists that may occur.
Examples are:

reverse({a,b,c}) -> {c,b,a}
reverse({{a,b,c},d}) -> {d,{a,b,c}}.

4.1.9 List Arguments of Other Operators

If an operator other than those specifically defined for lists is given a single argu-
ment that is a list, then the result of this operation will be a list in which that
operator is applied to each element of the list. For example, the result of evaluating
log{a,b,c} is the expression {LOG(A),LOG(B),LOG(C)}.

There are two ways to inhibit this operator distribution. Firstly, the switch
LISTARGS, if on, will globally inhibit such distribution. Secondly, one can in-
hibit this distribution for a specific operator by the declaration LISTARGP. For
example, with the declaration listargp log, log{a,b,c} would evaluate to
LOG({A,B,C}).

If an operator has more than one argument, no such distribution occurs.

4.1.10 Caveats and Examples

Some of the natural list operations such as member or delete are available only after
loading the package ASSIST.

Please note that a non-list as second argument to CONS (a ”dotted pair” in LISP
terms) is not allowed and causes an ”invalid as list” error.

a := 17 . 4;

***** 17 4 invalid as list

Also, the initialization of a scalar variable is not the empty list – one has to set list
type variables explicitly, as in the following example:

load_package assist;

procedure lotto (n,m);
begin scalar list_1_n, luckies, hit;

list_1_n := {};

36 CHAPTER 4. LISTS

luckies := {};
for k:=1:n do list_1_n := k . list_1_n;
for k:=1:m do

<< hit := part(list_1_n,random(n-k+1) + 1);
list_1_n := delete(hit,list_1_n);
luckies := hit . luckies >>;

return luckies;
end; % In Germany, try lotto (49,6);

Another example: Find all coefficients of a multivariate polynomial with respect to
a list of variables:

procedure allcoeffs(q,lis); % q : polynomial, lis: list of vars
allcoeffs1 (list q,lis);

procedure allcoeffs1(q,lis);
if lis={} then q else

allcoeffs1(foreach qq in q join coeff(qq,first lis),rest lis);

Chapter 5

Statements

A statement is any combination of reserved words and expressions, and has the
syntax

<statement> ::= <expression>|<proper statement>

A REDUCE program consists of a series of commands which are statements fol-
lowed by a terminator:

<terminator> ::= ;|$

The division of the program into lines is arbitrary. Several statements can be on
one line, or one statement can be freely broken onto several lines. If the program
is run interactively, statements ending with ; or $ are not processed until an end-of-
line character is encountered. This character can vary from system to system, but
is normally the Return key on an ASCII terminal. Specific systems may also use
additional keys as statement terminators.

If a statement is a proper statement, the appropriate action takes place.

Depending on the nature of the proper statement some result or response may or
may not be printed out, and the response may or may not depend on the terminator
used.

If a statement is an expression, it is evaluated. If the terminator is a semicolon, the
result is printed. If the terminator is a dollar sign, the result is not printed. Because
it is not usually possible to know in advance how large an expression will be, no
explicit format statements are offered to the user. However, a variety of output
declarations are available so that the output can be produced in different forms.
These output declarations are explained in Section 8.3.3.

The following sub-sections describe the types of proper statements in REDUCE.

37

38 CHAPTER 5. STATEMENTS

5.1 Assignment Statements

These statements have the syntax

<assignment statement> ::= <expression> := <expression>

The <expression> on the left side is normally the name of a variable, an op-
erator symbol with its list of arguments filled in, or an array name with the proper
number of integer subscript values within the array bounds. For example:

a1 := b + c
h(l,m) := x-2*y (where h is an operator)
k(3,5) := x-2*y (where k is a 2-dim. array)

More general assignments such as a+b := c are also allowed. The effect of these
is explained in Section 10.2.5.

An assignment statement causes the expression on the right-hand-side to be evalu-
ated. If the left-hand-side is a variable, the value of the right-hand-side is assigned
to that unevaluated variable. If the left-hand-side is an operator or array expression,
the arguments of that operator or array are evaluated, but no other simplification
done. The evaluated right-hand-side is then assigned to the resulting expression.
For example, if A is a single-dimensional array, a(1+1) := b assigns the value
B to the array element a(2).

If a semicolon is used as the terminator when an assignment is issued as a command
(i.e. not as a part of a group statement or procedure or other similar construct), the
left-hand side symbol of the assignment statement is printed out, followed by a
“:=”, followed by the value of the expression on the right.

It is also possible to write a multiple assignment statement:

<expression> := ... := <expression> := <expression>

In this form, each <expression> but the last is set to the value of the last
<expression>. If a semicolon is used as a terminator, each expression except
the last is printed followed by a “:=” ending with the value of the last expression.

5.1.1 Set Statement

In some cases, it is desirable to perform an assignment in which both the left- and
right-hand sides of an assignment are evaluated. In this case, the SET statement
can be used with the syntax:

SET(<expression>,<expression>);

5.2. GROUP STATEMENTS 39

For example, the statements

j := 23;
set(mkid(a,j),x);

assigns the value X to A23.

5.2 Group Statements

The group statement is a construct used where REDUCE expects a single state-
ment, but a series of actions needs to be performed. It is formed by enclosing one
or more statements (of any kind) between the symbols << and >>, separated by
semicolons or dollar signs – it doesn’t matter which. The statements are executed
one after another.

Examples will be given in the sections on IF and other types of statements in which
the << . . .>> construct is useful.

If the last statement in the enclosed group has a value, then that is also the value
of the group statement. Care must be taken not to have a semicolon or dollar sign
after the last grouped statement, if the value of the group is relevant: such an extra
terminator causes the group to have the value NIL or zero.

5.3 Conditional Statements

The conditional statement has the following syntax:

<conditional statement> ::=
IF <boolean expression> THEN <statement> [ELSE <statement>]

The boolean expression is evaluated. If this is true, the first <statement> is
executed. If it is false, the second is.

Examples:

if x=5 then a:=b+c else d:=e+f

if x=5 and numberp y
then <<ff:=q1; a:=b+c>>
else <<ff:=q2; d:=e+f>>

Note the use of the group statement.
Conditional statements associate to the right; i.e.,

40 CHAPTER 5. STATEMENTS

IF <a> THEN ELSE IF <c> THEN <d> ELSE <e>

is equivalent to:

IF <a> THEN ELSE (IF <c> THEN <d> ELSE <e>)

In addition, the construction

IF <a> THEN IF THEN <c> ELSE <d>

parses as

IF <a> THEN (IF THEN <c> ELSE <d>).

If the value of the conditional statement is of primary interest, it is often called a
conditional expression instead. Its value is the value of whichever statement was
executed. (If the executed statement has no value, the conditional expression has
no value or the value 0, depending on how it is used.)

Examples:

a:=if x<5 then 123 else 456;
b:=u + vˆ(if numberp z then 10*z else 1) + w;

If the value is of no concern, the ELSE clause may be omitted if no action is
required in the false case.

if x=5 then a:=b+c;

Note: As explained in Section 3.3,a if a scalar or numerical expression is used in
place of the boolean expression – for example, a variable is written there – the true
alternative is followed unless the expression has the value 0.

5.4 FOR Statements

The FOR statement is used to define a variety of program loops. Its general syntax
is as follows:

FOR

〈var〉 := 〈number〉

{
STEP 〈number〉 UNTIL

:

}
〈number〉

EACH 〈var〉
{
IN
ON

}
〈list〉

 〈action〉 〈exprn〉

where

〈action〉 ::= do|product|sum|collect|join.

5.4. FOR STATEMENTS 41

The assignment form of the FOR statement defines an iteration over the indicated
numerical range. If expressions that do not evaluate to numbers are used in the
designated places, an error will result.

The FOR EACH form of the FOR statement is designed to iterate down a list.
Again, an error will occur if a list is not used.

The action DO means that <exprn> is simply evaluated and no value kept; the
statement returning 0 in this case (or no value at the top level). COLLECT means
that the results of evaluating <exprn> each time are linked together to make a list,
and JOIN means that the values of <exprn> are themselves lists that are joined
to make one list (similar to CONC in Lisp). Finally, PRODUCT and SUM form the
respective combined value out of the values of <exprn>.

In all cases, <exprn> is evaluated algebraically within the scope of the current
value of <var>. If <action> is DO, then nothing else happens. In other cases,
<action> is a binary operator that causes a result to be built up and returned
by FOR. In those cases, the loop is initialized to a default value (0 for SUM, 1 for
PRODUCT, and an empty list for the other actions). The test for the end condition
is made before any action is taken. As in Pascal, if the variable is out of range in
the assignment case, or the <list> is empty in the FOR EACH case, <exprn>
is not evaluated at all.

Examples:

1. If A, B have been declared to be arrays, the following stores 52 through 102

in A(5) through A(10), and at the same time stores the cubes in the B
array:

for i := 5 step 1 until 10 do <<a(i):=iˆ2; b(i):=iˆ3>>

2. As a convenience, the common construction

STEP 1 UNTIL

may be abbreviated to a colon. Thus, instead of the above we could write:

for i := 5:10 do <<a(i):=iˆ2; b(i):=iˆ3>>

3. The following sets C to the sum of the squares of 1,3,5,7,9; and D to the
expression x*(x+1)*(x+2)*(x+3)*(x+4):

c := for j:=1 step 2 until 9 sum jˆ2;
d := for k:=0 step 1 until 4 product (x+k);

4. The following forms a list of the squares of the elements of the list
{a,b,c}:

42 CHAPTER 5. STATEMENTS

for each x in {a,b,c} collect xˆ2;

5. The following forms a list of the listed squares of the elements of the list
{a,b,c} (i.e., {{Aˆ2},{Bˆ2},{Cˆ2}}):

for each x in {a,b,c} collect {xˆ2};

6. The following also forms a list of the squares of the elements of the list
{a,b,c}, since the JOIN operation joins the individual lists into one list:

for each x in {a,b,c} join {xˆ2};

The control variable used in the FOR statement is actually a new variable, not
related to the variable of the same name outside the FOR statement. In other words,
executing a statement for i:= . . . doesn’t change the system’s assumption that
i2 = −1. Furthermore, in algebraic mode, the value of the control variable is
substituted in <exprn> only if it occurs explicitly in that expression. It will not
replace a variable of the same name in the value of that expression. For example:

b := a; for a := 1:2 do write b;

prints A twice, not 1 followed by 2.

5.5 WHILE . . . DO

The FOR ...DO feature allows easy coding of a repeated operation in which the
number of repetitions is known in advance. If the criterion for repetition is more
complicated, WHILE ...DO can often be used. Its syntax is:

WHILE <boolean expression> DO <statement>

The WHILE ...DO controls the single statement following DO. If several state-
ments are to be repeated, as is almost always the case, they must be grouped using
the << . . .>> or BEGIN ...END as in the example below.

The WHILE condition is tested each time before the action following the DO is
attempted. If the condition is false to begin with, the action is not performed at all.
Make sure that what is to be tested has an appropriate value initially.

Example:

Suppose we want to add up a series of terms, generated one by one, until we reach
a term which is less than 1/1000 in value. For our simple example, let us suppose
the first term equals 1 and each term is obtained from the one before by taking one
third of it and adding one third its square. We would write:

5.6. REPEAT . . . UNTIL 43

ex:=0; term:=1;
while num(term - 1/1000) >= 0 do

<<ex := ex+term; term:=(term + termˆ2)/3>>;
ex;

As long as TERM is greater than or equal to (>=) 1/1000 it will be added to EX and
the next TERM calculated. As soon as TERM becomes less than 1/1000 the WHILE
test fails and the TERM will not be added.

5.6 REPEAT . . . UNTIL

REPEAT ...UNTIL is very similar in purpose to WHILE ...DO. Its syntax is:

REPEAT <statement> UNTIL <boolean expression>

(PASCAL users note: Only a single statement – usually a group statement – is
allowed between the REPEAT and the UNTIL.)

There are two essential differences:

1. The test is performed after the controlled statement (or group of statements)
is executed, so the controlled statement is always executed at least once.

2. The test is a test for when to stop rather than when to continue, so its “polar-
ity” is the opposite of that in WHILE ...DO.

As an example, we rewrite the example from the WHILE ...DO section:

ex:=0; term:=1;
repeat <<ex := ex+term; term := (term + termˆ2)/3>>

until num(term - 1/1000) < 0;
ex;

In this case, the answer will be the same as before, because in neither case is a term
added to EX which is less than 1/1000.

5.7 Compound Statements

Often the desired process can best (or only) be described as a series of steps to be
carried out one after the other. In many cases, this can be achieved by use of the
group statement. However, each step often provides some intermediate result, until
at the end we have the final result wanted. Alternatively, iterations on the steps are

44 CHAPTER 5. STATEMENTS

needed that are not possible with constructs such as WHILE or REPEAT statements.
In such cases the steps of the process must be enclosed between the words BEGIN
and END forming what is technically called a block or compound statement. Such
a compound statement can in fact be used wherever a group statement appears.
The converse is not true: BEGIN ...END can be used in ways that << . . .>>
cannot.

If intermediate results must be formed, local variables must be provided in which
to store them. Local means that their values are deleted as soon as the block’s
operations are complete, and there is no conflict with variables outside the block
that happen to have the same name. Local variables are created by a SCALAR
declaration immediately after the BEGIN:

scalar a,b,c,z;

If more convenient, several SCALAR declarations can be given one after another:

scalar a,b,c;
scalar z;

In place of SCALAR one can also use the declarations INTEGER or REAL. In the
present version of REDUCE variables declared INTEGER are expected to have
only integer values, and are initialized to 0. REAL variables on the other hand are
currently treated as algebraic mode SCALARs.

CAUTION: INTEGER, REAL and SCALAR declarations can only be given imme-
diately after a BEGIN. An error will result if they are used after other statements
in a block (including ARRAY and OPERATOR declarations, which are global in
scope), or outside the top-most block (e.g., at the top level). All variables declared
SCALAR are automatically initialized to zero in algebraic mode (NIL in symbolic
mode).

Any symbols not declared as local variables in a block refer to the variables of
the same name in the current calling environment. In particular, if they are not so
declared at a higher level (e.g., in a surrounding block or as parameters in a calling
procedure), their values can be permanently changed.

Following the SCALAR declaration(s), if any, write the statements to be executed,
one after the other, separated by delimiters (e.g., ; or $) (it doesn’t matter which).
However, from a stylistic point of view, ; is preferred.

The last statement in the body, just before END, need not have a terminator (since
the BEGIN ...END are in a sense brackets confining the block statements). The
last statement must also be the command RETURN followed by the variable or
expression whose value is to be the value returned by the procedure. If the RETURN
is omitted (or nothing is written after the word RETURN) the procedure will have
no value or the value zero, depending on how it is used (and NIL in symbolic

5.7. COMPOUND STATEMENTS 45

mode). Remember to put a terminator after the END.

Example:

Given a previously assigned integer value for N, the following block will compute
the Legendre polynomial of degree N in the variable X:

begin scalar seed,deriv,top,fact;
seed:=1/(yˆ2 - 2*x*y +1)ˆ(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

5.7.1 Compound Statements with GO TO

It is possible to have more complicated structures inside the BEGIN ...END
brackets than indicated in the previous example. That the individual lines of the
program need not be assignment statements, but could be almost any other kind
of statement or command, needs no explanation. For example, conditional state-
ments, and WHILE and REPEAT constructions, have an obvious role in defining
more intricate blocks.

If these structured constructs don’t suffice, it is possible to use labels and GO TOs
within a compound statement, and also to use RETURN in places within the block
other than just before the END. The following subsections discuss these matters in
detail. For many readers the following example, presenting one possible definition
of a process to calculate the factorial of N for preassigned N will suffice:

Example:

begin scalar m;
m:=1;

l: if n=0 then return m;
m:=m*n;
n:=n-1;
go to l

end;

5.7.2 Labels and GO TO Statements

Within a BEGIN ...END compound statement it is possible to label statements,
and transfer to them out of sequence using GO TO statements. Only statements on
the top level inside compound statements can be labeled, not ones inside subsidiary

46 CHAPTER 5. STATEMENTS

constructions like << . . .>>, IF . . .THEN . . . , WHILE . . .DO . . . , etc.

Labels and GO TO statements have the syntax:

<go to statement> ::= GO TO <label> | GOTO <label>
<label> ::= <identifier>
<labeled statement> ::= <label>:<statement>

Note that statement names cannot be used as labels.

While GO TO is an unconditional transfer, it is frequently used in conditional state-
ments such as

if x>5 then go to abcd;

giving the effect of a conditional transfer.

Transfers using GO TOs can only occur within the block in which the GO TO is
used. In other words, you cannot transfer from an inner block to an outer block us-
ing a GO TO. However, if a group statement occurs within a compound statement,
it is possible to jump out of that group statement to a point within the compound
statement using a GO TO.

5.7.3 RETURN Statements

The value corresponding to a BEGIN ...END compound statement, such as a
procedure body, is normally 0 (NIL in symbolic mode). By executing a RETURN
statement in the compound statement a different value can be returned. After a
RETURN statement is executed, no further statements within the compound state-
ment are executed.

Examples:

return x+y;
return m;
return;

Note that parentheses are not required around the x+y, although they are permitted.
The last example is equivalent to return 0 or return nil, depending on
whether the block is used as part of an expression or not.

Since RETURN actually moves up only one block level, in a sense the casual user
is not expected to understand, we tabulate some cautions concerning its use.

1. RETURN can be used on the top level inside the compound statement, i.e. as
one of the statements bracketed together by the BEGIN ...END

5.7. COMPOUND STATEMENTS 47

2. RETURN can be used within a top level << . . .>> construction within the
compound statement. In this case, the RETURN transfers control out of both
the group statement and the compound statement.

3. RETURN can be used within an IF . . .THEN . . .ELSE . . . on the top level
within the compound statement.

NOTE: At present, there is no construct provided to permit early termination of
a FOR, WHILE, or REPEAT statement. In particular, the use of RETURN in such
cases results in a syntax error. For example,

begin scalar y;
y := for i:=0:99 do if a(i)=x then return b(i);
...

will lead to an error.

48 CHAPTER 5. STATEMENTS

Chapter 6

Commands and Declarations

A command is an order to the system to do something. Some commands cause
visible results (such as calling for input or output); others, usually called declara-
tions, set options, define properties of variables, or define procedures. Commands
are formally defined as a statement followed by a terminator

<command> ::= <statement> <terminator>
<terminator> ::= ;|$

Some REDUCE commands and declarations are described in the following sub-
sections.

6.1 Array Declarations

Array declarations in REDUCE are similar to FORTRAN dimension statements.
For example:

array a(10),b(2,3,4);

Array indices each range from 0 to the value declared. An element of an array is
referred to in standard FORTRAN notation, e.g. A(2).

We can also use an expression for defining an array bound, provided the value of
the expression is a positive integer. For example, if X has the value 10 and Y the
value 7 then array c(5*x+y) is the same as array c(57).

If an array is referenced by an index outside its range, an error occurs. If the array
is to be one-dimensional, and the bound a number or a variable (not a more general
expression) the parentheses may be omitted:

49

50 CHAPTER 6. COMMANDS AND DECLARATIONS

array a 10, c 57;

The operator LENGTH applied to an array name returns a list of its dimensions.

All array elements are initialized to 0 at declaration time. In other words, an array
element has an instant evaluation property and cannot stand for itself. If this is
required, then an operator should be used instead.

Array declarations can appear anywhere in a program. Once a symbol is declared
to name an array, it can not also be used as a variable, or to name an operator or
a procedure. It can however be re-declared to be an array, and its size may be
changed at that time. An array name can also continue to be used as a parameter in
a procedure, or a local variable in a compound statement, although this use is not
recommended, since it can lead to user confusion over the type of the variable.

Arrays once declared are global in scope, and so can then be referenced anywhere
in the program. In other words, unlike arrays in most other languages, a declara-
tion within a block (or a procedure) does not limit the scope of the array to that
block, nor does the array go away on exiting the block (use CLEAR instead for this
purpose).

6.2 Mode Handling Declarations

The ON and OFF declarations are available to the user for controlling various sys-
tem options. Each option is represented by a switch name. ON and OFF take a list
of switch names as argument and turn them on and off respectively, e.g.,

on time;

causes the system to print a message after each command giving the elapsed CPU
time since the last command, or since TIME was last turned off, or the session be-
gan. Another useful switch with interactive use is DEMO, which causes the system
to pause after each command in a file (with the exception of comments) until a
Return is typed on the terminal. This enables a user to set up a demonstration

file and step through it command by command.

As with most declarations, arguments to ON and OFF may be strung together sep-
arated by commas. For example,

off time,demo;

will turn off both the time messages and the demonstration switch.

We note here that while most ON and OFF commands are obeyed almost instanta-
neously, some trigger time-consuming actions such as reading in necessary mod-

6.3. END 51

ules from secondary storage.

A diagnostic message is printed if ON or OFF are used with a switch that is not
known to the system. For example, if you misspell DEMO and type

on demq;

you will get the message

***** DEMQ not defined as switch.

6.3 END

The identifier END has two separate uses.

1) Its use in a BEGIN ...END bracket has been discussed in connection with
compound statements.

2) Files to be read using IN should end with an extra END; command. The reason
for this is explained in the section on the IN command. This use of END does not
allow an immediately preceding END (such as the END of a procedure definition),
so we advise using ;END; there.

6.4 BYE Command

The command BYE; (or alternatively QUIT;) stops the execution of REDUCE,
closes all open output files, and returns you to the calling program (usually the
operating system). Your REDUCE session is normally destroyed.

6.5 SHOWTIME Command

SHOWTIME; prints the elapsed time since the last call of this command or, on its
first call, since the current REDUCE session began. The time is normally given
in milliseconds and gives the time as measured by a system clock. The operations
covered by this measure are system dependent.

6.6 DEFINE Command

The command DEFINE allows a user to supply a new name for any identifier or
replace it by any well-formed expression. Its argument is a list of expressions of

52 CHAPTER 6. COMMANDS AND DECLARATIONS

the form

<identifier> = <number>|<identifier>|<operator>|
<reserved word>|<expression>

Example:

define be==,x=y+z;

means that BE will be interpreted as an equal sign, and X as the expression y+z
from then on. This renaming is done at parse time, and therefore takes precedence
over any other replacement declared for the same identifier. It stays in effect until
the end of the REDUCE run.

The identifiers ALGEBRAIC and SYMBOLIC have properties which prevent
DEFINE from being used on them. To define ALG to be a synonym for
ALGEBRAIC, use the more complicated construction

put(’alg,’newnam,’algebraic);

Chapter 7

Built-in Prefix Operators

In the following subsections are descriptions of the most useful prefix operators
built into REDUCE that are not defined in other sections (such as substitution
operators). Some are fully defined internally as procedures; others are more nearly
abstract operators, with only some of their properties known to the system.

In many cases, an operator is described by a prototypical header line as follows.
Each formal parameter is given a name and followed by its allowed type. The
names of classes referred to in the definition are printed in lower case, and param-
eter names in upper case. If a parameter type is not commonly used, it may be
a specific set enclosed in brackets { . . . }. Operators that accept formal parame-
ter lists of arbitrary length have the parameter and type class enclosed in square
brackets indicating that zero or more occurrences of that argument are permitted.
Optional parameters and their type classes are enclosed in angle brackets.

7.1 Numerical Operators

REDUCE includes a number of functions that are analogs of those found in most
numerical systems. With numerical arguments, such functions return the expected
result. However, they may also be called with non-numerical arguments. In such
cases, except where noted, the system attempts to simplify the expression as far as
it can. In such cases, a residual expression involving the original operator usually
remains. These operators are as follows:

7.1.1 ABS

ABS returns the absolute value of its single argument, if that argument has a nu-
merical value. A non-numerical argument is returned as an absolute value, with an

53

54 CHAPTER 7. BUILT-IN PREFIX OPERATORS

overall numerical coefficient taken outside the absolute value operator. For exam-
ple:

abs(-3/4) -> 3/4
abs(2a) -> 2*ABS(A)
abs(i) -> 1
abs(-x) -> ABS(X)

7.1.2 CEILING

This operator returns the ceiling (i.e., the least integer greater than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

ceiling(-5/4) -> -1
ceiling(-a) -> CEILING(-A)

7.1.3 CONJ

This returns the complex conjugate of an expression, if that argument has an numer-
ical value. A non-numerical argument is returned as an expression in the operators
REPART and IMPART. For example:

conj(1+i) -> 1-I
conj(a+i*b) -> REPART(A) - REPART(B)*I - IMPART(A)*I
- IMPART(B)

7.1.4 FACTORIAL

If the single argument of FACTORIAL evaluates to a non-negative integer, its fac-
torial is returned. Otherwise an expression involving FACTORIAL is returned. For
example:

factorial(5) -> 120
factorial(a) -> FACTORIAL(A)

7.1.5 FIX

This operator returns the fixed value (i.e., the integer part of the given argument) if
its single argument has a numerical value. A non-numerical argument is returned
as an expression in the original operator. For example:

7.1. NUMERICAL OPERATORS 55

fix(-5/4) -> -1
fix(a) -> FIX(A)

7.1.6 FLOOR

This operator returns the floor (i.e., the greatest integer less than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

floor(-5/4) -> -2
floor(a) -> FLOOR(A)

7.1.7 IMPART

This operator returns the imaginary part of an expression, if that argument has an
numerical value. A non-numerical argument is returned as an expression in the
operators REPART and IMPART. For example:

impart(1+i) -> 1
impart(a+i*b) -> REPART(B) + IMPART(A)

7.1.8 MAX/MIN

MAX and MIN can take an arbitrary number of expressions as their arguments.
If all arguments evaluate to numerical values, the maximum or minimum of the
argument list is returned. If any argument is non-numeric, an appropriately reduced
expression is returned. For example:

max(2,-3,4,5) -> 5
min(2,-2) -> -2.
max(a,2,3) -> MAX(A,3)
min(x) -> X

MAX or MIN of an empty list returns 0.

7.1.9 NEXTPRIME

NEXTPRIME returns the next prime greater than its integer argument, using a prob-
abilistic algorithm. A type error occurs if the value of the argument is not an inte-
ger. For example:

56 CHAPTER 7. BUILT-IN PREFIX OPERATORS

nextprime(5) -> 7
nextprime(-2) -> 2
nextprime(-7) -> -5
nextprime 1000000 -> 1000003

whereas nextprime(a) gives a type error.

7.1.10 RANDOM

random(n) returns a random number r in the range 0 ≤ r < n. A type error
occurs if the value of the argument is not a positive integer in algebraic mode, or
positive number in symbolic mode. For example:

random(5) -> 3
random(1000) -> 191

whereas random(a) gives a type error.

7.1.11 RANDOM NEW SEED

random new seed(n) reseeds the random number generator to a sequence de-
termined by the integer argument n. It can be used to ensure that a repeat-
able pseudo-random sequence will be delivered regardless of any previous use of
RANDOM, or can be called early in a run with an argument derived from something
variable (such as the time of day) to arrange that different runs of a REDUCE pro-
gram will use different random sequences. When a fresh copy of REDUCE is first
created it is as if random new seed(1) has been obeyed.

A type error occurs if the value of the argument is not a positive integer.

7.1.12 REPART

This returns the real part of an expression, if that argument has an numerical value.
A non-numerical argument is returned as an expression in the operators REPART
and IMPART. For example:

repart(1+i) -> 1
repart(a+i*b) -> REPART(A) - IMPART(B)

7.2. MATHEMATICAL FUNCTIONS 57

7.1.13 ROUND

This operator returns the rounded value (i.e, the nearest integer) of its single argu-
ment if that argument has a numerical value. A non-numeric argument is returned
as an expression in the original operator. For example:

round(-5/4) -> -1
round(a) -> ROUND(A)

7.1.14 SIGN

SIGN tries to evaluate the sign of its argument. If this is possible SIGN returns
one of 1, 0 or -1. Otherwise, the result is the original form or a simplified variant.
For example:

sign(-5) -> -1
sign(-aˆ2*b) -> -SIGN(B)

Note that even powers of formal expressions are assumed to be positive only as
long as the switch COMPLEX is off.

7.2 Mathematical Functions

REDUCE knows that the following represent mathematical functions that can take
arbitrary scalar expressions as their single argument:

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH DILOG EI EXP
HYPOT LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

where LOG is the natural logarithm (and equivalent to LN), and LOGB has two
arguments of which the second is the logarithmic base.

The derivatives of all these functions are also known to the system.

REDUCE knows various elementary identities and properties of these functions.
For example:

cos(-x) = cos(x) sin(-x) = - sin (x)
cos(n*pi) = (-1)ˆn sin(n*pi) = 0
log(e) = 1 eˆ(i*pi/2) = i
log(1) = 0 eˆ(i*pi) = -1
log(eˆx) = x eˆ(3*i*pi/2) = -i

58 CHAPTER 7. BUILT-IN PREFIX OPERATORS

Beside these identities, there are a lot of simplifications for elementary funct-
ions defined in the REDUCE system as rulelists. In order to view these, the
SHOWRULES operator can be used, e.g.

SHOWRULES tan;

{tan(˜n*arbint(˜i)*pi + ˜(˜ x)) => tan(x) when fixp(n),

tan(˜x)

=> trigquot(sin(x),cos(x)) when knowledge_about(sin,x,tan)

,

˜x + ˜(˜ k)*pi
tan(----------------)

˜d

x k 1
=> - cot(---) when x freeof pi and abs(---)=---,

d d 2

˜(˜ w) + ˜(˜ k)*pi w + remainder(k,d)*pi
tan(--------------------) => tan(-----------------------)

˜(˜ d) d

k
when w freeof pi and ratnump(---) and fixp(k)

d

k
and abs(---)>=1,
d

tan(atan(˜x)) => x,

2
df(tan(˜x),˜x) => 1 + tan(x) }

For further simplification, especially of expressions involving trigonometric funct-
ions, see the TRIGSIMP package documentation.

7.2. MATHEMATICAL FUNCTIONS 59

Functions not listed above may be defined in the special functions package
SPECFN.

The user can add further rules for the reduction of expressions involving these
operators by using the LET command.

In many cases it is desirable to expand product arguments of logarithms, or collect
a sum of logarithms into a single logarithm. Since these are inverse operations, it
is not possible to provide rules for doing both at the same time and preserve the
REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides
two switches EXPANDLOGS and COMBINELOGS to carry out these operations.
Both are off by default. Thus to expand LOG(X*Y) into a sum of logs, one can
say

ON EXPANDLOGS; LOG(X*Y);

and to combine this sum into a single log:

ON COMBINELOGS; LOG(X) + LOG(Y);

At the present time, it is possible to have both switches on at once, which could
lead to infinite recursion. However, an expression is switched from one form to the
other in this case. Users should not rely on this behavior, since it may change in
the next release.

The current version of REDUCE does a poor job of simplifying surds. In particular,
expressions involving the product of variables raised to non-integer powers do not
usually have their powers combined internally, even though they are printed as if
those powers were combined. For example, the expression

xˆ(1/3)*xˆ(1/6);

will print as

SQRT(X)

but will have an internal form containing the two exponentiated terms. If you
now subtract sqrt(x) from this expression, you will not get zero. Instead, the
confusing form

SQRT(X) - SQRT(X)

will result. To combine such exponentiated terms, the switch COMBINEEXPT
should be turned on.

60 CHAPTER 7. BUILT-IN PREFIX OPERATORS

The square root function can be input using the name SQRT, or the power opera-
tion ˆ(1/2). On output, unsimplified square roots are normally represented by
the operator SQRT rather than a fractional power. With the default system switch
settings, the argument of a square root is first simplified, and any divisors of the
expression that are perfect squares taken outside the square root argument. The
remaining expression is left under the square root. Thus the expression

sqrt(-8aˆ2*b)

becomes

2*a*sqrt(-2*b).

Note that such simplifications can cause trouble if A is eventually given a value
that is a negative number. If it is important that the positive property of the square
root and higher even roots always be preserved, the switch PRECISE should be
set on (the default value). This causes any non-numerical factors taken out of surds
to be represented by their absolute value form. With PRECISE on then, the above
example would become

2*abs(a)*sqrt(-2*b).

The statement that REDUCE knows very little about these functions applies only
in the mathematically exact off rounded mode. If ROUNDED is on, any of the
functions

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH EXP HYPOT
LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

when given a numerical argument has its value calculated to the current degree of
floating point precision. In addition, real (non-integer valued) powers of numbers
will also be evaluated.

If the COMPLEX switch is turned on in addition to ROUNDED, these funct-
ions will also calculate a real or complex result, again to the current degree of
floating point precision, if given complex arguments. For example, with on
rounded,complex;

2.3ˆ(5.6i) -> -0.0480793490914 - 0.998843519372*I
cos(2+3i) -> -4.18962569097 - 9.10922789376*I

7.3. DF OPERATOR 61

7.3 DF Operator

The operator DF is used to represent partial differentiation with respect to one or
more variables. It is used with the syntax:

DF(EXPRN:algebraic[,VAR:kernel<,NUM:integer>]):algebraic.

The first argument is the expression to be differentiated. The remaining arguments
specify the differentiation variables and the number of times they are applied.

The number NUM may be omitted if it is 1. For example,

df(y,x) = ∂y/∂x
df(y,x,2) = ∂2y/∂x2

df(y,x1,2,x2,x3,2) = ∂5y/∂x2
1 ∂x2∂x

2
3.

The evaluation of df(y,x) proceeds as follows: first, the values of Y and X are
found. Let us assume that X has no assigned value, so its value is X. Each term
or other part of the value of Y that contains the variable X is differentiated by the
standard rules. If Z is another variable, not X itself, then its derivative with respect
to X is taken to be 0, unless Z has previously been declared to DEPEND on X, in
which case the derivative is reported as the symbol df(z,x).

7.3.1 Adding Differentiation Rules

The LET statement can be used to introduce rules for differentiation of user-defined
operators. Its general form is

FOR ALL <var1>,...,<varn>
LET DF(<operator><varlist>,<vari>)=<expression>

where <varlist> ::= (<var1>,. . . ,<varn>), and <var1>,...,<varn> are the
dummy variable arguments of <operator>.

An analogous form applies to infix operators.

Examples:

for all x let df(tan x,x)= 1 + tan(x)ˆ2;

(This is how the tan differentiation rule appears in the REDUCE source.)

for all x,y let df(f(x,y),x)=2*f(x,y),
df(f(x,y),y)=x*f(x,y);

62 CHAPTER 7. BUILT-IN PREFIX OPERATORS

Notice that all dummy arguments of the relevant operator must be declared arbi-
trary by the FOR ALL command, and that rules may be supplied for operators with
any number of arguments. If no differentiation rule appears for an argument in an
operator, the differentiation routines will return as result an expression in terms
of DF. For example, if the rule for the differentiation with respect to the second
argument of F is not supplied, the evaluation of df(f(x,z),z) would leave this
expression unchanged. (No DEPEND declaration is needed here, since f(x,z)
obviously “depends on” Z.)

Once such a rule has been defined for a given operator, any future differentiation
rules for that operator must be defined with the same number of arguments for that
operator, otherwise we get the error message

Incompatible DF rule argument length for <operator>

7.4 INT Operator

INT is an operator in REDUCE for indefinite integration using a combination of
the Risch-Norman algorithm and pattern matching. It is used with the syntax:

INT(EXPRN:algebraic,VAR:kernel):algebraic.

This will return correctly the indefinite integral for expressions comprising poly-
nomials, log functions, exponential functions and tan and atan. The arbitrary con-
stant is not represented. If the integral cannot be done in closed terms, it returns a
formal integral for the answer in one of two ways:

1. It returns the input, INT(...,...) unchanged.

2. It returns an expression involving INTs of some other functions (sometimes
more complicated than the original one, unfortunately).

Rational functions can be integrated when the denominator is factorizable by the
program. In addition it will attempt to integrate expressions involving error funct-
ions, dilogarithms and other trigonometric expressions. In these cases it might not
always succeed in finding the solution, even if one exists.

Examples:

int(log(x),x) -> X*(LOG(X) - 1),
int(eˆx,x) -> E**X.

The program checks that the second argument is a variable and gives an error if it
is not.

7.4. INT OPERATOR 63

Note: If the int operator is called with 4 arguments, REDUCE will implicitly call
the definite integration package (DEFINT) and this package will interpret the third
and fourth arguments as the lower and upper limit of integration, respectively. For
details, consult the documentation on the DEFINT package.

7.4.1 Options

The switch TRINT when on will trace the operation of the algorithm. It produces
a great deal of output in a somewhat illegible form, and is not of much interest to
the general user. It is normally off.

If the switch FAILHARD is on the algorithm will terminate with an error if the
integral cannot be done in closed terms, rather than return a formal integration
form. FAILHARD is normally off.

The switch NOLNR suppresses the use of the linear properties of integration in
cases when the integral cannot be found in closed terms. It is normally off.

7.4.2 Advanced Use

If a function appears in the integrand that is not one of the functions EXP, ERF,
TAN, ATAN, LOG, DILOG then the algorithm will make an attempt to inte-
grate the argument if it can, differentiate it and reach a known function. However
the answer cannot be guaranteed in this case. If a function is known to be alge-
braically independent of this set it can be flagged transcendental by

flag(’(trilog),’transcendental);

in which case this function will be added to the permitted field descriptors for a
genuine decision procedure. If this is done the user is responsible for the mathe-
matical correctness of his actions.

The standard version does not deal with algebraic extensions. Thus integration
of expressions involving square roots and other like things can lead to trouble. A
contributed package that supports integration of functions involving square roots is
available, however (ALGINT, chapter 15.1). In addition there is a definite integra-
tion package, DEFINT(chapter 15.13).

7.4.3 References

A. C. Norman & P. M. A. Moore, “Implementing the New Risch Algorithm”,
Proc. 4th International Symposium on Advanced Comp. Methods in Theor. Phys.,
CNRS, Marseilles, 1977.

64 CHAPTER 7. BUILT-IN PREFIX OPERATORS

S. J. Harrington, “A New Symbolic Integration System in Reduce”, Comp. Journ.
22 (1979) 2.

A. C. Norman & J. H. Davenport, “Symbolic Integration — The Dust Settles?”,
Proc. EUROSAM 79, Lecture Notes in Computer Science 72, Springer-Verlag,
Berlin Heidelberg New York (1979) 398-407.

7.5 LENGTH Operator

LENGTH is a generic operator for finding the length of various objects in the sys-
tem. The meaning depends on the type of the object. In particular, the length
of an algebraic expression is the number of additive top-level terms its expanded
representation.

Examples:

length(a+b) -> 2
length(2) -> 1.

Other objects that support a length operator include arrays, lists and matrices. The
explicit meaning in these cases is included in the description of these objects.

7.6 MAP Operator

The MAP operator applies a uniform evaluation pattern to all members of a com-
posite structure: a matrix, a list, or the arguments of an operator expression. The
evaluation pattern can be a unary procedure, an operator, or an algebraic expression
with one free variable.

It is used with the syntax:

MAP(U:function,V:object)

Here object is a list, a matrix or an operator expression. Function can be one
of the following:

1. the name of an operator for a single argument: the operator is evaluated once
with each element of object as its single argument;

2. an algebraic expression with exactly one free variable, that is a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
object, where the element is substituted for the free variable;

7.7. MKID OPERATOR 65

3. a replacement rule of the form var => rep where var is a variable (a
kernel without a subscript) and rep is an expression that contains var. Rep
is evaluated for each element of object where the element is substituted
for var. Var may be optionally preceded by a tilde.

The rule form for function is needed when more than one free variable occurs.

Examples:

map(abs,{1,-2,a,-a}) -> {1,2,ABS(A),ABS(A)}
map(int(˜w,x), mat((xˆ2,xˆ5),(xˆ4,xˆ5))) ->

[3 6]
[x x]
[---- ----]
[3 6]
[]
[5 6]
[x x]
[---- ----]
[5 6]

map(˜w*6, xˆ2/3 = yˆ3/2 -1) -> 2*Xˆ2=3*(Yˆ3-2)

You can use MAP in nested expressions. However, you cannot apply MAP to a
non-composed object, e.g. an identifier or a number.

7.7 MKID Operator

In many applications, it is useful to create a set of identifiers for naming objects in
a consistent manner. In most cases, it is sufficient to create such names from two
components. The operator MKID is provided for this purpose. Its syntax is:

MKID(U:id,V:id|non-negative integer):id

for example

mkid(a,3) -> A3
mkid(apple,s) -> APPLES

while mkid(a+b,2) gives an error.

The SET operator can be used to give a value to the identifiers created by MKID,
for example

66 CHAPTER 7. BUILT-IN PREFIX OPERATORS

set(mkid(a,3),3);

will give A3 the value 2.

7.8 PF Operator

PF(<exp>,<var>) transforms the expression <exp> into a list of partial frac-
tions with respect to the main variable, <var>. PF does a complete partial fraction
decomposition, and as the algorithms used are fairly unsophisticated (factorization
and the extended Euclidean algorithm), the code may be unacceptably slow in com-
plicated cases.

Example: Given 2/((x+1)ˆ2*(x+2)) in the workspace, pf(ws,x); gives
the result

2 - 2 2
{-------,-------,--------------} .

X + 2 X + 1 2
X + 2*X + 1

If you want the denominators in factored form, use off exp;. Thus, with
2/((x+1)ˆ2*(x+2)) in the workspace, the commands off exp; pf(ws,x);
give the result

2 - 2 2
{-------,-------,----------} .

X + 2 X + 1 2
(X + 1)

To recombine the terms, FOR EACH ...SUM can be used. So with the above list
in the workspace, for each j in ws sum j; returns the result

2

2
(X + 2)*(X + 1)

Alternatively, one can use the operations on lists to extract any desired term.

7.9. SELECT OPERATOR 67

7.9 SELECT Operator

The SELECT operator extracts from a list, or from the arguments of an n–ary
operator, elements corresponding to a boolean predicate. It is used with the syntax:

SELECT(U:function,V:list)

Function can be one of the following forms:

1. the name of an operator for a single argument: the operator is evaluated once
with each element of object as its single argument;

2. an algebraic expression with exactly one free variable, that is a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
〈object〉, where the element is substituted for the free variable;

3. a replacement rule of the form 〈var => rep〉 where var is a variable (a
kernel without subscript) and rep is an expression that contains var. Rep
is evaluated for each element of object where the element is substituted
for var. var may be optionally preceded by a tilde.

The rule form for function is needed when more than one free variable occurs.

The result of evaluating function is interpreted as a boolean value correspond-
ing to the conventions of REDUCE. These values are composed with the leading
operator of the input expression.

Examples:

select(˜w>0 , {1,-1,2,-3,3}) -> {1,2,3}
select(evenp deg(˜w,y),part((x+y)ˆ5,0):=list)

-> {Xˆ5 ,10*Xˆ3*Yˆ2 ,5*X*Yˆ4}
select(evenp deg(˜w,x),2xˆ2+3xˆ3+4xˆ4) -> 4Xˆ4 + 2Xˆ2

68 CHAPTER 7. BUILT-IN PREFIX OPERATORS

7.10 SOLVE Operator

SOLVE is an operator for solving one or more simultaneous algebraic equations.
It is used with the syntax:

SOLVE(EXPRN:algebraic[,VAR:kernel|,VARLIST:list of kernels])
:list.

EXPRN is of the form <expression> or { <expression1>,<expression2>,
. . . }. Each expression is an algebraic equation, or is the difference of the two sides
of the equation. The second argument is either a kernel or a list of kernels represent-
ing the unknowns in the system. This argument may be omitted if the number of
distinct, non-constant, top-level kernels equals the number of unknowns, in which
case these kernels are presumed to be the unknowns.

For one equation, SOLVE recursively uses factorization and decomposition, to-
gether with the known inverses of LOG, SIN, COS, ˆ, ACOS, ASIN, and linear,
quadratic, cubic, quartic, or binomial factors. Solutions of equations built with
exponentials or logarithms are often expressed in terms of Lambert’s W function.
This function is (partially) implemented in the special functions package.

Linear equations are solved by the multi-step elimination method due to Bareiss,
unless the switch CRAMER is on, in which case Cramer’s method is used. The
Bareiss method is usually more efficient unless the system is large and dense.

Non-linear equations are solved using the Groebner basis package. Users should
note that this can be quite a time consuming process.

Examples:

solve(log(sin(x+3))ˆ5 = 8,x);
solve(a*log(sin(x+3))ˆ5 - b, sin(x+3));
solve({a*x+y=3,y=-2},{x,y});

SOLVE returns a list of solutions. If there is one unknown, each solution is an
equation for the unknown. If a complete solution was found, the unknown will
appear by itself on the left-hand side of the equation. On the other hand, if the
solve package could not find a solution, the “solution” will be an equation for the
unknown in terms of the operator ROOT OF. If there are several unknowns, each
solution will be a list of equations for the unknowns. For example,

solve(xˆ2=1,x); -> {X=-1,X=1}

solve(xˆ7-xˆ6+xˆ2=1,x)
6

-> {X=ROOT_OF(X_ + X_ + 1,X_,TAG_1),X=1}

7.10. SOLVE OPERATOR 69

solve({x+3y=7,y-x=1},{x,y}) -> {{X=1,Y=2}}.

The TAG argument is used to uniquely identify those particular solutions. Solution
multiplicities are stored in the global variable ROOT MULTIPLICITIES rather
than the solution list. The value of this variable is a list of the multiplicities of the
solutions for the last call of SOLVE. For example,

solve(xˆ2=2x-1,x); root_multiplicities;

gives the results

{X=1}

{2}

If you want the multiplicities explicitly displayed, the switch MULTIPLICITIES
can be turned on. For example

on multiplicities; solve(xˆ2=2x-1,x);

yields the result

{X=1,X=1}

7.10.1 Handling of Undetermined Solutions

When SOLVE cannot find a solution to an equation, it normally returns an equation
for the relevant indeterminates in terms of the operator ROOT OF. For example, the
expression

solve(cos(x) + log(x),x);

returns the result

{X=ROOT_OF(COS(X_) + LOG(X_),X_,TAG_1)} .

An expression with a top-level ROOT OF operator is implicitly a list with an un-
known number of elements (since we don’t always know how many solutions an
equation has). If a substitution is made into such an expression, closed form solu-
tions can emerge. If this occurs, the ROOT OF construct is replaced by an operator
ONE OF. At this point it is of course possible to transform the result of the original
SOLVE operator expression into a standard SOLVE solution. To effect this, the
operator EXPAND CASES can be used.

70 CHAPTER 7. BUILT-IN PREFIX OPERATORS

The following example shows the use of these facilities:

7.10. SOLVE OPERATOR 71

solve(-a*xˆ3+a*xˆ2+xˆ4-xˆ3-4*xˆ2+4,x);
2 3

{X=ROOT_OF(A*X_ - X_ + 4*X_ + 4,X_,TAG_2),X=1}

sub(a=-1,ws);

{X=ONE_OF({2,-1,-2},TAG_2),X=1}

expand_cases ws;

{X=2,X=-1,X=-2,X=1}

7.10.2 Solutions of Equations Involving Cubics and Quartics

Since roots of cubics and quartics can often be very messy, a switch FULLROOTS
is available, that, when off (the default), will prevent the production of a result in
closed form. The ROOT OF construct will be used in this case instead.

In constructing the solutions of cubics and quartics, trigonometrical forms are used
where appropriate. This option is under the control of a switch TRIGFORM, which
is normally on.

The following example illustrates the use of these facilities:

let xx = solve(xˆ3+x+1,x);

xx;
3

{X=ROOT_OF(X_ + X_ + 1,X_)}

on fullroots;

xx;

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
{X=(I*(SQRT(3)*SIN(-----------------------)

3

72 CHAPTER 7. BUILT-IN PREFIX OPERATORS

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
- COS(-----------------------)))/SQRT(3),

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
X=(- I*(SQRT(3)*SIN(-----------------------)

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
+ COS(-----------------------)))/SQRT(

3

3),

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
2*COS(-----------------------)*I

3
X=----------------------------------}

SQRT(3)

off trigform;

xx;
2/3

{X=(- (SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) - 2 *SQRT(3)*I

2/3 1/3 1/3
+ 2)/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6

*3),

2/3

7.10. SOLVE OPERATOR 73

X=((SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) + 2 *SQRT(3)*I

2/3 1/3 1/3
+ 2)/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6

*3),

2/3 2/3
(SQRT(31) - 3*SQRT(3)) - 2

X=-------------------------------------}
1/3 1/3 1/6

(SQRT(31) - 3*SQRT(3)) *6 *3

7.10.3 Other Options

If SOLVESINGULAR is on (the default setting), degenerate systems such as
x+y=0, 2x+2y=0 will be solved by introducing appropriate arbitrary constants.
The consistent singular equation 0=0 or equations involving functions with multi-
ple inverses may introduce unique new indeterminant kernels ARBCOMPLEX(j),
or ARBINT(j), (j=1,2,...), representing arbitrary complex or integer numbers re-
spectively. To automatically select the principal branches, do off allbranch;
. To avoid the introduction of new indeterminant kernels do OFF ARBVARS –
then no equations are generated for the free variables and their original names are
used to express the solution forms. To suppress solutions of consistent singular
equations do OFF SOLVESINGULAR.

To incorporate additional inverse functions do, for example:

put(’sinh,’inverse,’asinh);
put(’asinh,’inverse,’sinh);

together with any desired simplification rules such as

for all x let sinh(asinh(x))=x, asinh(sinh(x))=x;

For completeness, functions with non-unique inverses should be treated as ˆ, SIN,
and COS are in the SOLVE module source.

Arguments of ASIN and ACOS are not checked to ensure that the absolute value
of the real part does not exceed 1; and arguments of LOG are not checked to ensure

74 CHAPTER 7. BUILT-IN PREFIX OPERATORS

that the absolute value of the imaginary part does not exceed π; but checks (perhaps
involving user response for non-numerical arguments) could be introduced using
LET statements for these operators.

7.10.4 Parameters and Variable Dependency

The proper design of a variable sequence supplied as a second argument to SOLVE
is important for the structure of the solution of an equation system. Any unknown
in the system not in this list is considered totally free. E.g. the call

solve({x=2*z,z=2*y},{z});

produces an empty list as a result because there is no function z = z(x, y) which
fulfills both equations for arbitrary x and y values. In such a case the share variable
requirements displays a set of restrictions for the parameters of the system:

requirements;

{x - 4*y}

The non-existence of a formal solution is caused by a contradiction which disap-
pears only if the parameters of the initial system are set such that all members of
the requirements list take the value zero. For a linear system the set is complete:
a solution of the requirements list makes the initial system solvable. E.g. in the
above case a substitution x = 4y makes the equation set consistent. For a non-
linear system only one inconsistency is detected. If such a system has more than
one inconsistency, you must reduce them one after the other. 1 The set shows you
also the dependency among the parameters: here one of x and y is free and a formal
solution of the system can be computed by adding it to the variable list of solve.
The requirement set is not unique – there may be other such sets.

A system with parameters may have a formal solution, e.g.

solve({x=a*z+1,0=b*z-y},{z,x});

y a*y + b
{{z=---,x=---------}}

b b
1 The difference between linear and non–linear inconsistent systems is based on the algorithms

which produce this information as a side effect when attempting to find a formal solution; example:
solve({x = a, x = b, y = c, y = d}, {x, y} gives a set {a− b, c− d} while solve({x2 = a, x2 =
b, y2 = c, y2 = d}, {x, y} leads to {a− b}.

7.10. SOLVE OPERATOR 75

which is not valid for all possible values of the parameters. The variable
assumptions contains then a list of restrictions: the solutions are valid only
as long as none of these expressions vanishes. Any zero of one of them represents
a special case that is not covered by the formal solution. In the above case the value
is

76 CHAPTER 7. BUILT-IN PREFIX OPERATORS

assumptions;

{b}

which excludes formally the case b = 0; obviously this special parameter value
makes the system singular. The set of assumptions is complete for both, linear and
non–linear systems.

SOLVE rearranges the variable sequence to reduce the (expected) computing time.
This behavior is controlled by the switch varopt, which is on by default. If it is
turned off, the supplied variable sequence is used or the system kernel ordering is
taken if the variable list is omitted. The effect is demonstrated by an example:

s:= {yˆ3+3x=0,xˆ2+yˆ2=1};

solve(s,{y,x});

6 2
{{y=root_of(y_ + 9*y_ - 9,y_),

3
- y

x=-------}}
3

off varopt; solve(s,{y,x});

6 4 2
{{x=root_of(x_ - 3*x_ + 12*x_ - 1,x_),

4 2
x*(- x + 2*x - 10)

y=-----------------------}}
3

In the first case, solve forms the solution as a set of pairs (yi, x(yi)) because the
degree of x is higher – such a rearrangement makes the internal computation of the
Gröbner basis generally faster. For the second case the explicitly given variable
sequence is used such that the solution has now the form (xi, y(xi)). Controlling
the variable sequence is especially important if the system has one or more free
variables. As an alternative to turning off varopt, a partial dependency among
the variables can be declared using the depend statement: solve then rearranges
the variable sequence but keeps any variable ahead of those on which it depends.

7.10. SOLVE OPERATOR 77

on varopt;
s:={aˆ3+b,bˆ2+c}$
solve(s,{a,b,c});

3 6
{{a=arbcomplex(1),b= - a ,c= - a }}

depend a,c; depend b,c; solve(s,{a,b,c});

{{c=arbcomplex(2),

6
a=root_of(a_ + c,a_),

3
b= - a }}

Here solve is forced to put c after a and after b, but there is no obstacle to inter-
changing a and b.

78 CHAPTER 7. BUILT-IN PREFIX OPERATORS

7.11 Even and Odd Operators

An operator can be declared to be even or odd in its first argument by the declara-
tions EVEN and ODD respectively. Expressions involving an operator declared in
this manner are transformed if the first argument contains a minus sign. Any other
arguments are not affected. In addition, if say F is declared odd, then f(0) is
replaced by zero unless F is also declared non zero by the declaration NONZERO.
For example, the declarations

even f1; odd f2;

mean that

f1(-a) -> F1(A)
f2(-a) -> -F2(A)
f1(-a,-b) -> F1(A,-B)
f2(0) -> 0.

To inhibit the last transformation, say nonzero f2;.

7.12 Linear Operators

An operator can be declared to be linear in its first argument over powers of its
second argument. If an operator F is so declared, F of any sum is broken up into
sums of Fs, and any factors that are not powers of the variable are taken outside.
This means that F must have (at least) two arguments. In addition, the second
argument must be an identifier (or more generally a kernel), not an expression.

Example:

If F were declared linear, then

5
f(a*xˆ5+b*x+c,x) -> F(X ,X)*A + F(X,X)*B + F(1,X)*C

More precisely, not only will the variable and its powers remain within the scope
of the F operator, but so will any variable and its powers that had been declared
to DEPEND on the prescribed variable; and so would any expression that contains
that variable or a dependent variable on any level, e.g. cos(sin(x)).

To declare operators F and G to be linear operators, use:

linear f,g;

7.13. NON-COMMUTING OPERATORS 79

The analysis is done of the first argument with respect to the second; any other
arguments are ignored. It uses the following rules of evaluation:

f(0) -> 0
f(-y,x) -> -F(Y,X)
f(y+z,x) -> F(Y,X)+F(Z,X)
f(y*z,x) -> Z*F(Y,X) if Z does not depend on X
f(y/z,x) -> F(Y,X)/Z if Z does not depend on X

To summarize, Y “depends” on the indeterminate X in the above if either of the
following hold:

1. Y is an expression that contains X at any level as a variable, e.g.: cos(sin(x))

2. Any variable in the expression Y has been declared dependent on X by use
of the declaration DEPEND.

The use of such linear operators can be seen in the paper Fox, J.A. and A. C. Hearn,
“Analytic Computation of Some Integrals in Fourth Order Quantum Electrodynam-
ics” Journ. Comp. Phys. 14 (1974) 301-317, which contains a complete listing of
a program for definite integration of some expressions that arise in fourth order
quantum electrodynamics.

7.13 Non-Commuting Operators

An operator can be declared to be non-commutative under multiplication by the
declaration NONCOM.

Example:

After the declaration
noncom u,v;
the expressions u(x)*u(y)-u(y)*u(x) and u(x)*v(y)-v(y)*u(x) will
remain unchanged on simplification, and in particular will not simplify to zero.

Note that it is the operator (U and V in the above example) and not the variable that
has the non-commutative property.

The LET statement may be used to introduce rules of evaluation for such operators.
In particular, the boolean operator ORDP is useful for introducing an ordering on
such expressions.

Example:

The rule

80 CHAPTER 7. BUILT-IN PREFIX OPERATORS

for all x,y such that x neq y and ordp(x,y)
let u(x)*u(y)= u(y)*u(x)+comm(x,y);

would introduce the commutator of u(x) and u(y) for all X and Y. Note that
since ordp(x,x) is true, the equality check is necessary in the degenerate case
to avoid a circular loop in the rule.

7.14 Symmetric and Antisymmetric Operators

An operator can be declared to be symmetric with respect to its arguments by the
declaration SYMMETRIC. For example

symmetric u,v;

means that any expression involving the top level operators U or V will have its
arguments reordered to conform to the internal order used by REDUCE. The user
can change this order for kernels by the command KORDER.

For example, u(x,v(1,2)) would become u(v(2,1),x), since numbers are
ordered in decreasing order, and expressions are ordered in decreasing order of
complexity.

Similarly the declaration ANTISYMMETRIC declares an operator antisymmetric.
For example,

antisymmetric l,m;

means that any expression involving the top level operators L or M will have its
arguments reordered to conform to the internal order of the system, and the sign
of the expression changed if there are an odd number of argument interchanges
necessary to bring about the new order.

For example, l(x,m(1,2)) would become -l(-m(2,1),x) since one inter-
change occurs with each operator. An expression like l(x,x) would also be
replaced by 0.

7.15 Declaring New Prefix Operators

The user may add new prefix operators to the system by using the declaration
OPERATOR. For example:

operator h,g1,arctan;

7.16. DECLARING NEW INFIX OPERATORS 81

adds the prefix operators H, G1 and ARCTAN to the system.

This allows symbols like h(w), h(x,y,z), g1(p+q), arctan(u/v) to
be used in expressions, but no meaning or properties of the operator are implied.
The same operator symbol can be used equally well as a 0-, 1-, 2-, 3-, etc.-place
operator.

To give a meaning to an operator symbol, or express some of its properties, LET
statements can be used, or the operator can be given a definition as a procedure.

If the user forgets to declare an identifier as an operator, the system will prompt the
user to do so in interactive mode, or do it automatically in non-interactive mode.
A diagnostic message will also be printed if an identifier is declared OPERATOR
more than once.

Operators once declared are global in scope, and so can then be referenced any-
where in the program. In other words, a declaration within a block (or a procedure)
does not limit the scope of the operator to that block, nor does the operator go away
on exiting the block (use CLEAR instead for this purpose).

7.16 Declaring New Infix Operators

Users can add new infix operators by using the declarations INFIX and PRECEDENCE.
For example,

infix mm;
precedence mm,-;

The declaration infix mm; would allow one to use the symbol MM as an infix
operator:

a mm b instead of mm(a,b).

The declaration precedence mm,-; says that MM should be inserted into the
infix operator precedence list just after the − operator. This gives it higher prece-
dence than − and lower precedence than * . Thus

a - b mm c - d means a - (b mm c) - d,

while

a * b mm c * d means (a * b) mm (c * d).

Both infix and prefix operators have no transformation properties unless LET state-
ments or procedure declarations are used to assign a meaning.

82 CHAPTER 7. BUILT-IN PREFIX OPERATORS

We should note here that infix operators so defined are always binary:

a mm b mm c means (a mm b) mm c.

7.17 Creating/Removing Variable Dependency

There are several facilities in REDUCE, such as the differentiation operator and
the linear operator facility, that can utilize knowledge of the dependency between
various variables, or kernels. Such dependency may be expressed by the command
DEPEND. This takes an arbitrary number of arguments and sets up a dependency
of the first argument on the remaining arguments. For example,

depend x,y,z;

says that X is dependent on both Y and Z.

depend z,cos(x),y;

says that Z is dependent on COS(X) and Y.

Dependencies introduced by DEPEND can be removed by NODEPEND. The argu-
ments of this are the same as for DEPEND. For example, given the above depen-
dencies,

nodepend z,cos(x);

says that Z is no longer dependent on COS(X), although it remains dependent on
Y.

Chapter 8

Display and Structuring of
Expressions

In this section, we consider a variety of commands and operators that permit the
user to obtain various parts of algebraic expressions and also display their structure
in a variety of forms. Also presented are some additional concepts in the REDUCE
design that help the user gain a better understanding of the structure of the system.

8.1 Kernels

REDUCE is designed so that each operator in the system has an evaluation (or
simplification) function associated with it that transforms the expression into an
internal canonical form. This form, which bears little resemblance to the original
expression, is described in detail in Hearn, A. C., “REDUCE 2: A System and Lan-
guage for Algebraic Manipulation,” Proc. of the Second Symposium on Symbolic
and Algebraic Manipulation, ACM, New York (1971) 128-133.

The evaluation function may transform its arguments in one of two alternative
ways. First, it may convert the expression into other operators in the system, leav-
ing no functions of the original operator for further manipulation. This is in a sense
true of the evaluation functions associated with the operators +, * and / , for ex-
ample, because the canonical form does not include these operators explicitly. It
is also true of an operator such as the determinant operator DET because the rel-
evant evaluation function calculates the appropriate determinant, and the operator
DET no longer appears. On the other hand, the evaluation process may leave some
residual functions of the relevant operator. For example, with the operator COS,
a residual expression like COS(X) may remain after evaluation unless a rule for
the reduction of cosines into exponentials, for example, were introduced. These
residual functions of an operator are termed kernels and are stored uniquely like

83

84 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

variables. Subsequently, the kernel is carried through the calculation as a variable
unless transformations are introduced for the operator at a later stage.

In those cases where the evaluation process leaves an operator expression with
non-trivial arguments, the form of the argument can vary depending on the state
of the system at the point of evaluation. Such arguments are normally produced in
expanded form with no terms factored or grouped in any way. For example, the
expression cos(2*x+2*y) will normally be returned in the same form. If the
argument 2*x+2*y were evaluated at the top level, however, it would be printed
as 2*(X+Y). If it is desirable to have the arguments themselves in a similar form,
the switch INTSTR (for “internal structure”), if on, will cause this to happen.

In cases where the arguments of the kernel operators may be reordered, the sys-
tem puts them in a canonical order, based on an internal intrinsic ordering of the
variables. However, some commands allow arguments in the form of kernels, and
the user has no way of telling what internal order the system will assign to these
arguments. To resolve this difficulty, we introduce the notion of a kernel form as
an expression that transforms to a kernel on evaluation.

Examples of kernel forms are:

a
cos(x*y)
log(sin(x))

whereas

a*b
(a+b)ˆ4

are not.

We see that kernel forms can usually be used as generalized variables, and most
algebraic properties associated with variables may also be associated with kernels.

8.2 The Expression Workspace

Several mechanisms are available for saving and retrieving previously evaluated
expressions. The simplest of these refers to the last algebraic expression simpli-
fied. When an assignment of an algebraic expression is made, or an expression is
evaluated at the top level, (i.e., not inside a compound statement or procedure) the
results of the evaluation are automatically saved in a variable WS that we shall refer
to as the workspace. (More precisely, the expression is assigned to the variable WS
that is then available for further manipulation.)

8.3. OUTPUT OF EXPRESSIONS 85

Example:

If we evaluate the expression (x+y)ˆ2 at the top level and next wish to differen-
tiate it with respect to Y, we can simply say

df(ws,y);

to get the desired answer.

If the user wishes to assign the workspace to a variable or expression for later use,
the SAVEAS statement can be used. It has the syntax

SAVEAS <expression>

For example, after the differentiation in the last example, the workspace holds the
expression 2*x+2*y. If we wish to assign this to the variable Z we can now say

saveas z;

If the user wishes to save the expression in a form that allows him to use some of
its variables as arbitrary parameters, the FOR ALL command can be used.

Example:

for all x saveas h(x);

with the above expression would mean that h(z) evaluates to 2*Y+2*Z.

A further method for referencing more than the last expression is described in the
section on interactive use of REDUCE.

8.3 Output of Expressions

A considerable degree of flexibility is available in REDUCE in the printing of
expressions generated during calculations. No explicit format statements are sup-
plied, as these are in most cases of little use in algebraic calculations, where the size
of output or its composition is not generally known in advance. Instead, REDUCE
provides a series of mode options to the user that should enable him to produce his
output in a comprehensible and possibly pleasing form.

The most extreme option offered is to suppress the output entirely from any top
level evaluation. This is accomplished by turning off the switch OUTPUT which is
normally on. It is useful for limiting output when loading large files or producing
“clean” output from the prettyprint programs.

In most circumstances, however, we wish to view the output, so we need to know

86 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

how to format it appropriately. As we mentioned earlier, an algebraic expression
is normally printed in an expanded form, filling the whole output line with terms.
Certain output declarations, however, can be used to affect this format. To begin
with, we look at an operator for changing the length of the output line.

8.3.1 LINELENGTH Operator

This operator is used with the syntax

LINELENGTH(NUM:integer):integer

and sets the output line length to the integer NUM. It returns the previous output line
length (so that it can be stored for later resetting of the output line if needed).

8.3.2 Output Declarations

We now describe a number of switches and declarations that are available for con-
trolling output formats. It should be noted, however, that the transformation of
large expressions to produce these varied output formats can take a lot of comput-
ing time and space. If a user wishes to speed up the printing of the output in such
cases, he can turn off the switch PRI. If this is done, then output is produced in
one fixed format, which basically reflects the internal form of the expression, and
none of the options below apply. PRI is normally on.

With PRI on, the output declarations and switches available are as follows:

ORDER Declaration

The declaration ORDER may be used to order variables on output. The syntax is:

order v1,...vn;

where the vi are kernels. Thus,

order x,y,z;

orders X ahead of Y, Y ahead of Z and all three ahead of other variables not given
an order. order nil; resets the output order to the system default. The order
of variables may be changed by further calls of ORDER, but then the reordered
variables would have an order lower than those in earlier ORDER calls. Thus,

order x,y,z;
order y,x;

8.3. OUTPUT OF EXPRESSIONS 87

would order Z ahead of Y and X. The default ordering is usually alphabetic.

FACTOR Declaration

This declaration takes a list of identifiers or kernels as argument. FACTOR is not
a factoring command (use FACTORIZE or the FACTOR switch for this purpose);
rather it is a separation command. All terms involving fixed powers of the declared
expressions are printed as a product of the fixed powers and a sum of the rest of the
terms.

All expressions involving a given prefix operator may also be factored by putting
the operator name in the list of factored identifiers. For example:

factor x,cos,sin(x);

causes all powers of X and SIN(X) and all functions of COS to be factored.

Note that FACTOR does not affect the order of its arguments. You should also use
ORDER if this is important.

The declaration remfac v1,...,vn; removes the factoring flag from the ex-
pressions v1 through vn.

8.3.3 Output Control Switches

In addition to these declarations, the form of the output can be modified by switch-
ing various output control switches using the declarations ON and OFF. We shall
illustrate the use of these switches by an example, namely the printing of the ex-
pression

xˆ2*(yˆ2+2*y)+x*(yˆ2+z)/(2*a) .

The relevant switches are as follows:

ALLFAC Switch

This switch will cause the system to search the whole expression, or any sub-
expression enclosed in parentheses, for simple multiplicative factors and print them
outside the parentheses. Thus our expression with ALLFAC off will print as

2 2 2 2
(2*X *Y *A + 4*X *Y*A + X*Y + X*Z)/(2*A)

and with ALLFAC on as

88 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

2 2
X*(2*X*Y *A + 4*X*Y*A + Y + Z)/(2*A) .

ALLFAC is normally on, and is on in the following examples, except where other-
wise stated.

DIV Switch

This switch makes the system search the denominator of an expression for simple
factors that it divides into the numerator, so that rational fractions and negative
powers appear in the output. With DIV on, our expression would print as

2 2 (-1) (-1)
X*(X*Y + 2*X*Y + 1/2*Y *A + 1/2*A *Z) .

DIV is normally off.

LIST Switch

This switch causes the system to print each term in any sum on a separate line.
With LIST on, our expression prints as

2
X*(2*X*Y *A

+ 4*X*Y*A

2
+ Y

+ Z)/(2*A) .

LIST is normally off.

NOSPLIT Switch

Under normal circumstances, the printing routines try to break an expression across
lines at a natural point. This is a fairly expensive process. If you are not overly
concerned about where the end-of-line breaks come, you can speed up the printing
of expressions by turning off the switch NOSPLIT. This switch is normally on.

8.3. OUTPUT OF EXPRESSIONS 89

RAT Switch

This switch is only useful with expressions in which variables are factored with
FACTOR. With this mode, the overall denominator of the expression is printed
with each factored sub-expression. We assume a prior declaration factor x; in
the following output. We first print the expression with RAT off:

2 2
(2*X *Y*A*(Y + 2) + X*(Y + Z))/(2*A) .

With RAT on the output becomes:

90 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

2 2
X *Y*(Y + 2) + X*(Y + Z)/(2*A) .

RAT is normally off.

Next, if we leave X factored, and turn on both DIV and RAT, the result becomes

2 (-1) 2
X *Y*(Y + 2) + 1/2*X*A *(Y + Z) .

Finally, with X factored, RAT on and ALLFAC off we retrieve the original structure

2 2 2
X *(Y + 2*Y) + X*(Y + Z)/(2*A) .

RATPRI Switch

If the numerator and denominator of an expression can each be printed in one line,
the output routines will print them in a two dimensional notation, with numerator
and denominator on separate lines and a line of dashes in between. For example,
(a+b)/2 will print as

A + B

2

Turning this switch off causes such expressions to be output in a linear form.

REVPRI Switch

The normal ordering of terms in output is from highest to lowest power. In some
situations (e.g., when a power series is output), the opposite ordering is more con-
venient. The switch REVPRI if on causes such a reverse ordering of terms. For
example, the expression y*(x+1)ˆ2+(y+3)ˆ2 will normally print as

2 2
X *Y + 2*X*Y + Y + 7*Y + 9

whereas with REVPRI on, it will print as

2 2
9 + 7*Y + Y + 2*X*Y + X *Y.

8.3. OUTPUT OF EXPRESSIONS 91

8.3.4 WRITE Command

In simple cases no explicit output command is necessary in REDUCE, since the
value of any expression is automatically printed if a semicolon is used as a delim-
iter. There are, however, several situations in which such a command is useful.

In a FOR, WHILE, or REPEAT statement it may be desired to output something
each time the statement within the loop construct is repeated.

It may be desired for a procedure to output intermediate results or other information
while it is running. It may be desired to have results labeled in special ways,
especially if the output is directed to a file or device other than the terminal.

The WRITE command consists of the word WRITE followed by one or more items
separated by commas, and followed by a terminator. There are three kinds of items
that can be used:

1. Expressions (including variables and constants). The expression is evalu-
ated, and the result is printed out.

2. Assignments. The expression on the right side of the := operator is evalu-
ated, and is assigned to the variable on the left; then the symbol on the left is
printed, followed by a “:=”, followed by the value of the expression on the
right – almost exactly the way an assignment followed by a semicolon prints
out normally. (The difference is that if the WRITE is in a FOR statement and
the left-hand side of the assignment is an array position or something similar
containing the variable of the FOR iteration, then the value of that variable is
inserted in the printout.)

3. Arbitrary strings of characters, preceded and followed by double-quote
marks (e.g., "string").

The items specified by a single WRITE statement print side by side on one line.
(The line is broken automatically if it is too long.) Strings print exactly as quoted.
The WRITE command itself however does not return a value.

The print line is closed at the end of a WRITE command evaluation. Therefore the
command WRITE ""; (specifying nothing to be printed except the empty string)
causes a line to be skipped.

Examples:

1. If A is X+5, B is itself, C is 123, M is an array, and Q=3, then

write m(q):=a," ",b/c," THANK YOU";

will set M(3) to x+5 and print

92 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

M(Q) := X + 5 B/123 THANK YOU

The blanks between the 5 and B, and the 3 and T, come from the blanks in
the quoted strings.

2. To print a table of the squares of the integers from 1 to 20:

for i:=1:20 do write i," ",iˆ2;

3. To print a table of the squares of the integers from 1 to 20, and at the same
time store them in positions 1 to 20 of an array A:

for i:=1:20 do <<a(i):=iˆ2; write i," ",a(i)>>;

This will give us two columns of numbers. If we had used

for i:=1:20 do write i," ",a(i):=iˆ2;

we would also get A(i) := repeated on each line.

4. The following more complete example calculates the famous f and g se-
ries, first reported in Sconzo, P., LeSchack, A. R., and Tobey, R., “Symbolic
Computation of f and g Series by Computer”, Astronomical Journal 70 (May
1965).

x1:= -sig*(mu+2*eps)$
x2:= eps - 2*sigˆ2$
x3:= -3*mu*sig$
f:= 1$
g:= 0$
for i:= 1 step 1 until 10 do begin

f1:= -mu*g+x1*df(f,eps)+x2*df(f,sig)+x3*df(f,mu);
write "f(",i,") := ",f1;
g1:= f+x1*df(g,eps)+x2*df(g,sig)+x3*df(g,mu);
write "g(",i,") := ",g1;
f:=f1$
g:=g1$
end;

A portion of the output, to illustrate the printout from the WRITE command,
is as follows:

... <prior output> ...

2

8.3. OUTPUT OF EXPRESSIONS 93

F(4) := MU*(3*EPS - 15*SIG + MU)

G(4) := 6*SIG*MU

2
F(5) := 15*SIG*MU*(- 3*EPS + 7*SIG - MU)

2
G(5) := MU*(9*EPS - 45*SIG + MU)

... <more output> ...

8.3.5 Suppression of Zeros

It is sometimes annoying to have zero assignments (i.e. assignments of the form
<expression> := 0) printed, especially in printing large arrays with many
zero elements. The output from such assignments can be suppressed by turning on
the switch NERO.

8.3.6 FORTRAN Style Output Of Expressions

It is naturally possible to evaluate expressions numerically in REDUCE by giving
all variables and sub-expressions numerical values. However, as we pointed out
elsewhere the user must declare real arithmetical operation by turning on the switch
ROUNDED. However, it should be remembered that arithmetic in REDUCE is not
particularly fast, since results are interpreted rather than evaluated in a compiled
form. The user with a large amount of numerical computation after all necessary
algebraic manipulations have been performed is therefore well advised to perform
these calculations in a FORTRAN or similar system. For this purpose, REDUCE
offers facilities for users to produce FORTRAN compatible files for numerical pro-
cessing.

First, when the switch FORT is on, the system will print expressions in a FOR-
TRAN notation. Expressions begin in column seven. If an expression extends over
one line, a continuation mark (.) followed by a blank appears on subsequent cards.
After a certain number of lines have been produced (according to the value of the
variable CARD NO), a new expression is started. If the expression printed arises
from an assignment to a variable, the variable is printed as the name of the expres-
sion. Otherwise the expression is given the default name ANS. An error occurs if
identifiers or numbers are outside the bounds permitted by FORTRAN.

A second option is to use the WRITE command to produce other programs.

94 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

Example:

The following REDUCE statements

on fort;
out "forfil";
write "C this is a fortran program";
write " 1 format(e13.5)";
write " u=1.23";
write " v=2.17";
write " w=5.2";
x:=(u+v+w)ˆ11;
write "C it was foolish to expand this expression";
write " print 1,x";
write " end";
shut "forfil";
off fort;

will generate a file forfil that contains:

c this is a fortran program
1 format(e13.5)

u=1.23
v=2.17
w=5.2
ans1=1320.*u**3*v*w**7+165.*u**3*w**8+55.*u**2*v**9+495.*u

. **2*v**8*w+1980.*u**2*v**7*w**2+4620.*u**2*v**6*w**3+

. 6930.*u**2*v**5*w**4+6930.*u**2*v**4*w**5+4620.*u**2*v**3*

. w**6+1980.*u**2*v**2*w**7+495.*u**2*v*w**8+55.*u**2*w**9+

. 11.*u*v**10+110.*u*v**9*w+495.*u*v**8*w**2+1320.*u*v**7*w

. **3+2310.*u*v**6*w**4+2772.*u*v**5*w**5+2310.*u*v**4*w**6

. +1320.*u*v**3*w**7+495.*u*v**2*w**8+110.*u*v*w**9+11.*u*w

. **10+v**11+11.*v**10*w+55.*v**9*w**2+165.*v**8*w**3+330.*

. v**7*w**4+462.*v**6*w**5+462.*v**5*w**6+330.*v**4*w**7+

. 165.*v**3*w**8+55.*v**2*w**9+11.*v*w**10+w**11
x=u**11+11.*u**10*v+11.*u**10*w+55.*u**9*v**2+110.*u**9*v*
. w+55.*u**9*w**2+165.*u**8*v**3+495.*u**8*v**2*w+495.*u**8
. *v*w**2+165.*u**8*w**3+330.*u**7*v**4+1320.*u**7*v**3*w+
. 1980.*u**7*v**2*w**2+1320.*u**7*v*w**3+330.*u**7*w**4+462.
. *u**6*v**5+2310.*u**6*v**4*w+4620.*u**6*v**3*w**2+4620.*u
. **6*v**2*w**3+2310.*u**6*v*w**4+462.*u**6*w**5+462.*u**5*
. v**6+2772.*u**5*v**5*w+6930.*u**5*v**4*w**2+9240.*u**5*v
. **3*w**3+6930.*u**5*v**2*w**4+2772.*u**5*v*w**5+462.*u**5
. *w**6+330.*u**4*v**7+2310.*u**4*v**6*w+6930.*u**4*v**5*w
. **2+11550.*u**4*v**4*w**3+11550.*u**4*v**3*w**4+6930.*u**
. 4*v**2*w**5+2310.*u**4*v*w**6+330.*u**4*w**7+165.*u**3*v
. **8+1320.*u**3*v**7*w+4620.*u**3*v**6*w**2+9240.*u**3*v**

8.3. OUTPUT OF EXPRESSIONS 95

. 5*w**3+11550.*u**3*v**4*w**4+9240.*u**3*v**3*w**5+4620.*u

. **3*v**2*w**6+ans1
c it was foolish to expand this expression

print 1,x
end

If the arguments of a WRITE statement include an expression that requires con-
tinuation records, the output will need editing, since the output routine prints the
arguments of WRITE sequentially, and the continuation mechanism therefore gen-
erates its auxiliary variables after the preceding expression has been printed.

Finally, since there is no direct analog of list in FORTRAN, a comment line of the
form

c ***** invalid fortran construct (list) not printed

will be printed if you try to print a list with FORT on.

FORTRAN Output Options

There are a number of methods available to change the default format of the FOR-
TRAN output.

The breakup of the expression into subparts is such that the number of continuation
lines produced is less than a given number. This number can be modified by the
assignment

card_no := <number>;

where <number> is the total number of cards allowed in a statement. The default
value of CARD NO is 20.

The width of the output expression is also adjustable by the assignment

fort_width := <integer>;

which sets the total width of a given line to <integer>. The initial FORTRAN
output width is 70.

REDUCE automatically inserts a decimal point after each isolated integer coeffi-
cient in a FORTRAN expression (so that, for example, 4 becomes 4.). To prevent
this, set the PERIOD mode switch to OFF.

FORTRAN output is normally produced in lower case. If upper case is desired, the
switch FORTUPPER should be turned on.

Finally, the default name ANS assigned to an unnamed expression and its subparts

96 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

can be changed by the operator VARNAME. This takes a single identifier as argu-
ment, which then replaces ANS as the expression name. The value of VARNAME is
its argument.

Further facilities for the production of FORTRAN and other language output are
provided by the SCOPE and GENTRAN packagesdescribed in chapters 15.20 and
15.45.

8.3.7 Saving Expressions for Later Use as Input

It is often useful to save an expression on an external file for use later as input
in further calculations. The commands for opening and closing output files are
explained elsewhere. However, we see in the examples on output of expressions
that the standard “natural” method of printing expressions is not compatible with
the input syntax. So to print the expression in an input compatible form we must
inhibit this natural style by turning off the switch NAT. If this is done, a dollar sign
will also be printed at the end of the expression.

Example:

The following sequence of commands

off nat; out "out"; x := (y+z)ˆ2; write "end";
shut "out"; on nat;

will generate a file out that contains

X := Y**2 + 2*Y*Z + Z**2$
END$

8.3.8 Displaying Expression Structure

In those cases where the final result has a complicated form, it is often convenient
to display the skeletal structure of the answer. The operator STRUCTR, that takes
a single expression as argument, will do this for you. Its syntax is:

STRUCTR(EXPRN:algebraic[,ID1:identifier[,ID2:identifier]]);

The structure is printed effectively as a tree, in which the subparts are laid out with
auxiliary names. If the optional ID1 is absent, the auxiliary names are prefixed by
the root ANS. This root may be changed by the operator VARNAME. If the optional
ID1 is present, and is an array name, the subparts are named as elements of that
array, otherwise ID1 is used as the root prefix. (The second optional argument
ID2 is explained later.)

8.3. OUTPUT OF EXPRESSIONS 97

The EXPRN can be either a scalar or a matrix expression. Use of any other will
result in an error.

Example:

Let us suppose that the workspace contains ((A+B)ˆ2+C)ˆ3+D. Then the input
STRUCTR WS; will (with EXP off) result in the output:

98 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

ANS3

where

3
ANS3 := ANS2 + D

2
ANS2 := ANS1 + C

ANS1 := A + B

The workspace remains unchanged after this operation, since STRUCTR in the de-
fault situation returns no value (if STRUCTR is used as a sub-expression, its value
is taken to be 0). In addition, the sub-expressions are normally only displayed and
not retained. If you wish to access the sub-expressions with their displayed names,
the switch SAVESTRUCTR should be turned on. In this case, STRUCTR returns a
list whose first element is a representation for the expression, and subsequent ele-
ments are the sub-expression relations. Thus, with SAVESTRUCTR on, STRUCTR
WS in the above example would return

3 2
{ANS3,ANS3=ANS2 + D,ANS2=ANS1 + C,ANS1=A + B}

The PART operator can be used to retrieve the required parts of the expression. For
example, to get the value of ANS2 in the above, one could say:

part(ws,3,2);

If FORT is on, then the results are printed in the reverse order; the algorithm in fact
guaranteeing that no sub-expression will be referenced before it is defined. The
second optional argument ID2 may also be used in this case to name the actual
expression (or expressions in the case of a matrix argument).

Example:

Let us suppose that M, a 2 by 1 matrix, contains the elements ((a+b)ˆ2 + c)ˆ3
+ d and (a + b)*(c + d) respectively, and that V has been declared to be an
array. With EXP off and FORT on, the statement structr(2*m,v,k); will
result in the output

V(1)=A+B
V(2)=V(1)**2+C
V(3)=V(2)**3+D
V(4)=C+D

8.4. CHANGING THE INTERNAL ORDER OF VARIABLES 99

K(1,1)=2.*V(3)
K(2,1)=2.*V(1)*V(4)

8.4 Changing the Internal Order of Variables

The internal ordering of variables (more specifically kernels) can have a significant
effect on the space and time associated with a calculation. In its default state, RE-
DUCE uses a specific order for this which may vary between sessions. However,
it is possible for the user to change this internal order by means of the declaration
KORDER. The syntax for this is:

korder v1,...,vn;

where the Vi are kernels. With this declaration, the Vi are ordered internally ahead
of any other kernels in the system. V1 has the highest order, V2 the next highest,
and so on. A further call of KORDER replaces a previous one. KORDER NIL;
resets the internal order to the system default.

Unlike the ORDER declaration, that has a purely cosmetic effect on the way results
are printed, the use of KORDER can have a significant effect on computation time.
In critical cases then, the user can experiment with the ordering of the variables
used to determine the optimum set for a given problem.

8.5 Obtaining Parts of Algebraic Expressions

There are many occasions where it is desirable to obtain a specific part of an ex-
pression, or even change such a part to another expression. A number of operators
are available in REDUCE for this purpose, and will be described in this section. In
addition, operators for obtaining specific parts of polynomials and rational funct-
ions (such as a denominator) are described in another section.

8.5.1 COEFF Operator

Syntax:

COEFF(EXPRN:polynomial,VAR:kernel)

COEFF is an operator that partitions EXPRN into its various coefficients with re-
spect to VAR and returns them as a list, with the coefficient independent of VAR
first.

100 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

Under normal circumstances, an error results if EXPRN is not a polynomial in VAR,
although the coefficients themselves can be rational as long as they do not depend
on VAR. However, if the switch RATARG is on, denominators are not checked for
dependence on VAR, and are taken to be part of the coefficients.

Example:

coeff((yˆ2+z)ˆ3/z,y);

returns the result

2
{Z ,0,3*Z,0,3,0,1/Z}.

whereas

coeff((yˆ2+z)ˆ3/y,y);

gives an error if RATARG is off, and the result

3 2
{Z /Y,0,3*Z /Y,0,3*Z/Y,0,1/Y}

if RATARG is on.

The length of the result of COEFF is the highest power of VAR encountered plus
1. In the above examples it is 7. In addition, the variable HIGH POW is set to
the highest non-zero power found in EXPRN during the evaluation, and LOW POW
to the lowest non-zero power, or zero if there is a constant term. If EXPRN is a

constant, then HIGH POW and LOW POW are both set to zero.

8.5.2 COEFFN Operator

The COEFFN operator is designed to give the user a particular coefficient of a vari-
able in a polynomial, as opposed to COEFF that returns all coefficients. COEFFN
is used with the syntax

COEFFN(EXPRN:polynomial,VAR:kernel,N:integer)

It returns the nth coefficient of VAR in the polynomial EXPRN.

8.5.3 PART Operator

Syntax:

8.5. OBTAINING PARTS OF ALGEBRAIC EXPRESSIONS 101

PART(EXPRN:algebraic[,INTEXP:integer])

This operator works on the form of the expression as printed or as it would have
been printed at that point in the calculation bearing in mind all the relevant switch
settings at that point. The reader therefore needs some familiarity with the way
that expressions are represented in prefix form in REDUCE to use these operators
effectively. Furthermore, it is assumed that PRI is ON at that point in the calcula-
tion. The reason for this is that with PRI off, an expression is printed by walking
the tree representing the expression internally. To save space, it is never actually
transformed into the equivalent prefix expression as occurs when PRI is on. How-
ever, the operations on polynomials described elsewhere can be equally well used
in this case to obtain the relevant parts.

The evaluation proceeds recursively down the integer expression list. In other
words,

PART(<expression>,<integer1>,<integer2>)
-> PART(PART(<expression>,<integer1>),<integer2>)

and so on, and

PART(<expression>) -> <expression>.

INTEXP can be any expression that evaluates to an integer. If the integer is pos-
itive, then that term of the expression is found. If the integer is 0, the operator
is returned. Finally, if the integer is negative, the counting is from the tail of the
expression rather than the head.

For example, if the expression a+b is printed as A+B (i.e., the ordering of the
variables is alphabetical), then

part(a+b,2) -> B
part(a+b,-1) -> B

and
part(a+b,0) -> PLUS

An operator ARGLENGTH is available to determine the number of arguments of the
top level operator in an expression. If the expression does not contain a top level
operator, then −1 is returned. For example,

arglength(a+b+c) -> 3
arglength(f()) -> 0
arglength(a) -> -1

102 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

8.5.4 Substituting for Parts of Expressions

PART may also be used to substitute for a given part of an expression. In this case,
the PART construct appears on the left-hand side of an assignment statement, and
the expression to replace the given part on the right-hand side.

For example, with the normal settings of the REDUCE switches:

xx := a+b;
part(xx,2) := c; -> A+C
part(c+d,0) := -; -> C-D

Note that xx in the above is not changed by this substitution. In addition, un-
like expressions such as array and matrix elements that have an instant evaluation
property, the values of part(xx,2) and part(c+d,0) are also not changed.

Chapter 9

Polynomials and Rationals

Many operations in computer algebra are concerned with polynomials and rational
functions. In this section, we review some of the switches and operators available
for this purpose. These are in addition to those that work on general expressions
(such as DF and INT) described elsewhere. In the case of operators, the arguments
are first simplified before the operations are applied. In addition, they operate
only on arguments of prescribed types, and produce a type mismatch error if given
arguments which cannot be interpreted in the required mode with the current switch
settings. For example, if an argument is required to be a kernel and a/2 is used
(with no other rules for A), an error

A/2 invalid as kernel

will result.

With the exception of those that select various parts of a polynomial or rational
function, these operations have potentially significant effects on the space and time
associated with a given calculation. The user should therefore experiment with
their use in a given calculation in order to determine the optimum set for a given
problem.

One such operation provided by the system is an operator LENGTH which returns
the number of top level terms in the numerator of its argument. For example,

length ((a+b+c)ˆ3/(c+d));

has the value 10. To get the number of terms in the denominator, one would first
select the denominator by the operator DEN and then call LENGTH, as in

length den ((a+b+c)ˆ3/(c+d));

103

104 CHAPTER 9. POLYNOMIALS AND RATIONALS

Other operations currently supported, the relevant switches and operators, and the
required argument and value modes of the latter, follow.

9.1 Controlling the Expansion of Expressions

The switch EXP controls the expansion of expressions. If it is off, no expansion of
powers or products of expressions occurs. Users should note however that in this
case results come out in a normal but not necessarily canonical form. This means
that zero expressions simplify to zero, but that two equivalent expressions need not
necessarily simplify to the same form.

Example: With EXP on, the two expressions

(a+b)*(a+2*b)

and

aˆ2+3*a*b+2*bˆ2

will both simplify to the latter form. With EXP off, they would remain unchanged,
unless the complete factoring (ALLFAC) option were in force. EXP is normally
on.

Several operators that expect a polynomial as an argument behave differently when
EXP is off, since there is often only one term at the top level. For example, with
EXP off

length((a+b+c)ˆ3/(c+d));

returns the value 1.

9.2 Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials that
have integer coefficients, finding all factors that also have integer coefficients. The
package for doing this was written by Dr. Arthur C. Norman and Ms. P. Mary Ann
Moore at The University of Cambridge. It is described in P. M. A. Moore and A.
C. Norman, “Implementing a Polynomial Factorization and GCD Package”, Proc.
SYMSAC ’81, ACM (New York) (1981), 109-116.

The easiest way to use this facility is to turn on the switch FACTOR, which causes
all expressions to be output in a factored form. For example, with FACTOR on, the
expression Aˆ2-Bˆ2 is returned as (A+B)*(A-B).

9.2. FACTORIZATION OF POLYNOMIALS 105

It is also possible to factorize a given expression explicitly. The operator
FACTORIZE that invokes this facility is used with the syntax

FACTORIZE(EXPRN:polynomial[,INTEXP:prime integer]):list,

the optional argument of which will be described later. Thus to find and display all
factors of the cyclotomic polynomial x105 − 1, one could write:

factorize(xˆ105-1);

The result is a list of factor,exponent pairs. In the above example, there is no overall
numerical factor in the result, so the results will consist only of polynomials in x.
The number of such polynomials can be found by using the operator LENGTH. If
there is a numerical factor, as in factorizing 12x2 − 12, that factor will appear as
the first member of the result. It will however not be factored further. Prime factors
of such numbers can be found, using a probabilistic algorithm, by turning on the
switch IFACTOR. For example,

on ifactor; factorize(12xˆ2-12);

would result in the output

{{2,2},{3,1},{X + 1,1},{X - 1,1}}.

If the first argument of FACTORIZE is an integer, it will be decomposed into its
prime components, whether or not IFACTOR is on.

Note that the IFACTOR switch only affects the result of FACTORIZE. It has no
effect if the FACTOR switch is also on.

The order in which the factors occur in the result (with the exception of a possi-
ble overall numerical coefficient which comes first) can be system dependent and
should not be relied on. Similarly it should be noted that any pair of individ-
ual factors can be negated without altering their product, and that REDUCE may
sometimes do that.

The factorizer works by first reducing multivariate problems to univariate ones and
then solving the univariate ones modulo small primes. It normally selects both
evaluation points and primes using a random number generator that should lead
to different detailed behavior each time any particular problem is tackled. If, for
some reason, it is known that a certain (probably univariate) factorization can be
performed effectively with a known prime, P say, this value of P can be handed to
FACTORIZE as a second argument. An error will occur if a non-prime is provided
to FACTORIZE in this manner. It is also an error to specify a prime that divides
the discriminant of the polynomial being factored, but users should note that this
condition is not checked by the program, so this capability should be used with

106 CHAPTER 9. POLYNOMIALS AND RATIONALS

care.

Factorization can be performed over a number of polynomial coefficient domains
in addition to integers. The particular description of the relevant domain should
be consulted to see if factorization is supported. For example, the following state-
ments will factorize x4 + 1 modulo 7:

setmod 7;
on modular;
factorize(xˆ4+1);

The factorization module is provided with a trace facility that may be useful as a
way of monitoring progress on large problems, and of satisfying curiosity about the
internal workings of the package. The most simple use of this is enabled by issuing
the REDUCE command on trfac; . Following this, all calls to the factorizer
will generate informative messages reporting on such things as the reduction of
multivariate to univariate cases, the choice of a prime and the reconstruction of
full factors from their images. Further levels of detail in the trace are intended
mainly for system tuners and for the investigation of suspected bugs. For example,
TRALLFAC gives tracing information at all levels of detail. The switch that can
be set by on timings; makes it possible for one who is familiar with the algo-
rithms used to determine what part of the factorization code is consuming the most
resources. on overview; reduces the amount of detail presented in other forms
of trace. Other forms of trace output are enabled by directives of the form

symbolic set!-trace!-factor(<number>,<filename>);

where useful numbers are 1, 2, 3 and 100, 101, This facility is intended to make
it possible to discover in fairly great detail what just some small part of the code has
been doing — the numbers refer mainly to depths of recursion when the factorizer
calls itself, and to the split between its work forming and factorizing images and
reconstructing full factors from these. If NIL is used in place of a filename the
trace output requested is directed to the standard output stream. After use of this
trace facility the generated trace files should be closed by calling

symbolic close!-trace!-files();

NOTE: Using the factorizer with MCD off will result in an error.

9.3 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factors in the numer-
ators and denominators of expressions, at the option of the user. The system will

9.3. CANCELLATION OF COMMON FACTORS 107

perform this greatest common divisor computation if the switch GCD is on. (GCD
is normally off.)

A check is automatically made, however, for common variable and numerical prod-
ucts in the numerators and denominators of expressions, and the appropriate can-
cellations made.

When GCD is on, and EXP is off, a check is made for square free factors in an
expression. This includes separating out and independently checking the content
of a given polynomial where appropriate. (For an explanation of these terms, see
Anthony C. Hearn, “Non-Modular Computation of Polynomial GCDs Using Trial
Division”, Proc. EUROSAM 79, published as Lecture Notes on Comp. Science,
Springer-Verlag, Berlin, No 72 (1979) 227-239.)

Example: With EXP off and GCD on, the polynomial a*c+a*d+b*c+b*d would
be returned as (A+B)*(C+D).

Under normal circumstances, GCDs are computed using an algorithm described in
the above paper. It is also possible in REDUCE to compute GCDs using an al-
ternative algorithm, called the EZGCD Algorithm, which uses modular arithmetic.
The switch EZGCD, if on in addition to GCD, makes this happen.

In non-trivial cases, the EZGCD algorithm is almost always better than the basic
algorithm, often by orders of magnitude. We therefore strongly advise users to
use the EZGCD switch where they have the resources available for supporting the
package.

For a description of the EZGCD algorithm, see J. Moses and D.Y.Y. Yun, “The EZ
GCD Algorithm”, Proc. ACM 1973, ACM, New York (1973) 159-166.

NOTE: This package shares code with the factorizer, so a certain amount of trace
information can be produced using the factorizer trace switches.

9.3.1 Determining the GCD of Two Polynomials

This operator, used with the syntax

GCD(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the greatest common divisor of the two polynomials EXPRN1 and EXPRN2.

Examples:

gcd(xˆ2+2*x+1,xˆ2+3*x+2) -> X+1
gcd(2*xˆ2-2*yˆ2,4*x+4*y) -> 2*X+2*Y
gcd(xˆ2+yˆ2,x-y) -> 1.

108 CHAPTER 9. POLYNOMIALS AND RATIONALS

9.4 Working with Least Common Multiples

Greatest common divisor calculations can often become expensive if extensive
work with large rational expressions is required. However, in many cases, the only
significant cancellations arise from the fact that there are often common factors
in the various denominators which are combined when two rationals are added.
Since these denominators tend to be smaller and more regular in structure than the
numerators, considerable savings in both time and space can occur if a full GCD
check is made when the denominators are combined and only a partial check when
numerators are constructed. In other words, the true least common multiple of
the denominators is computed at each step. The switch LCM is available for this
purpose, and is normally on.

In addition, the operator LCM, used with the syntax

LCM(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the least common multiple of the two polynomials EXPRN1 and EXPRN2.

Examples:

lcm(xˆ2+2*x+1,xˆ2+3*x+2) -> X**3 + 4*X**2 + 5*X + 2
lcm(2*xˆ2-2*yˆ2,4*x+4*y) -> 4*(X**2 - Y**2)

9.5 Controlling Use of Common Denominators

When two rational functions are added, REDUCE normally produces an expression
over a common denominator. However, if the user does not want denominators
combined, he or she can turn off the switch MCD which controls this process. The
latter switch is particularly useful if no greatest common divisor calculations are
desired, or excessive differentiation of rational functions is required.

CAUTION: With MCD off, results are not guaranteed to come out in either normal
or canonical form. In other words, an expression equivalent to zero may in fact not
be simplified to zero. This option is therefore most useful for avoiding expression
swell during intermediate parts of a calculation.

MCD is normally on.

9.6 REMAINDER Operator

This operator is used with the syntax

9.7. RESULTANT OPERATOR 109

REMAINDER(EXPRN1:polynomial,EXPRN2:polynomial):polynomial.

It returns the remainder when EXPRN1 is divided by EXPRN2. This is the true
remainder based on the internal ordering of the variables, and not the pseudo-
remainder. The pseudo-remainder and in general pseudo-division of polynomials
can be calculated after loading the polydiv package. Please refer to the docu-
mentation of this package for details.

Examples:

remainder((x+y)*(x+2*y),x+3*y) -> 2*Y**2
remainder(2*x+y,2) -> Y.

CAUTION: In the default case, remainders are calculated over the integers. If you
need the remainder with respect to another domain, it must be declared explicitly.

Example:

remainder(xˆ2-2,x+sqrt(2)); -> Xˆ2 - 2
load_package arnum;
defpoly sqrt2**2-2;
remainder(xˆ2-2,x+sqrt2); -> 0

9.7 RESULTANT Operator

This is used with the syntax

RESULTANT(EXPRN1:polynomial,EXPRN2:polynomial,VAR:kernel):
polynomial.

It computes the resultant of the two given polynomials with respect to the given
variable, the coefficients of the polynomials can be taken from any domain. The
result can be identified as the determinant of a Sylvester matrix, but can often
also be thought of informally as the result obtained when the given variable is
eliminated between the two input polynomials. If the two input polynomials have
a non-trivial GCD their resultant vanishes.

The switch Bezout controls the computation of the resultants. It is off by default.
In this case a subresultant algorithm is used. If the switch Bezout is turned on,
the resultant is computed via the Bezout Matrix. However, in the latter case, only
polynomial coefficients are permitted.

110 CHAPTER 9. POLYNOMIALS AND RATIONALS

The sign conventions used by the resultant function follow those in R. Loos, “Com-
puting in Algebraic Extensions” in “Computer Algebra — Symbolic and Algebraic
Computation”, Second Ed., Edited by B. Buchberger, G.E. Collins and R. Loos,
Springer-Verlag, 1983. Namely, with A and B not dependent on X:

deg(p)*deg(q)
resultant(p(x),q(x),x)= (-1) *resultant(q,p,x)

deg(p)
resultant(a,p(x),x) = a

resultant(a,b,x) = 1

Examples:

2
resultant(x/r*u+y,u*y,u) -> - y

calculation in an algebraic extension:

load arnum;
defpoly sqrt2**2 - 2;

resultant(x + sqrt2,sqrt2 * x +1,x) -> -1

or in a modular domain:

setmod 17;
on modular;

resultant(2x+1,3x+4,x) -> 5

9.8 DECOMPOSE Operator

The DECOMPOSE operator takes a multivariate polynomial as argument, and re-
turns an expression and a list of equations from which the original polynomial can
be found by composition. Its syntax is:

DECOMPOSE(EXPRN:polynomial):list.

For example:

9.9. INTERPOL OPERATOR 111

decompose(xˆ8-88*xˆ7+2924*xˆ6-43912*xˆ5+263431*xˆ4-
218900*xˆ3+65690*xˆ2-7700*x+234)

2 2 2
-> {U + 35*U + 234, U=V + 10*V, V=X - 22*X}

2
decompose(uˆ2+vˆ2+2u*v+1) -> {W + 1, W=U + V}

Users should note however that, unlike factorization, this decomposition is not
unique.

9.9 INTERPOL operator

Syntax:

INTERPOL(<values>,<variable>,<points>);

where <values> and <points> are lists of equal length and <variable> is
an algebraic expression (preferably a kernel).

INTERPOL generates an interpolation polynomial f in the given variable of degree
length(<values>)-1. The unique polynomial f is defined by the property that for
corresponding elements v of <values> and p of <points> the relation f(p) =
v holds.

The Aitken-Neville interpolation algorithm is used which guarantees a stable result
even with rounded numbers and an ill-conditioned problem.

9.10 Obtaining Parts of Polynomials and Rationals

These operators select various parts of a polynomial or rational function structure.
Except for the cost of rearrangement of the structure, these operations take very
little time to perform.

For those operators in this section that take a kernel VAR as their second argument,
an error results if the first expression is not a polynomial in VAR, although the coef-
ficients themselves can be rational as long as they do not depend on VAR. However,
if the switch RATARG is on, denominators are not checked for dependence on VAR,
and are taken to be part of the coefficients.

9.10.1 DEG Operator

This operator is used with the syntax

112 CHAPTER 9. POLYNOMIALS AND RATIONALS

DEG(EXPRN:polynomial,VAR:kernel):integer.

It returns the leading degree of the polynomial EXPRN in the variable VAR. If VAR
does not occur as a variable in EXPRN, 0 is returned.

Examples:

deg((a+b)*(c+2*d)ˆ2,a) -> 1
deg((a+b)*(c+2*d)ˆ2,d) -> 2
deg((a+b)*(c+2*d)ˆ2,e) -> 0.

Note also that if RATARG is on,

deg((a+b)ˆ3/a,a) -> 3

since in this case, the denominator A is considered part of the coefficients of the
numerator in A. With RATARG off, however, an error would result in this case.

9.10.2 DEN Operator

This is used with the syntax:

DEN(EXPRN:rational):polynomial.

It returns the denominator of the rational expression EXPRN. If EXPRN is a poly-
nomial, 1 is returned.

Examples:

den(x/yˆ2) -> Y**2
den(100/6) -> 3

[since 100/6 is first simplified to 50/3]
den(a/4+b/6) -> 12
den(a+b) -> 1

9.10.3 LCOF Operator

LCOF is used with the syntax

LCOF(EXPRN:polynomial,VAR:kernel):polynomial.

It returns the leading coefficient of the polynomial EXPRN in the variable VAR. If
VAR does not occur as a variable in EXPRN, EXPRN is returned.

9.10. OBTAINING PARTS OF POLYNOMIALS AND RATIONALS 113

Examples:

lcof((a+b)*(c+2*d)ˆ2,a) -> C**2+4*C*D+4*D**2
lcof((a+b)*(c+2*d)ˆ2,d) -> 4*(A+B)
lcof((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

9.10.4 LPOWER Operator

Syntax:

LPOWER(EXPRN:polynomial,VAR:kernel):polynomial.

LPOWER returns the leading power of EXPRN with respect to VAR. If EXPRN
does not depend on VAR, 1 is returned.

Examples:

lpower((a+b)*(c+2*d)ˆ2,a) -> A
lpower((a+b)*(c+2*d)ˆ2,d) -> D**2
lpower((a+b)*(c+2*d),e) -> 1

9.10.5 LTERM Operator

Syntax:

LTERM(EXPRN:polynomial,VAR:kernel):polynomial.

LTERM returns the leading term of EXPRN with respect to VAR. If EXPRN does
not depend on VAR, EXPRN is returned.

Examples:

lterm((a+b)*(c+2*d)ˆ2,a) -> A*(C**2+4*C*D+4*D**2)
lterm((a+b)*(c+2*d)ˆ2,d) -> 4*D**2*(A+B)
lterm((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

Compatibility Note: In some earlier versions of REDUCE, LTERM returned 0 if
the EXPRN did not depend on VAR. In the present version, EXPRN is always equal
to LTERM(EXPRN,VAR) + REDUCT(EXPRN,VAR).

9.10.6 MAINVAR Operator

Syntax:

114 CHAPTER 9. POLYNOMIALS AND RATIONALS

MAINVAR(EXPRN:polynomial):expression.

Returns the main variable (based on the internal polynomial representation) of
EXPRN. If EXPRN is a domain element, 0 is returned.

Examples:

Assuming A has higher kernel order than B, C, or D:

mainvar((a+b)*(c+2*d)ˆ2) -> A
mainvar(2) -> 0

9.10.7 NUM Operator

Syntax:

NUM(EXPRN:rational):polynomial.

Returns the numerator of the rational expression EXPRN. If EXPRN is a polyno-
mial, that polynomial is returned.

Examples:

num(x/yˆ2) -> X
num(100/6) -> 50
num(a/4+b/6) -> 3*A+2*B
num(a+b) -> A+B

9.10.8 REDUCT Operator

Syntax:

REDUCT(EXPRN:polynomial,VAR:kernel):polynomial.

Returns the reductum of EXPRN with respect to VAR (i.e., the part of EXPRN left
after the leading term is removed). If EXPRN does not depend on the variable VAR,
0 is returned.

Examples:

reduct((a+b)*(c+2*d),a) -> B*(C + 2*D)
reduct((a+b)*(c+2*d),d) -> C*(A + B)
reduct((a+b)*(c+2*d),e) -> 0

9.11. POLYNOMIAL COEFFICIENT ARITHMETIC 115

Compatibility Note: In some earlier versions of REDUCE, REDUCT returned
EXPRN if it did not depend on VAR. In the present version, EXPRN is always equal
to LTERM(EXPRN,VAR) + REDUCT(EXPRN,VAR).

9.11 Polynomial Coefficient Arithmetic

REDUCE allows for a variety of numerical domains for the numerical coefficients
of polynomials used in calculations. The default mode is integer arithmetic, al-
though the possibility of using real coefficients has been discussed elsewhere. Ra-
tional coefficients have also been available by using integer coefficients in both the
numerator and denominator of an expression, using the ON DIV option to print the
coefficients as rationals. However, REDUCE includes several other coefficient opt-
ions in its basic version which we shall describe in this section. All such coefficient
modes are supported in a table-driven manner so that it is straightforward to extend
the range of possibilities. A description of how to do this is given in R.J. Brad-
ford, A.C. Hearn, J.A. Padget and E. Schrüfer, “Enlarging the REDUCE Domain
of Computation,” Proc. of SYMSAC ’86, ACM, New York (1986), 100–106.

9.11.1 Rational Coefficients in Polynomials

Instead of treating rational numbers as the numerator and denominator of a rational
expression, it is also possible to use them as polynomial coefficients directly. This
is accomplished by turning on the switch RATIONAL.

Example: With RATIONAL off, the input expression a/2 would be converted
into a rational expression, whose numerator was A and denominator 2. With
RATIONAL on, the same input would become a rational expression with numerator
1/2*A and denominator 1. Thus the latter can be used in operations that require
polynomial input whereas the former could not.

9.11.2 Real Coefficients in Polynomials

The switch ROUNDED permits the use of arbitrary sized real coefficients in poly-
nomial expressions. The actual precision of these coefficients can be set by the
operator PRECISION. For example, precision 50; sets the precision to fifty
decimal digits. The default precision is system dependent and can be found by
precision 0;. In this mode, denominators are automatically made monic, and
an appropriate adjustment is made to the numerator.

Example: With ROUNDED on, the input expression a/2 would be converted into a
rational expression whose numerator is 0.5*A and denominator 1.

Internally, REDUCE uses floating point numbers up to the precision supported by

116 CHAPTER 9. POLYNOMIALS AND RATIONALS

the underlying machine hardware, and so-called bigfloats for higher precision or
whenever necessary to represent numbers whose value cannot be represented in
floating point. The internal precision is two decimal digits greater than the external
precision to guard against roundoff inaccuracies. Bigfloats represent the fraction
and exponent parts of a floating-point number by means of (arbitrary precision)
integers, which is a more precise representation in many cases than the machine
floating point arithmetic, but not as efficient. If a case arises where use of the
machine arithmetic leads to problems, a user can force REDUCE to use the bigfloat
representation at all precisions by turning on the switch ROUNDBF. In rare cases,
this switch is turned on by the system, and the user informed by the message

ROUNDBF turned on to increase accuracy

Rounded numbers are normally printed to the specified precision. However, if the
user wishes to print such numbers with less precision, the printing precision can be
set by the command PRINT PRECISION. For example, print precision
5; will cause such numbers to be printed with five digits maximum.

Under normal circumstances when ROUNDED is on, REDUCE converts the number
1.0 to the integer 1. If this is not desired, the switch NOCONVERT can be turned
on.

Numbers that are stored internally as bigfloats are normally printed with a space
between every five digits to improve readability. If this feature is not required, it
can be suppressed by turning off the switch BFSPACE.

Further information on the bigfloat arithmetic may be found in T. Sasaki, “Man-
ual for Arbitrary Precision Real Arithmetic System in REDUCE”, Department of
Computer Science, University of Utah, Technical Note No. TR-8 (1979).

When a real number is input, it is normally truncated to the precision in effect
at the time the number is read. If it is desired to keep the full precision of all
numbers input, the switch ADJPREC (for adjust precision) can be turned on. While
on, ADJPREC will automatically increase the precision, when necessary, to match
that of any integer or real input, and a message printed to inform the user of the
precision increase.

When ROUNDED is on, rational numbers are normally converted to rounded rep-
resentation. However, if a user wishes to keep such numbers in a rational form
until used in an operation that returns a real number, the switch ROUNDALL can be
turned off. This switch is normally on.

Results from rounded calculations are returned in rounded form with two excep-
tions: if the result is recognized as 0 or 1 to the current precision, the integer result
is returned.

9.11. POLYNOMIAL COEFFICIENT ARITHMETIC 117

9.11.3 Modular Number Coefficients in Polynomials

REDUCE includes facilities for manipulating polynomials whose coefficients are
computed modulo a given base. To use this option, two commands must be used;
SETMOD <integer>, to set the prime modulus, and ON MODULAR to cause the
actual modular calculations to occur. For example, with setmod 3; and on
modular;, the polynomial (a+2*b)ˆ3 would become Aˆ3+2*Bˆ3.

The argument of SETMOD is evaluated algebraically, except that non-modular (in-
teger) arithmetic is used. Thus the sequence

setmod 3; on modular; setmod 7;

will correctly set the modulus to 7.

Modular numbers are by default represented by integers in the interval [0,p-1]
where p is the current modulus. Sometimes it is more convenient to use an equiv-
alent symmetric representation in the interval [-p/2+1,p/2], or more precisely [-
floor((p-1)/2), ceiling((p-1)/2)], especially if the modular numbers map objects that
include negative quantities. The switch BALANCED MOD allows you to select the
symmetric representation for output.

Users should note that the modular calculations are on the polynomial coefficients
only. It is not currently possible to reduce the exponents since no check for a prime
modulus is made (which would allow xp−1 to be reduced to 1 mod p). Note also
that any division by a number not co-prime with the modulus will result in the error
“Invalid modular division”.

9.11.4 Complex Number Coefficients in Polynomials

Although REDUCE routinely treats the square of the variable i as equivalent to−1,
this is not sufficient to reduce expressions involving i to lowest terms, or to factor
such expressions over the complex numbers. For example, in the default case,

factorize(aˆ2+1);

gives the result

{{A**2+1,1}}

and

(aˆ2+bˆ2)/(a+i*b)

118 CHAPTER 9. POLYNOMIALS AND RATIONALS

is not reduced further. However, if the switch COMPLEX is turned on, full complex
arithmetic is then carried out. In other words, the above factorization will give the
result

{{A + I,1},{A - I,1}}

and the quotient will be reduced to A-I*B.

The switch COMPLEXmay be combined with ROUNDED to give complex real num-
bers; the appropriate arithmetic is performed in this case.

Complex conjugation is used to remove complex numbers from denominators
of expressions. To do this if COMPLEX is off, you must turn the switch
RATIONALIZE on.

Chapter 10

Substitution Commands

An important class of commands in REDUCE define substitutions for variables and
expressions to be made during the evaluation of expressions. Such substitutions use
the prefix operator SUB, various forms of the command LET, and rule sets.

10.1 SUB Operator

Syntax:

SUB(<substitution_list>,EXPRN1:algebraic):algebraic

where <substitution list> is a list of one or more equations of the form

VAR:kernel=EXPRN:algebraic

or a kernel that evaluates to such a list.

The SUB operator gives the algebraic result of replacing every occurrence of the
variable VAR in the expression EXPRN1 by the expression EXPRN. Specifically,
EXPRN1 is first evaluated using all available rules. Next the substitutions are made,
and finally the substituted expression is reevaluated. When more than one variable
occurs in the substitution list, the substitution is performed by recursively walking
down the tree representing EXPRN1, and replacing every VAR found by the ap-
propriate EXPRN. The EXPRN are not themselves searched for any occurrences of
the various VARs. The trivial case SUB(EXPRN1) returns the algebraic value of
EXPRN1.

Examples:

2 2

119

120 CHAPTER 10. SUBSTITUTION COMMANDS

sub({x=a+y,y=y+1},xˆ2+yˆ2) -> A + 2*A*Y + 2*Y + 2*Y + 1

and with s := {x=a+y,y=y+1},

2 2
sub(s,xˆ2+yˆ2) -> A + 2*A*Y + 2*Y + 2*Y + 1

Note that the global assignments x:=a+y, etc., do not take place.

EXPRN1 can be any valid algebraic expression whose type is such that a substi-
tution process is defined for it (e.g., scalar expressions, lists and matrices). An
error will occur if an expression of an invalid type for substitution occurs either in
EXPRN or EXPRN1.

The braces around the substitution list may also be omitted, as in:

2 2
sub(x=a+y,y=y+1,xˆ2+yˆ2) -> A + 2*A*Y + 2*Y + 2*Y + 1

10.2 LET Rules

Unlike substitutions introduced via SUB, LET rules are global in scope and stay in
effect until replaced or CLEARed.

The simplest use of the LET statement is in the form

LET <substitution list>

where <substitution list> is a list of rules separated by commas, each of
the form:

<variable> = <expression>

or

<prefix operator>(<argument>,...,<argument>) = <expression>

or

<argument> <infix operator>,..., <argument> = <expression>

For example,

let {x => yˆ2,
h(u,v) => u - v,

10.2. LET RULES 121

cos(pi/3) => 1/2,
a*b => c,
l+m => n,
wˆ3 => 2*z - 3,
zˆ10 => 0}

The list brackets can be left out if preferred. The above rules could also have been
entered as seven separate LET statements.

After such LET rules have been input, X will always be evaluated as the square of
Y, and so on. This is so even if at the time the LET rule was input, the variable Y
had a value other than Y. (In contrast, the assignment x:=yˆ2 will set X equal to
the square of the current value of Y, which could be quite different.)

The rule let a*b=c means that whenever A and B are both factors in an ex-
pression their product will be replaced by C. For example, aˆ5*bˆ7*w would be
replaced by cˆ5*bˆ2*w.

The rule for l+m will not only replace all occurrences of l+m by N, but will also
normally replace L by n-m, but not M by n-l. A more complete description of this
case is given in Section 10.2.5.

The rule pertaining to wˆ3 will apply to any power of W greater than or equal to
the third.

Note especially the last example, let zˆ10=0. This declaration means, in effect:
ignore the tenth or any higher power of Z. Such declarations, when appropriate,
often speed up a computation to a considerable degree. (See Section 10.4 for more
details.)

Any new operators occurring in such LET rules will be automatically declared
OPERATOR by the system, if the rules are being read from a file. If they are being
entered interactively, the system will ask DECLARE ... OPERATOR? . Answer Y
or N and hit Return .

In each of these examples, substitutions are only made for the explicit expressions
given; i.e., none of the variables may be considered arbitrary in any sense. For
example, the command

let h(u,v) = u - v;

will cause h(u,v) to evaluate to U - V, but will not affect h(u,z) or H with
any arguments other than precisely the symbols U,V.

These simple LET rules are on the same logical level as assignments made with
the := operator. An assignment x := p+q cancels a rule let x = yˆ2 made
earlier, and vice versa.

CAUTION: A recursive rule such as

122 CHAPTER 10. SUBSTITUTION COMMANDS

let x = x + 1;

is erroneous, since any subsequent evaluation of X would lead to a non-terminating
chain of substitutions:

x -> x + 1 -> (x + 1) + 1 -> ((x + 1) + 1) + 1 -> ...

Similarly, coupled substitutions such as

let l = m + n, n = l + r;

would lead to the same error. As a result, if you try to evaluate an X, L or N defined
as above, you will get an error such as

X improperly defined in terms of itself

Array and matrix elements can appear on the left-hand side of a LET statement.
However, because of their instant evaluation property, it is the value of the element
that is substituted for, rather than the element itself. E.g.,

array a(5);
a(2) := b;
let a(2) = c;

results in B being substituted by C; the assignment for a(2) does not change.

Finally, if an error occurs in any equation in a LET statement (including generalized
statements involving FOR ALL and SUCH THAT), the remaining rules are not
evaluated.

10.2.1 FOR ALL . . . LET

If a substitution for all possible values of a given argument of an operator is re-
quired, the declaration FOR ALL may be used. The syntax of such a command
is

FOR ALL <variable>,...,<variable>
<LET statement> <terminator>

e.g.,

for all x,y let h(x,y) = x-y;
for all x let k(x,y) = xˆy;

10.2. LET RULES 123

The first of these declarations would cause h(a,b) to be evaluated as A-B,
h(u+v,u+w) to be V-W, etc. If the operator symbol H is used with more or
fewer argument places, not two, the LET would have no effect, and no error would
result.

The second declaration would cause k(a,y) to be evaluated as aˆy, but would
have no effect on k(a,z) since the rule didn’t say FOR ALL Y

Where we used X and Y in the examples, any variables could have been used. This
use of a variable doesn’t affect the value it may have outside the LET statement.
However, you should remember what variables you actually used. If you want
to delete the rule subsequently, you must use the same variables in the CLEAR
command.

It is possible to use more complicated expressions as a template for a LET state-
ment, as explained in the section on substitutions for general expressions. In nearly
all cases, the rule will be accepted, and a consistent application made by the sys-
tem. However, if there is a sole constant or a sole free variable on the left-hand side
of a rule (e.g., let 2=3 or for all x let x=2), then the system is unable
to handle the rule, and the error message

Substitution for ... not allowed

will be issued. Any variable listed in the FOR ALL part will have its symbol
preceded by an equal sign: X in the above example will appear as =X. An error will
also occur if a variable in the FOR ALL part is not properly matched on both sides
of the LET equation.

10.2.2 FOR ALL . . . SUCH THAT . . . LET

If a substitution is desired for more than a single value of a variable in an operator or
other expression, but not all values, a conditional form of the FOR ALL ...LET
declaration can be used.

Example:

for all x such that numberp x and x<0 let h(x)=0;

will cause h(-5) to be evaluated as 0, but H of a positive integer, or of an argument
that is not an integer at all, would not be affected. Any boolean expression can
follow the SUCH THAT keywords.

124 CHAPTER 10. SUBSTITUTION COMMANDS

10.2.3 Removing Assignments and Substitution Rules

The user may remove all assignments and substitution rules from any expression
by the command CLEAR, in the form

CLEAR <expression>,...,<expression><terminator>

e.g.

clear x, h(x,y);

Because of their instant evaluation property, array and matrix elements cannot be
cleared with CLEAR. For example, if A is an array, you must say

a(3) := 0;

rather than

clear a(3);

to “clear” element a(3).

On the other hand, a whole array (or matrix) A can be cleared by the command
clear a; This means much more than resetting to 0 all the elements of A. The
fact that A is an array, and what its dimensions are, are forgotten, so A can be
redefined as another type of object, for example an operator.

The more general types of LET declarations can also be deleted by using CLEAR.
Simply repeat the LET rule to be deleted, using CLEAR in place of LET, and omit-
ting the equal sign and right-hand part. The same dummy variables must be used
in the FOR ALL part, and the boolean expression in the SUCH THAT part must be
written the same way. (The placing of blanks doesn’t have to be identical.)

Example: The LET rule

for all x such that numberp x and x<0 let h(x)=0;

can be erased by the command

for all x such that numberp x and x<0 clear h(x);

10.2.4 Overlapping LET Rules

CLEAR is not the only way to delete a LET rule. A new LET rule identical to
the first, but with a different expression after the equal sign, replaces the first.

10.2. LET RULES 125

Replacements are also made in other cases where the existing rule would be in
conflict with the new rule. For example, a rule for xˆ4 would replace a rule for
xˆ5. The user should however be cautioned against having several LET rules in
effect that relate to the same expression. No guarantee can be given as to which
rules will be applied by REDUCE or in what order. It is best to CLEAR an old rule
before entering a new related LET rule.

10.2.5 Substitutions for General Expressions

The examples of substitutions discussed in other sections have involved very sim-
ple rules. However, the substitution mechanism used in REDUCE is very general,
and can handle arbitrarily complicated rules without difficulty.

The general substitution mechanism used in REDUCE is discussed in Hearn, A.
C., “REDUCE, A User-Oriented Interactive System for Algebraic Simplification,”
Interactive Systems for Experimental Applied Mathematics, (edited by M. Klerer
and J. Reinfelds), Academic Press, New York (1968), 79-90, and Hearn. A. C.,
“The Problem of Substitution,” Proc. 1968 Summer Institute on Symbolic Mathe-
matical Computation, IBM Programming Laboratory Report FSC 69-0312 (1969).
For the reasons given in these references, REDUCE does not attempt to imple-
ment a general pattern matching algorithm. However, the present system uses far
more sophisticated techniques than those discussed in the above papers. It is now
possible for the rules appearing in arguments of LET to have the form

<substitution expression> = <expression>

where any rule to which a sensible meaning can be assigned is permitted.
However, this meaning can vary according to the form of <substitution
expression>. The semantic rules associated with the application of the sub-
stitution are completely consistent, but somewhat complicated by the pragmatic
need to perform such substitutions as efficiently as possible. The following rules
explain how the majority of the cases are handled.

To begin with, the <substitution expression> is first partly simplified
by collecting like terms and putting identifiers (and kernels) in the system order.
However, no substitutions are performed on any part of the expression with the
exception of expressions with the instant evaluation property, such as array and
matrix elements, whose actual values are used. It should also be noted that the
system order used is not changeable by the user, even with the KORDER command.
Specific cases are then handled as follows:

1. If the resulting simplified rule has a left-hand side that is an identifier, an
expression with a top-level algebraic operator or a power, then the rule is
added without further change to the appropriate table.

126 CHAPTER 10. SUBSTITUTION COMMANDS

2. If the operator * appears at the top level of the simplified left-hand side, then
any constant arguments in that expression are moved to the right-hand side
of the rule. The remaining left-hand side is then added to the appropriate
table. For example,

let 2*x*y=3

becomes

let x*y=3/2

so that x*y is added to the product substitution table, and when this rule is
applied, the expression x*y becomes 3/2, but X or Y by themselves are not
replaced.

3. If the operators +, - or / appear at the top level of the simplified left-hand
side, all but the first term is moved to the right-hand side of the rule. Thus
the rules

let l+m=n, x/2=y, a-b=c

become

let l=n-m, x=2*y, a=c+b.

One problem that can occur in this case is that if a quantified expression is moved
to the right-hand side, a given free variable might no longer appear on the left-hand
side, resulting in an error because of the unmatched free variable. E.g.,

for all x,y let f(x)+f(y)=x*y

would become

for all x,y let f(x)=x*y-f(y)

which no longer has Y on both sides.

The fact that array and matrix elements are evaluated in the left-hand side of rules
can lead to confusion at times. Consider for example the statements

array a(5); let x+a(2)=3; let a(3)=4;

The left-hand side of the first rule will become X, and the second 0. Thus the first
rule will be instantiated as a substitution for X, and the second will result in an
error.

10.3. RULE LISTS 127

The order in which a list of rules is applied is not easily understandable without
a detailed knowledge of the system simplification protocol. It is also possible for
this order to change from release to release, as improved substitution techniques
are implemented. Users should therefore assume that the order of application of
rules is arbitrary, and program accordingly.

After a substitution has been made, the expression being evaluated is reexamined
in case a new allowed substitution has been generated. This process is continued
until no more substitutions can be made.

As mentioned elsewhere, when a substitution expression appears in a product, the
substitution is made if that expression divides the product. For example, the rule

let aˆ2*c = 3*z;

would cause aˆ2*c*x to be replaced by 3*Z*X and aˆ2*cˆ2 by 3*Z*C. If the
substitution is desired only when the substitution expression appears in a product
with the explicit powers supplied in the rule, the command MATCH should be used
instead.

For example,

match aˆ2*c = 3*z;

would cause aˆ2*c*x to be replaced by 3*Z*X, but aˆ2*cˆ2 would not be
replaced. MATCH can also be used with the FOR ALL constructions described
above.

To remove substitution rules of the type discussed in this section, the CLEAR com-
mand can be used, combined, if necessary, with the same FOR ALL clause with
which the rule was defined, for example:

for all x clear log(eˆx),eˆlog(x),cos(w*t+theta(x));

Note, however, that the arbitrary variable names in this case must be the same as
those used in defining the substitution.

10.3 Rule Lists

Rule lists offer an alternative approach to defining substitutions that is different
from either SUB or LET. In fact, they provide the best features of both, since they
have all the capabilities of LET, but the rules can also be applied locally as is pos-
sible with SUB. In time, they will be used more and more in REDUCE. However,
since they are relatively new, much of the REDUCE code you see uses the older
constructs.

128 CHAPTER 10. SUBSTITUTION COMMANDS

A rule list is a list of rules that have the syntax

<expression> => <expression> (WHEN <boolean expression>)

For example,

{cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2,
cos(˜n*pi) => (-1)ˆn when remainder(n,2)=0}

The tilde preceding a variable marks that variable as free for that rule, much as a
variable in a FOR ALL clause in a LET statement. The first occurrence of that
variable in each relevant rule must be so marked on input, otherwise inconsistent
results can occur. For example, the rule list

{cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2,
cos(x)ˆ2 => (1+cos(2x))/2}

designed to replace products of cosines, would not be correct, since the second
rule would only apply to the explicit argument X. Later occurrences in the same
rule may also be marked, but this is optional (internally, all such rules are stored
with each relevant variable explicitly marked). The optional WHEN clause allows
constraints to be placed on the application of the rule, much as the SUCH THAT
clause in a LET statement.

A rule list may be named, for example

trig1 := {cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2,
cos(˜x)*sin(˜y) => (sin(x+y)-sin(x-y))/2,
sin(˜x)*sin(˜y) => (cos(x-y)-cos(x+y))/2,
cos(˜x)ˆ2 => (1+cos(2*x))/2,
sin(˜x)ˆ2 => (1-cos(2*x))/2};

Such named rule lists may be inspected as needed. E.g., the command trig1;
would cause the above list to be printed.

Rule lists may be used in two ways. They can be globally instantiated by means of
the command LET. For example,

let trig1;

would cause the above list of rules to be globally active from then on until cancelled
by the command CLEARRULES, as in

clearrules trig1;

10.3. RULE LISTS 129

CLEARRULES has the syntax

CLEARRULES <rule list>|<name of rule list>(,...) .

The second way to use rule lists is to invoke them locally by means of a WHERE
clause. For example

cos(a)*cos(b+c)
where {cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2};

or

cos(a)*sin(b) where trigrules;

The syntax of an expression with a WHERE clause is:

<expression>
WHERE <rule>|<rule list>(,<rule>|<rule list> ...)

so the first example above could also be written

cos(a)*cos(b+c)
where cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2;

The effect of this construct is that the rule list(s) in the WHERE clause only apply to
the expression on the left of WHERE. They have no effect outside the expression. In
particular, they do not affect previously defined WHERE clauses or LET statements.
For example, the sequence

let a=2;
a where a=>4;
a;

would result in the output

4

2

Although WHERE has a precedence less than any other infix operator, it still binds
higher than keywords such as ELSE, THEN, DO, REPEAT and so on. Thus the
expression

if a=2 then 3 else a+2 where a=3

130 CHAPTER 10. SUBSTITUTION COMMANDS

will parse as

if a=2 then 3 else (a+2 where a=3)

WHERE may be used to introduce auxiliary variables in symbolic mode expres-
sions, as described in Section 16.4. However, the symbolic mode use has different
semantics, so expressions do not carry from one mode to the other.

Compatibility Note: In order to provide compatibility with older versions of rule
lists released through the Network Library, it is currently possible to use an equal
sign interchangeably with the replacement sign => in rules and LET statements.
However, since this will change in future versions, the replacement sign is prefer-
able in rules and the equal sign in non-rule-based LET statements.

Advanced Use of Rule Lists

Some advanced features of the rule list mechanism make it possible to write more
complicated rules than those discussed so far, and in many cases to write more
compact rule lists. These features are:

• Free operators

• Double slash operator

• Double tilde variables.

A free operator in the left hand side of a pattern will match any operator with
the same number of arguments. The free operator is written in the same style as
a variable. For example, the implementation of the product rule of differentiation
can be written as:

operator diff, !˜f, !˜g;

prule := {diff(˜f(˜x) * ˜g(˜x),x) =>
diff(f(x),x) * g(x) + diff(g(x),x) * f(x)};

let prule;

diff(sin(z)*cos(z),z);

cos(z)*diff(sin(z),z) + diff(cos(z),z)*sin(z)

The double slash operator may be used as an alternative to a single slash (quo-
tient) in order to match quotients properly. E.g., in the example of the Gamma
function above, one can use:

10.3. RULE LISTS 131

gammarule :=
{gamma(˜z)//(˜c*gamma(˜zz)) => gamma(z)/(c*gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0,

gamma(˜z)//gamma(˜zz) => gamma(z)/(gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0};

let gammarule;

gamma(z)/gamma(z+3);

1

3 2

z + 6*z + 11*z + 6

The above example suffers from the fact that two rules had to be written in order to
perform the required operation. This can be simplified by the use of double tilde
variables. E.g. the rule list

GGrule := {
gamma(˜z)//(˜˜c*gamma(˜zz)) => gamma(z)/(c*gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0};

will implement the same operation in a much more compact way. In general, dou-
ble tilde variables are bound to the neutral element with respect to the operation in
which they are used.

Pattern given Argument used Binding

˜z + ˜˜y x z=x; y=0
˜z + ˜˜y x+3 z=x; y=3 or z=3; y=x

˜z * ˜˜y x z=x; y=1
˜z * ˜˜y x*3 z=x; y=3 or z=3; y=x

˜z / ˜˜y x z=x; y=1
˜z / ˜˜y x/3 z=x; y=3

Remarks: A double tilde variable as the numerator of a pattern is not allowed.
Also, using double tilde variables may lead to recursion errors when the zero case
is not handled properly.

let f(˜˜a * ˜x,x) => a * f(x,x) when freeof (a,x);

132 CHAPTER 10. SUBSTITUTION COMMANDS

f(z,z);

***** f(z,z) improperly defined in terms of itself

% BUT:

let ff(˜˜a * ˜x,x)
=> a * ff(x,x) when freeof (a,x) and a neq 1;

ff(z,z);
ff(z,z)

ff(3*z,z);
3*ff(z,z)

Displaying Rules Associated with an Operator

The operator SHOWRULES takes a single identifier as argument, and returns in
rule-list form the operator rules associated with that argument. For example:

showrules log;

{LOG(E) => 1,

LOG(1) => 0,

˜X
LOG(E) => ˜X,

1
DF(LOG(˜X),˜X) => ----}

˜X

Such rules can then be manipulated further as with any list. For example rhs
first ws; has the value 1. Note that an operator may have other properties that
cannot be displayed in such a form, such as the fact it is an odd function, or has a
definition defined as a procedure.

Order of Application of Rules

If rules have overlapping domains, their order of application is important. In gen-
eral, it is very difficult to specify this order precisely, so that it is best to assume

10.4. ASYMPTOTIC COMMANDS 133

that the order is arbitrary. However, if only one operator is involved, the order of
application of the rules for this operator can be determined from the following:

1. Rules containing at least one free variable apply before all rules without free
variables.

2. Rules activated in the most recent LET command are applied first.

3. LET with several entries generate the same order of application as a corre-
sponding sequence of commands with one rule or rule set each.

4. Within a rule set, the rules containing at least one free variable are applied in
their given order. In other words, the first member of the list is applied first.

5. Consistent with the first item, any rule in a rule list that contains no free
variables is applied after all rules containing free variables.

Example: The following rule set enables the computation of exact values of the
Gamma function:

operator gamma,gamma_error;
gamma_rules :=
{gamma(˜x)=>sqrt(pi)/2 when x=1/2,
gamma(˜n)=>factorial(n-1) when fixp n and n>0,
gamma(˜n)=>gamma_error(n) when fixp n,
gamma(˜x)=>(x-1)*gamma(x-1) when fixp(2*x) and x>1,
gamma(˜x)=>gamma(x+1)/x when fixp(2*x)};

Here, rule by rule, cases of known or definitely uncomputable values are sorted out;
e.g. the rule leading to the error expression will be applied for negative integers
only, since the positive integers are caught by the preceding rule, and the last rule
will apply for negative odd multiples of 1/2 only. Alternatively the first rule could
have been written as

gamma(1/2) => sqrt(pi)/2,

but then the case x = 1/2 should be excluded in the WHEN part of the last rule
explicitly because a rule without free variables cannot take precedence over the
other rules.

10.4 Asymptotic Commands

In expansions of polynomials involving variables that are known to be small, it is
often desirable to throw away all powers of these variables beyond a certain point

134 CHAPTER 10. SUBSTITUTION COMMANDS

to avoid unnecessary computation. The command LET may be used to do this. For
example, if only powers of X up to xˆ7 are needed, the command

let xˆ8 = 0;

will cause the system to delete all powers of X higher than 7.

CAUTION: This particular simplification works differently from most substitu-
tion mechanisms in REDUCE in that it is applied during polynomial manipulation
rather than to the whole evaluated expression. Thus, with the above rule in effect,
xˆ10/xˆ5would give the result zero, since the numerator would simplify to zero.
Similarly xˆ20/xˆ10 would give a Zero divisor error message, since both
numerator and denominator would first simplify to zero.

The method just described is not adequate when expressions involve several vari-
ables having different degrees of smallness. In this case, it is necessary to supply
an asymptotic weight to each variable and count up the total weight of each product
in an expanded expression before deciding whether to keep the term or not. There
are two associated commands in the system to permit this type of asymptotic con-
straint. The command WEIGHT takes a list of equations of the form

<kernel form> = <number>

where <number> must be a positive integer (not just evaluate to a positive inte-
ger). This command assigns the weight <number> to the relevant kernel form.
A check is then made in all algebraic evaluations to see if the total weight of the
term is greater than the weight level assigned to the calculation. If it is, the term is
deleted. To compute the total weight of a product, the individual weights of each
kernel form are multiplied by their corresponding powers and then added.

The weight level of the system is initially set to 1. The user may change this setting
by the command

wtlevel <number>;

which sets <number> as the new weight level of the system. <number> must
evaluate to a positive integer. WTLEVEL will also allow NIL as an argument, in
which case the current weight level is returned.

Chapter 11

File Handling Commands

In many applications, it is desirable to load previously prepared REDUCE files
into the system, or to write output on other files. REDUCE offers four commands
for this purpose, namely, IN, OUT, SHUT, LOAD, and LOAD PACKAGE. The first
three operators are described here; LOAD and LOAD PACKAGE are discussed in

Section 18.2.

11.1 IN Command

This command takes a list of file names as argument and directs the system to
input each file (that should contain REDUCE statements and commands) into the
system. File names can either be an identifier or a string. The explicit format of
these will be system dependent and, in many cases, site dependent. The explicit
instructions for the implementation being used should therefore be consulted for
further details. For example:

in f1,"ggg.rr.s";

will first load file F1, then ggg.rr.s. When a semicolon is used as the terminator
of the IN statement, the statements in the file are echoed on the terminal or written
on the current output file. If $ is used as the terminator, the input is not shown.
Echoing of all or part of the input file can be prevented, even if a semicolon was
used, by placing an off echo; command in the input file.

Files to be read using IN should end with ;END;. Note the two semicolons! First
of all, this is protection against obscure difficulties the user will have if there are,
by mistake, more BEGINs than ENDs on the file. Secondly, it triggers some file
control book-keeping which may improve system efficiency. If END is omitted, an
error message "End-of-file read" will occur.

135

136 CHAPTER 11. FILE HANDLING COMMANDS

11.2 OUT Command

This command takes a single file name as argument, and directs output to that
file from then on, until another OUT changes the output file, or SHUT closes it.
Output can go to only one file at a time, although many can be open. If the file
has previously been used for output during the current job, and not SHUT, the new
output is appended to the end of the file. Any existing file is erased before its first
use for output in a job, or if it had been SHUT before the new OUT.

To output on the terminal without closing the output file, the reserved file name T
(for terminal) may be used. For example, out ofile; will direct output to the
file OFILE and out t; will direct output to the user’s terminal.

The output sent to the file will be in the same form that it would have on the
terminal. In particular xˆ2 would appear on two lines, an X on the lower line and
a 2 on the line above. If the purpose of the output file is to save results to be read
in later, this is not an appropriate form. We first must turn off the NAT switch that
specifies that output should be in standard mathematical notation.

Example: To create a file ABCD from which it will be possible to read – using IN
– the value of the expression XYZ:

off echo$ % needed if your input is from a file.
off nat$ % output in IN-readable form. Each expression

% printed will end with a $.
out abcd$ % output to new file
linelength 72$ % for systems with fixed input line length.
xyz:=xyz; % will output "XYZ := " followed by the value

% of XYZ
write ";end"$ % standard for ending files for IN
shut abcd$ % save ABCD, return to terminal output
on nat$ % restore usual output form

11.3 SHUT Command

This command takes a list of names of files that have been previously opened via
an OUT statement and closes them. Most systems require this action by the user
before he ends the REDUCE job (if not sooner), otherwise the output may be lost.
If a file is shut and a further OUT command issued for the same file, the file is
erased before the new output is written.

If it is the current output file that is shut, output will switch to the terminal. At-
tempts to shut files that have not been opened by OUT, or an input file, will lead to
errors.

Chapter 12

Commands for Interactive Use

REDUCE is designed as an interactive system, but naturally it can also operate in
a batch processing or background mode by taking its input command by command
from the relevant input stream. There is a basic difference, however, between in-
teractive and batch use of the system. In the former case, whenever the system
discovers an ambiguity at some point in a calculation, such as a forgotten type
assignment for instance, it asks the user for the correct interpretation. In batch
operation, it is not practical to terminate the calculation at such points and require
resubmission of the job, so the system makes the most obvious guess of the user’s
intentions and continues the calculation.

There is also a difference in the handling of errors. In the former case, the computa-
tion can continue since the user has the opportunity to correct the mistake. In batch
mode, the error may lead to consequent erroneous (and possibly time consuming)
computations. So in the default case, no further evaluation occurs, although the
remainder of the input is checked for syntax errors. A message "Continuing
with parsing only" informs the user that this is happening. On the other
hand, the switch ERRCONT, if on, will cause the system to continue evaluating
expressions after such errors occur.

When a syntactical error occurs, the place where the system detected the error is
marked with three dollar signs ($$$). In interactive mode, the user can then use ED
to correct the error, or retype the command. When a non-syntactical error occurs in
interactive mode, the command being evaluated at the time the last error occurred
is saved, and may later be reevaluated by the command RETRY.

12.1 Referencing Previous Results

It is often useful to be able to reference results of previous computations during a
REDUCE session. For this purpose, REDUCE maintains a history of all interactive

137

138 CHAPTER 12. COMMANDS FOR INTERACTIVE USE

inputs and the results of all interactive computations during a given session. These
results are referenced by the command number that REDUCE prints automatically
in interactive mode. To use an input expression in a new computation, one writes
input(n), where n is the command number. To use an output expression, one
writes WS(n). WS references the previous command. E.g., if command number 1
was INT(X-1,X); and the result of command number 7 was X-1, then

2*input(1)-ws(7)ˆ2;

would give the result -1, whereas

2*ws(1)-ws(7)ˆ2;

would yield the same result, but without a recomputation of the integral.

The operator DISPLAY is available to display previous inputs. If its argument
is a positive integer, n say, then the previous n inputs are displayed. If its argu-
ment is ALL (or in fact any non-numerical expression), then all previous inputs are
displayed.

12.2 Interactive Editing

It is possible when working interactively to edit any REDUCE input that comes
from the user’s terminal, and also some user-defined procedure definitions. At the
top level, one can access any previous command string by the command ed(n),
where n is the desired command number as prompted by the system in interactive
mode. ED; (i.e. no argument) accesses the previous command.

After ED has been called, you can now edit the displayed string using a string editor
with the following commands:

B move pointer to beginning
C<character> replace next character by character
D delete next character
E end editing and reread text
F<character> move pointer to next occurrence of

character
I<string><escape> insert string in front of pointer
K<character> delete all characters until character
P print string from current pointer
Q give up with error exit
S<string><escape> search for first occurrence of string, posi-

tioning pointer just before it
space or X move pointer right one character.

12.3. INTERACTIVE FILE CONTROL 139

The above table can be displayed online by typing a question mark followed by a
carriage return to the editor. The editor prompts with an angle bracket. Commands
can be combined on a single line, and all command sequences must be followed by
a carriage return to become effective.

Thus, to change the command x := a+1; to x := a+2; and cause it to be
executed, the following edit command sequence could be used:

f1c2e<return>.

The interactive editor may also be used to edit a user-defined procedure that has
not been compiled. To do this, one says:

editdef <id>;

where <id> is the name of the procedure. The procedure definition will then be
displayed in editing mode, and may then be edited and redefined on exiting from
the editor.

Some versions of REDUCE now include input editing that uses the capabilities of
modern window systems. Please consult your system dependent documentation to
see if this is possible. Such editing techniques are usually much easier to use then
ED or EDITDEF.

12.3 Interactive File Control

If input is coming from an external file, the system treats it as a batch processed
calculation. If the user desires interactive response in this case, he can include the
command on int; in the file. Likewise, he can issue the command off int;
in the main program if he does not desire continual questioning from the system.
Regardless of the setting of INT, input commands from a file are not kept in the
system, and so cannot be edited using ED. However, many implementations of RE-
DUCE provide a link to an external system editor that can be used for such editing.
The specific instructions for the particular implementation should be consulted for
information on this.

Two commands are available in REDUCE for interactive use of files. PAUSE; may
be inserted at any point in an input file. When this command is encountered on
input, the system prints the message CONT? on the user’s terminal and halts. If the
user responds Y (for yes), the calculation continues from that point in the file. If the
user responds N (for no), control is returned to the terminal, and the user can input
further statements and commands. Later on he can use the command cont; to
transfer control back to the point in the file following the last PAUSE encountered.
A top-level pause; from the user’s terminal has no effect.

140 CHAPTER 12. COMMANDS FOR INTERACTIVE USE

Chapter 13

Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix calculations
can be performed. To extend our syntax to this class of calculations we need to
add another prefix operator, MAT, and a further variable and expression type as
follows:

13.1 MAT Operator

This prefix operator is used to represent n×m matrices. MAT has n arguments in-
terpreted as rows of the matrix, each of which is a list of m expressions representing
elements in that row. For example, the matrix(

a b c
d e f

)

would be written as mat((a,b,c),(d,e,f)).

Note that the single column matrix (
x
y

)

becomes mat((x),(y)). The inside parentheses are required to distinguish it
from the single row matrix (

x y
)

that would be written as mat((x,y)).

141

142 CHAPTER 13. MATRIX CALCULATIONS

13.2 Matrix Variables

An identifier may be declared a matrix variable by the declaration MATRIX. The
size of the matrix may be declared explicitly in the matrix declaration, or by default
in assigning such a variable to a matrix expression. For example,

matrix x(2,1),y(3,4),z;

declares X to be a 2 x 1 (column) matrix, Y to be a 3 x 4 matrix and Z a matrix
whose size is to be declared later.

Matrix declarations can appear anywhere in a program. Once a symbol is declared
to name a matrix, it can not also be used to name an array, operator or a procedure,
or used as an ordinary variable. It can however be redeclared to be a matrix, and
its size may be changed at that time. Note however that matrices once declared
are global in scope, and so can then be referenced anywhere in the program. In
other words, a declaration within a block (or a procedure) does not limit the scope
of the matrix to that block, nor does the matrix go away on exiting the block (use
CLEAR instead for this purpose). An element of a matrix is referred to in the
expected manner; thus x(1,1) gives the first element of the matrix X defined
above. References to elements of a matrix whose size has not yet been declared
leads to an error. All elements of a matrix whose size is declared are initialized to
0. As a result, a matrix element has an instant evaluation property and cannot stand
for itself. If this is required, then an operator should be used to name the matrix
elements as in:

matrix m; operator x; m := mat((x(1,1),x(1,2));

13.3 Matrix Expressions

These follow the normal rules of matrix algebra as defined by the following syntax:

<matrix expression> ::=
MAT<matrix description>|<matrix variable>|
<scalar expression>*<matrix expression>|
<matrix expression>*<matrix expression>
<matrix expression>+<matrix expression>|
<matrix expression>ˆ<integer>|
<matrix expression>/<matrix expression>

Sums and products of matrix expressions must be of compatible size; otherwise an
error will result during their evaluation. Similarly, only square matrices may be
raised to a power. A negative power is computed as the inverse of the matrix raised

13.4. OPERATORS WITH MATRIX ARGUMENTS 143

to the corresponding positive power. a/b is interpreted as a*bˆ(-1).

Examples:

Assuming X and Y have been declared as matrices, the following are matrix ex-
pressions

y
yˆ2*x-3*yˆ(-2)*x
y + mat((1,a),(b,c))/2

The computation of the quotient of two matrices normally uses a two-step elimina-
tion method due to Bareiss. An alternative method using Cramer’s method is also
available. This is usually less efficient than the Bareiss method unless the matrices
are large and dense, although we have no solid statistics on this as yet. To use
Cramer’s method instead, the switch CRAMER should be turned on.

13.4 Operators with Matrix Arguments

The operator LENGTH applied to a matrix returns a list of the number of rows and
columns in the matrix. Other operators useful in matrix calculations are defined in
the following subsections. Attention is also drawn to the LINALG (chapter 15.29)
and NORMFORM (chapter 15.32) packages.

13.4.1 DET Operator

Syntax:

DET(EXPRN:matrix_expression):algebraic.

The operator DET is used to represent the determinant of a square matrix expres-
sion. E.g.,

det(yˆ2)

is a scalar expression whose value is the determinant of the square of the matrix Y,
and

det mat((a,b,c),(d,e,f),(g,h,j));

144 CHAPTER 13. MATRIX CALCULATIONS

is a scalar expression whose value is the determinant of the matrix a b c
d e f
g h j

Determinant expressions have the instant evaluation property. In other words, the
statement

let det mat((a,b),(c,d)) = 2;

sets the value of the determinant to 2, and does not set up a rule for the determinant
itself.

13.4.2 MATEIGEN Operator

Syntax:

MATEIGEN(EXPRN:matrix_expression,ID):list.

MATEIGEN calculates the eigenvalue equation and the corresponding eigenvectors
of a matrix, using the variable ID to denote the eigenvalue. A square free decom-
position of the characteristic polynomial is carried out. The result is a list of lists
of 3 elements, where the first element is a square free factor of the characteristic
polynomial, the second its multiplicity and the third the corresponding eigenvector
(as an n by 1 matrix). If the square free decomposition was successful, the product
of the first elements in the lists is the minimal polynomial. In the case of degener-
acy, several eigenvectors can exist for the same eigenvalue, which manifests itself
in the appearance of more than one arbitrary variable in the eigenvector. To extract
the various parts of the result use the operations defined on lists.

Example: The command

mateigen(mat((2,-1,1),(0,1,1),(-1,1,1)),eta);

gives the output

{{ETA - 1,2,

[ARBCOMPLEX(1)]
[]
[ARBCOMPLEX(1)]
[]
[0]

13.4. OPERATORS WITH MATRIX ARGUMENTS 145

},

{ETA - 2,1,

[0]
[]
[ARBCOMPLEX(2)]
[]
[ARBCOMPLEX(2)]

}}

13.4.3 TP Operator

Syntax:

TP(EXPRN:matrix_expression):matrix.

This operator takes a single matrix argument and returns its transpose.

13.4.4 Trace Operator

Syntax:

TRACE(EXPRN:matrix_expression):algebraic.

The operator TRACE is used to represent the trace of a square matrix.

13.4.5 Matrix Cofactors

Syntax:

COFACTOR(EXPRN:matrix_expression,ROW:integer,COLUMN:integer):
algebraic

The operator COFACTOR returns the cofactor of the element in row ROW and col-
umn COLUMN of the matrix MATRIX. Errors occur if ROW or COLUMN do not
simplify to integer expressions or if MATRIX is not square.

146 CHAPTER 13. MATRIX CALCULATIONS

13.4.6 NULLSPACE Operator

Syntax:

NULLSPACE(EXPRN:matrix_expression):list

NULLSPACE calculates for a matrix A a list of linear independent vectors (a basis)
whose linear combinations satisfy the equation Ax = 0. The basis is provided in a
form such that as many upper components as possible are isolated.

Note that with b := nullspace a the expression length b is the nullity of
A, and that second length a - length b calculates the rank of A. The
rank of a matrix expression can also be found more directly by the RANK operator
described below.

Example: The command

nullspace mat((1,2,3,4),(5,6,7,8));

gives the output

{
[1]
[]
[0]
[]
[- 3]
[]
[2]
,
[0]
[]
[1]
[]
[- 2]
[]
[1]
}

In addition to the REDUCE matrix form, NULLSPACE accepts as input a matrix
given as a list of lists, that is interpreted as a row matrix. If that form of input
is chosen, the vectors in the result will be represented by lists as well. This addi-
tional input syntax facilitates the use of NULLSPACE in applications different from
classical linear algebra.

13.5. MATRIX ASSIGNMENTS 147

13.4.7 RANK Operator

Syntax:

RANK(EXPRN:matrix_expression):integer

RANK calculates the rank of its argument, that, like NULLSPACE can either be a
standard matrix expression, or a list of lists, that can be interpreted either as a row
matrix or a set of equations.

Example:

rank mat((a,b,c),(d,e,f));

returns the value 2.

13.5 Matrix Assignments

Matrix expressions may appear in the right-hand side of assignment statements. If
the left-hand side of the assignment, which must be a variable, has not already been
declared a matrix, it is declared by default to the size of the right-hand side. The
variable is then set to the value of the right-hand side.

Such an assignment may be used very conveniently to find the solution of a set of
linear equations. For example, to find the solution of the following set of equations

a11*x(1) + a12*x(2) = y1
a21*x(1) + a22*x(2) = y2

we simply write

x := 1/mat((a11,a12),(a21,a22))*mat((y1),(y2));

13.6 Evaluating Matrix Elements

Once an element of a matrix has been assigned, it may be referred to in standard
array element notation. Thus y(2,1) refers to the element in the second row and
first column of the matrix Y.

148 CHAPTER 13. MATRIX CALCULATIONS

Chapter 14

Procedures

It is often useful to name a statement for repeated use in calculations with varying
parameters, or to define a complete evaluation procedure for an operator. REDUCE
offers a procedural declaration for this purpose. Its general syntax is:

[<procedural type>] PROCEDURE <name>[<varlist>];<statement>;

where

<varlist> ::= (<variable>,...,<variable>)

This will be explained more fully in the following sections.

In the algebraic mode of REDUCE the <procedure type> can be omitted,
since the default is ALGEBRAIC. Procedures of type INTEGER or REAL may also
be used. In the former case, the system checks that the value of the procedure is
an integer. At present, such checking is not done for a real procedure, although
this will change in the future when a more complete type checking mechanism is
installed. Users should therefore only use these types when appropriate. An empty
variable list may also be omitted.

All user-defined procedures are automatically declared to be operators.

In order to allow users relatively easy access to the whole REDUCE source pro-
gram, system procedures are not protected against user redefinition. If a procedure
is redefined, a message

*** <procedure name> REDEFINED

is printed. If this occurs, and the user is not redefining his own procedure, he is
well advised to rename it, and possibly start over (because he has already redefined
some internal procedure whose correct functioning may be required for his job!)

149

150 CHAPTER 14. PROCEDURES

All required procedures should be defined at the top level, since they have global
scope throughout a program. In particular, an attempt to define a procedure within
a procedure will cause an error to occur.

14.1 Procedure Heading

Each procedure has a heading consisting of the word PROCEDURE (optionally
preceded by the word ALGEBRAIC), followed by the name of the procedure to be
defined, and followed by its formal parameters – the symbols that will be used in
the body of the definition to illustrate what is to be done. There are three cases:

1. No parameters. Simply follow the procedure name with a terminator (semi-
colon or dollar sign).

procedure abc;

When such a procedure is used in an expression or command, abc(), with
empty parentheses, must be written.

2. One parameter. Enclose it in parentheses or just leave at least one space,
then follow with a terminator.

procedure abc(x);

or

procedure abc x;

3. More than one parameter. Enclose them in parentheses, separated by com-
mas, then follow with a terminator.

procedure abc(x,y,z);

Referring to the last example, if later in some expression being evaluated the sym-
bols abc(u,p*q,123) appear, the operations of the procedure body will be
carried out as if X had the same value as U does, Y the same value as p*q does,
and Z the value 123. The values of X, Y, Z, after the procedure body operations are
completed are unchanged. So, normally, are the values of U, P, Q, and (of course)
123. (This is technically referred to as call by value.)

The reader will have noted the word normally a few lines earlier. The call by value
protections can be bypassed if necessary, as described elsewhere.

14.2. PROCEDURE BODY 151

14.2 Procedure Body

Following the delimiter that ends the procedure heading must be a single statement
defining the action to be performed or the value to be delivered. A terminator must
follow the statement. If it is a semicolon, the name of the procedure just defined is
printed. It is not printed if a dollar sign is used.

If the result wanted is given by a formula of some kind, the body is just that for-
mula, using the variables in the procedure heading.

Simple Example:

If f(x) is to mean (x+5)*(x+6)/(x+7), the entire procedure definition could
read

procedure f x; (x+5)*(x+6)/(x+7);

Then f(10) would evaluate to 240/17, f(a-6) to A*(A-1)/(A+1), and so
on.

More Complicated Example:

Suppose we need a function p(n,x) that, for any positive integer N, is the Legen-
dre polynomial of order n. We can define this operator using the textbook formula
defining these functions:

pn(x) =
1
n!

dn

dyn
1

(y2 − 2xy + 1)
1
2

∣∣∣∣∣
y=0

Put into words, the Legendre polynomial pn(x) is the result of substituting y = 0
in the nth partial derivative with respect to y of a certain fraction involving x and
y, then dividing that by n!.

This verbal formula can easily be written in REDUCE:

procedure p(n,x);
sub(y=0,df(1/(yˆ2-2*x*y+1)ˆ(1/2),y,n))

/(for i:=1:n product i);

Having input this definition, the expression evaluation

2p(2,w);

would result in the output

2
3*W - 1 .

152 CHAPTER 14. PROCEDURES

If the desired process is best described as a series of steps, then a group or com-
pound statement can be used.

14.3. USING LET INSIDE PROCEDURES 153

Example:

The above Legendre polynomial example can be rewritten as a series of steps in-
stead of a single formula as follows:

procedure p(n,x);
begin scalar seed,deriv,top,fact;

seed:=1/(yˆ2 - 2*x*y +1)ˆ(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

Procedures may also be defined recursively. In other words, the procedure body can
include references to the procedure name itself, or to other procedures that them-
selves reference the given procedure. As an example, we can define the Legendre
polynomial through its standard recurrence relation:

procedure p(n,x);
if n<0 then rederr "Invalid argument to P(N,X)"
else if n=0 then 1
else if n=1 then x
else ((2*n-1)*x*p(n-1,x)-(n-1)*p(n-2,x))/n;

The operator REDERR in the above example provides for a simple error exit from
an algebraic procedure (and also a block). It can take a string as argument.

It should be noted however that all the above definitions of p(n,x) are quite
inefficient if extensive use is to be made of such polynomials, since each call ef-
fectively recomputes all lower order polynomials. It would be better to store these
expressions in an array, and then use say the recurrence relation to compute only
those polynomials that have not already been derived. We leave it as an exercise
for the reader to write such a definition.

14.3 Using LET Inside Procedures

By using LET instead of an assignment in the procedure body it is possible to
bypass the call-by-value protection. If X is a formal parameter or local variable
of the procedure (i.e. is in the heading or in a local declaration), and LET is used
instead of := to make an assignment to X, e.g.

let x = 123;

154 CHAPTER 14. PROCEDURES

then it is the variable that is the value of X that is changed. This effect also occurs
with local variables defined in a block. If the value of X is not a variable, but a
more general expression, then it is that expression that is used on the left-hand side
of the LET statement. For example, if X had the value p*q, it is as if let p*q =
123 had been executed.

14.4 LET Rules as Procedures

The LET statement offers an alternative syntax and semantics for procedure defi-
nition.

In place of

procedure abc(x,y,z); <procedure body>;

one can write

for all x,y,z let abc(x,y,z) = <procedure body>;

There are several differences to note.

If the procedure body contains an assignment to one of the formal parameters, e.g.

x := 123;

in the PROCEDURE case it is a variable holding a copy of the first actual argument
that is changed. The actual argument is not changed.

In the LET case, the actual argument is changed. Thus, if ABC is defined using
LET, and abc(u,v,w) is evaluated, the value of U changes to 123. That is, the
LET form of definition allows the user to bypass the protections that are enforced
by the call by value conventions of standard PROCEDURE definitions.

Example: We take our earlier FACTORIAL procedure and write it as a LET state-
ment.

for all n let factorial n =
begin scalar m,s;
m:=1; s:=n;

l1: if s=0 then return m;
m:=m*s;
s:=s-1;
go to l1

end;

14.4. LET RULES AS PROCEDURES 155

The reader will notice that we introduced a new local variable, S, and set it equal
to N. The original form of the procedure contained the statement n:=n-1;. If the
user asked for the value of factorial(5) then N would correspond to, not just
have the value of, 5, and REDUCE would object to trying to execute the statement
5 := 5− 1.

If PQR is a procedure with no parameters,

procedure pqr;
<procedure body>;

it can be written as a LET statement quite simply:

let pqr = <procedure body>;

To call procedure PQR, if defined in the latter form, the empty parentheses would
not be used: use PQR not PQR() where a call on the procedure is needed.

The two notations for a procedure with no arguments can be combined. PQR can
be defined in the standard PROCEDURE form. Then a LET statement

let pqr = pqr();

would allow a user to use PQR instead of PQR() in calling the procedure.

A feature available with LET-defined procedures and not with procedures defined
in the standard way is the possibility of defining partial functions.

for all x such that numberp x let uvw(x)=<procedure body>;

Now UVW of an integer would be calculated as prescribed by the procedure body,
while UVW of a general argument, such as Z or p+q (assuming these evaluate to
themselves) would simply stay uvw(z) or uvw(p+q) as the case may be.

156 CHAPTER 14. PROCEDURES

Chapter 15

User Contributed Packages

The complete REDUCE system includes a number of packages contributed by
users that are provided as a service to the user community. Questions regarding
these packages should be directed to their individual authors.

All such packages have been precompiled as part of the installation process. How-
ever, many must be specifically loaded before they can be used. (Those that are
loaded automatically are so noted in their description.) You should also consult the
user notes for your particular implementation for further information on whether
this is necessary. If it is, the relevant command is LOAD PACKAGE, which takes a
list of one or more package names as argument, for example:

load_package algint;

although this syntax may vary from implementation to implementation.

Nearly all these packages come with separate documentation and test files (except
those noted here that have no additional documentation), which is included, along
with the source of the package, in the REDUCE system distribution. These items
should be studied for any additional details on the use of a particular package.

The packages available in the current release of REDUCE are as follows:

15.1 ALGINT: Integration of square roots

This package, which is an extension of the basic integration package distributed
with REDUCE, will analytically integrate a wide range of expressions involving
square roots where the answer exists in that class of functions. It is an implemen-
tation of the work described in J.H. Davenport, “On the Integration of Algebraic
Functions”, LNCS 102, Springer Verlag, 1981. Both this and the source code

157

158 CHAPTER 15. USER CONTRIBUTED PACKAGES

should be consulted for a more detailed description of this work.

Once the ALGINT package has been loaded, using LOAD PACKAGE, one enters
an expression for integration, as with the regular integrator, for example:

int(sqrt(x+sqrt(x**2+1))/x,x);

If one later wishes to integrate expressions without using the facilities of this pack-
age, the switch ALGINT should be turned off. This is turned on automatically
when the package is loaded.

The switches supported by the standard integrator (e.g., TRINT) are also sup-
ported by this package. In addition, the switch TRA, if on, will give further tracing
information about the specific functioning of the algebraic integrator.

There is no additional documentation for this package.

Author: James H. Davenport.

15.2 APPLYSYM: Infinitesimal symmetries of differen-
tial equations

This package provides programs APPLYSYM, QUASILINPDE and DETRAFO
for applying infinitesimal symmetries of differential equations, the generalization
of special solutions and the calculation of symmetry and similarity variables.

Author: Thomas Wolf.

15.3 ARNUM: An algebraic number package

This package provides facilities for handling algebraic numbers as polynomial co-
efficients in REDUCE calculations. It includes facilities for introducing indetermi-
nates to represent algebraic numbers, for calculating splitting fields, and for factor-
ing and finding greatest common divisors in such domains.

Author: Eberhard Schrüfer.

15.4 ASSIST: Useful utilities for various applications

ASSIST contains a large number of additional general purpose functions that allow
a user to better adapt REDUCE to various calculational strategies and to make the
programming task more straightforward and more efficient.

Author: Hubert Caprasse.

15.5. AVECTOR: A VECTOR ALGEBRA AND CALCULUS PACKAGE 159

15.5 AVECTOR: A vector algebra and calculus package

This package provides REDUCE with the ability to perform vector algebra using
the same notation as scalar algebra. The basic algebraic operations are supported,
as are differentiation and integration of vectors with respect to scalar variables,
cross product and dot product, component manipulation and application of scalar
functions (e.g. cosine) to a vector to yield a vector result.

Author: David Harper.

15.6 BOOLEAN: A package for boolean algebra

This package supports the computation with boolean expressions in the proposi-
tional calculus. The data objects are composed from algebraic expressions con-
nected by the infix boolean operators and, or, implies, equiv, and the unary prefix
operator not. Boolean allows you to simplify expressions built from these oper-
ators, and to test properties like equivalence, subset property etc.

Author: Herbert Melenk.

15.7 CALI: A package for computational commutative
algebra

This package contains algorithms for computations in commutative algebra closely
related to the Gröbner algorithm for ideals and modules. Its heart is a new imple-
mentation of the Gröbner algorithm that also allows for the computation of syzy-
gies. This implementation is also applicable to submodules of free modules with
generators represented as rows of a matrix.

Author: Hans-Gert Gräbe.

15.8 CAMAL: Calculations in celestial mechanics

This packages implements in REDUCE the Fourier transform procedures of the
CAMAL package for celestial mechanics.

Author: John P. Fitch.

160 CHAPTER 15. USER CONTRIBUTED PACKAGES

15.9 CHANGEVR: Change of Independent Variable(s) in
DEs

This package provides facilities for changing the independent variables in a differ-
ential equation. It is basically the application of the chain rule.

Author: G. Üçoluk.

15.10 COMPACT: Package for compacting expressions

COMPACT is a package of functions for the reduction of a polynomial in the pres-
ence of side relations. COMPACT applies the side relations to the polynomial so
that an equivalent expression results with as few terms as possible. For example,
the evaluation of

compact(s*(1-sin xˆ2)+c*(1-cos xˆ2)+sin xˆ2+cos xˆ2,
{cos xˆ2+sin xˆ2=1});

yields the result

2 2
SIN(X) *C + COS(X) *S + 1 .

Author: Anthony C. Hearn.

15.11 CRACK: Solving overdetermined systems of PDEs
or ODEs

CRACK is a package for solving overdetermined systems of partial or ordinary
differential equations (PDEs, ODEs). Examples of programs which make use
of CRACK (finding symmetries of ODEs/PDEs, first integrals, an equivalent La-
grangian or a ”differential factorization” of ODEs) are included. The application
of symmetries is also possible by using the APPLYSYM package.

Authors: Andreas Brand, Thomas Wolf.

15.12. CVIT: FAST CALCULATION OF DIRAC GAMMA MATRIX TRACES161

15.12 CVIT: Fast calculation of Dirac gamma matrix
traces

This package provides an alternative method for computing traces of Dirac gamma
matrices, based on an algorithm by Cvitanovich that treats gamma matrices as 3-j
symbols.

Authors: V.Ilyin, A.Kryukov, A.Rodionov, A.Taranov.

15.13 DEFINT: A definite integration interface

This package finds the definite integral of an expression in a stated interval. It
uses several techniques, including an innovative approach based on the Meijer G-
function, and contour integration.

Authors: Kerry Gaskell, Stanley M. Kameny, Winfried Neun.

15.14 DESIR: Differential linear homogeneous equation
solutions in the neighborhood of irregular and reg-
ular singular points

This package enables the basis of formal solutions to be computed for an ordinary
homogeneous differential equation with polynomial coefficients over Q of any or-
der, in the neighborhood of zero (regular or irregular singular point, or ordinary
point).

Documentation for this package is in plain text.

Authors: C. Dicrescenzo, F. Richard-Jung, E. Tournier.

15.15 DFPART: Derivatives of generic functions

This package supports computations with total and partial derivatives of formal
function objects. Such computations can be useful in the context of differential
equations or power series expansions.

Author: Herbert Melenk.

162 CHAPTER 15. USER CONTRIBUTED PACKAGES

15.16 DUMMY: Canonical form of expressions with dummy
variables

This package allows a user to find the canonical form of expressions involving
dummy variables. In that way, the simplification of polynomial expressions can be
fully done. The indeterminates are general operator objects endowed with as few
properties as possible. In that way the package may be used in a large spectrum of
applications.

Author: Alain Dresse.

15.17 EXCALC: A differential geometry package

EXCALC is designed for easy use by all who are familiar with the calculus of Mod-
ern Differential Geometry. The program is currently able to handle scalar-valued
exterior forms, vectors and operations between them, as well as non-scalar valued
forms (indexed forms). It is thus an ideal tool for studying differential equations,
doing calculations in general relativity and field theories, or doing simple things
such as calculating the Laplacian of a tensor field for an arbitrary given frame.

Author: Eberhard Schrüfer.

15.18 FIDE: Finite difference method for partial differ-
ential equations

This package performs automation of the process of numerically solving partial
differential equations systems (PDES) by means of computer algebra. For PDES
solving, the finite difference method is applied. The computer algebra system RE-
DUCE and the numerical programming language FORTRAN are used in the pre-
sented methodology. The main aim of this methodology is to speed up the process
of preparing numerical programs for solving PDES. This process is quite often,
especially for complicated systems, a tedious and time consuming task.

Documentation for this package is in plain text.

Author: Richard Liska.

15.19 FPS: Automatic calculation of formal power series

This package can expand a specific class of functions into their corresponding
Laurent-Puiseux series.

15.20. GENTRAN: A CODE GENERATION PACKAGE 163

Authors: Wolfram Koepf and Winfried Neun.

15.20 GENTRAN: A code generation package

GENTRAN is an automatic code GENerator and TRANslator. It constructs com-
plete numerical programs based on sets of algorithmic specifications and symbolic
expressions. Formatted FORTRAN, RATFOR, PASCAL or C code can be gener-
ated through a series of interactive commands or under the control of a template
processing routine. Large expressions can be automatically segmented into subex-
pressions of manageable size, and a special file-handling mechanism maintains
stacks of open I/O channels to allow output to be sent to any number of files si-
multaneously and to facilitate recursive invocation of the whole code generation
process.

Author: Barbara L. Gates.

15.21 GNUPLOT: Display of functions and surfaces

This package is an interface to the popular GNUPLOT package. It allows you to
display functions in 2D and surfaces in 3D on a variety of output devices including
X terminals, PC monitors, and postscript and Latex printer files.

NOTE: The GNUPLOT package may not be included in all versions of REDUCE.

Author: Herbert Melenk.

15.22 GROEBNER: A Gröbner basis package

GROEBNER is a package for the computation of Gröbner Bases using the Buch-
berger algorithm and related methods for polynomial ideals and modules. It can be
used over a variety of different coefficient domains, and for different variable and
term orderings.

Gröbner Bases can be used for various purposes in commutative algebra, e.g. for
elimination of variables, converting surd expressions to implicit polynomial form,
computation of dimensions, solution of polynomial equation systems etc. The
package is also used internally by the SOLVE operator.

Authors: Herbert Melenk, H.M. Möller and Winfried Neun.

164 CHAPTER 15. USER CONTRIBUTED PACKAGES

15.23 IDEALS: Arithmetic for polynomial ideals

This package implements the basic arithmetic for polynomial ideals by exploiting
the Gröbner bases package of REDUCE. In order to save computing time all inter-
mediate Gröbner bases are stored internally such that time consuming repetitions
are inhibited.

Author: Herbert Melenk.

15.24 INEQ: Support for solving inequalities

This package supports the operator ineq solve that tries to solves single inequalities
and sets of coupled inequalities.

Author: Herbert Melenk.

15.25 INVBASE: A package for computing involutive
bases

Involutive bases are a new tool for solving problems in connection with multivari-
ate polynomials, such as solving systems of polynomial equations and analyzing
polynomial ideals. An involutive basis of polynomial ideal is nothing but a special
form of a redundant Gröbner basis. The construction of involutive bases reduces
the problem of solving polynomial systems to simple linear algebra.

Authors: A.Yu. Zharkov and Yu.A. Blinkov.

15.26 LAPLACE: Laplace transforms

This package can calculate ordinary and inverse Laplace transforms of expressions.
Documentation is in plain text.

Authors: C. Kazasov, M. Spiridonova, V. Tomov.

15.27 LIE: Functions for the classification of real n-dimensional
Lie algebras

LIE is a package of functions for the classification of real n-dimensional Lie al-
gebras. It consists of two modules: liendmc1 and lie1234. With the help of the

15.28. LIMITS: A PACKAGE FOR FINDING LIMITS 165

functions in the liendmcl module, real n-dimensional Lie algebras Lwith a derived
algebra L(1) of dimension 1 can be classified.

Authors: Carsten and Franziska Schöbel.

15.28 LIMITS: A package for finding limits

LIMITS is a fast limit package for REDUCE for functions which are continuous
except for computable poles and singularities, based on some earlier work by Ian
Cohen and John P. Fitch. The Truncated Power Series package is used for non-
critical points, at which the value of the function is the constant term in the expan-
sion around that point. L’Hôpital’s rule is used in critical cases, with preprocessing
of ∞ −∞ forms and reformatting of product forms in order to be able to apply
l’Hôpital’s rule. A limited amount of bounded arithmetic is also employed where
applicable.

This package defines a LIMIT operator, called with the syntax:

LIMIT(EXPRN:algebraic,VAR:kernel,LIMPOINT:algebraic):
algebraic.

For example:

limit(x*sin(1/x),x,infinity) -> 1
limit(sin x/xˆ2,x,0) -> INFINITY

Direction-dependent limit operators LIMIT!+ and LIMIT!- are also defined.

This package loads automatically.

Author: Stanley L. Kameny.

15.29 LINALG: Linear algebra package

This package provides a selection of functions that are useful in the world of linear
algebra.

Author: Matt Rebbeck.

15.30 MODSR: Modular solve and roots

This package supports solve (M SOLVE) and roots (M ROOTS) operators for
modular polynomials and modular polynomial systems. The moduli need not be

166 CHAPTER 15. USER CONTRIBUTED PACKAGES

primes. M SOLVE requires a modulus to be set. M ROOTS takes the modulus as
a second argument. For example:

on modular; setmod 8;
m_solve(2x=4); -> {{X=2},{X=6}}
m_solve({xˆ2-yˆ3=3});

-> {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}}
m_solve({x=2,xˆ2-yˆ3=3}); -> {{X=2,Y=1}}
off modular;
m_roots(xˆ2-1,8); -> {1,3,5,7}
m_roots(xˆ3-x,7); -> {0,1,6}

There is no further documentation for this package.

Author: Herbert Melenk.

15.31 NCPOLY: Non–commutative polynomial ideals

This package allows the user to set up automatically a consistent environment for
computing in an algebra where the non–commutativity is defined by Lie-bracket
commutators. The package uses the REDUCE noncom mechanism for elementary
polynomial arithmetic; the commutator rules are automatically computed from the
Lie brackets.

Authors: Herbert Melenk and Joachim Apel.

15.32 NORMFORM: Computation of matrix normal forms

This package contains routines for computing the following normal forms of ma-
trices:

• smithex int

• smithex

• frobenius

• ratjordan

• jordansymbolic

• jordan.

Author: Matt Rebbeck.

15.33. NUMERIC: SOLVING NUMERICAL PROBLEMS 167

15.33 NUMERIC: Solving numerical problems

This package implements basic algorithms of numerical analysis. These include:

• solution of algebraic equations by Newton’s method

num_solve({sin x=cos y, x + y = 1},{x=1,y=2})

• solution of ordinary differential equations

num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5)

• bounds of a function over an interval

bounds(sin x+x,x=(1 .. 2));

• minimizing a function (Fletcher Reeves steepest descent)

num_min(sin(x)+x/5, x);

• Chebyshev curve fitting

chebyshev_fit(sin x/x,x=(1 .. 3),5);

• numerical quadrature

num_int(sin x,x=(0 .. pi));

Author: Herbert Melenk.

15.34 ODESOLVE:
Ordinary differential equations solver

The ODESOLVE package is a solver for ordinary differential equations. At the
present time it has very limited capabilities. It can handle only a single scalar
equation presented as an algebraic expression or equation, and it can solve only
first-order equations of simple types, linear equations with constant coefficients and
Euler equations. These solvable types are exactly those for which Lie symmetry
techniques give no useful information. For example, the evaluation of

depend(y,x);
odesolve(df(y,x)=x**2+e**x,y,x);

168 CHAPTER 15. USER CONTRIBUTED PACKAGES

yields the result

X 3
3*E + 3*ARBCONST(1) + X

{Y=---------------------------}
3

Main Author: Malcolm A.H. MacCallum.

Other contributors: Francis Wright, Alan Barnes.

15.35 ORTHOVEC: Manipulation of scalars and vectors

ORTHOVEC is a collection of REDUCE procedures and operations which provide
a simple-to-use environment for the manipulation of scalars and vectors. Opera-
tions include addition, subtraction, dot and cross products, division, modulus, div,
grad, curl, laplacian, differentiation, integration, and Taylor expansion.

Author: James W. Eastwood.

15.36 PHYSOP: Operator calculus in quantum theory

This package has been designed to meet the requirements of theoretical physicists
looking for a computer algebra tool to perform complicated calculations in quan-
tum theory with expressions containing operators. These operations consist mainly
of the calculation of commutators between operator expressions and in the evalua-
tions of operator matrix elements in some abstract space.

Author: Mathias Warns.

15.37 PM: A REDUCE pattern matcher

PM is a general pattern matcher similar in style to those found in systems such
as SMP and Mathematica, and is based on the pattern matcher described in Kevin
McIsaac, “Pattern Matching Algebraic Identities”, SIGSAM Bulletin, 19 (1985),
4-13.

Documentation for this package is in plain text.

Author: Kevin McIsaac.

15.38. RANDPOLY: A RANDOM POLYNOMIAL GENERATOR 169

15.38 RANDPOLY: A random polynomial generator

This package is based on a port of the Maple random polynomial generator together
with some support facilities for the generation of random numbers and anonymous
procedures.

Author: Francis J. Wright.

15.39 REACTEQN: Support for chemical reaction equat-
ion systems

This package allows a user to transform chemical reaction systems into ordinary
differential equation systems (ODE) corresponding to the laws of pure mass action.

Documentation for this package is in plain text.

Author: Herbert Melenk.

15.40 RESET: Code to reset REDUCE to its initial state

This package defines a command RESETREDUCE that works through the history
of previous commands, and clears any values which have been assigned, plus any
rules, arrays and the like. It also sets the various switches to their initial values. It
is not complete, but does work for most things that cause a gradual loss of space. It
would be relatively easy to make it interactive, so allowing for selective resetting.

There is no further documentation on this package.

Author: John Fitch.

15.41 RESIDUE: A residue package

This package supports the calculation of residues of arbitrary expressions.

Author: Wolfram Koepf.

15.42 RLFI: REDUCE LaTeX formula interface

This package adds LATEX syntax to REDUCE. Text generated by REDUCE in this
mode can be directly used in LATEX source documents. Various mathematical con-
structions are supported by the interface including subscripts, superscripts, font

170 CHAPTER 15. USER CONTRIBUTED PACKAGES

changing, Greek letters, divide-bars, integral and sum signs, derivatives, and so on.

Author: Richard Liska.

15.43 ROOTS: A REDUCE root finding package

This root finding package can be used to find some or all of the roots of a univariate
polynomial with real or complex coefficients, to the accuracy specified by the user.

It is designed so that it can be used as an independent package, or it may be called
from SOLVE if ROUNDED is on. For example, the evaluation of

on rounded,complex;
solve(x**3+x+5,x);

yields the result

{X= - 1.51598,X=0.75799 + 1.65035*I,X=0.75799 - 1.65035*I}

This package loads automatically.

Author: Stanley L. Kameny.

15.44 RSOLVE:
Rational/integer polynomial solvers

This package provides operators that compute the exact rational zeros of a single
univariate polynomial using fast modular methods. The algorithm used is that
described by R. Loos (1983): Computing rational zeros of integral polynomials by
p-adic expansion, SIAM J. Computing, 12, 286–293.

Author: Francis J. Wright.

15.45 SCOPE: REDUCE source code optimization pack-
age

SCOPE is a package for the production of an optimized form of a set of expres-
sions. It applies an heuristic search for common (sub)expressions to almost any set
of proper REDUCE assignment statements. The output is obtained as a sequence
of assignment statements. GENTRAN is used to facilitate expression output.

Author: J.A. van Hulzen.

15.46. SETS: A BASIC SET THEORY PACKAGE 171

15.46 SETS: A basic set theory package

The SETS package provides algebraic-mode support for set operations on lists re-
garded as sets (or representing explicit sets) and on implicit sets represented by
identifiers.

Author: Francis J. Wright.

15.47 SPDE: Finding symmetry groups of PDE’s

The package SPDE provides a set of functions which may be used to determine
the symmetry group of Lie- or point-symmetries of a given system of partial dif-
ferential equations. In many cases the determining system is solved completely
automatically. In other cases the user has to provide additional input information
for the solution algorithm to terminate.

Author: Fritz Schwarz.

15.48 SPECFN: Package for special functions

This special function package is separated into two portions to make it easier to
handle. The packages are called SPECFN and SPECFN2. The first one is more
general in nature, whereas the second is devoted to special special functions. Doc-
umentation for the first package can be found in the file specfn.tex in the “doc”
directory, and examples in specfn.tst and specfmor.tst in the examples directory.

The package SPECFN is designed to provide algebraic and numerical manipula-
tions of several common special functions, namely:

• Bernoulli Numbers and Euler Numbers;

• Stirling Numbers;

• Binomial Coefficients;

• Pochhammer notation;

• The Gamma function;

• The Psi function and its derivatives;

• The Riemann Zeta function;

• The Bessel functions J and Y of the first and second kind;

172 CHAPTER 15. USER CONTRIBUTED PACKAGES

• The modified Bessel functions I and K;

• The Hankel functions H1 and H2;

• The Kummer hypergeometric functions M and U;

• The Beta function, and Struve, Lommel and Whittaker functions;

• The Airy functions;

• The Exponential Integral, the Sine and Cosine Integrals;

• The Hyperbolic Sine and Cosine Integrals;

• The Fresnel Integrals and the Error function;

• The Dilog function;

• Hermite Polynomials;

• Jacobi Polynomials;

• Legendre Polynomials;

• Spherical and Solid Harmonics;

• Laguerre Polynomials;

• Chebyshev Polynomials;

• Gegenbauer Polynomials;

• Euler Polynomials;

• Bernoulli Polynomials.

• Jacobi Elliptic Functions and Integrals;

• 3j symbols, 6j symbols and Clebsch Gordan coefficients;

Author: Chris Cannam, with contributions from Winfried Neun, Herbert Melenk,
Victor Adamchik, Francis Wright and several others.

15.49 SPECFN2: Package for special special functions

This package provides algebraic manipulations of generalized hypergeometric
functions and Meijer’s G function. Generalized hypergeometric functions are sim-
plified towards special functions and Meijer’s G function is simplified towards spe-
cial functions or generalized hypergeometric functions.

Author: Victor Adamchik, with major updates by Winfried Neun.

15.50. SUM: A PACKAGE FOR SERIES SUMMATION 173

15.50 SUM: A package for series summation

This package implements the Gosper algorithm for the summation of series. It
defines operators SUM and PROD. The operator SUM returns the indefinite or defi-
nite summation of a given expression, and PROD returns the product of the given
expression.

This package loads automatically.

Author: Fujio Kako.

15.51 SYMMETRY: Operations on symmetric matrices

This package computes symmetry-adapted bases and block diagonal forms of ma-
trices which have the symmetry of a group. The package is the implementation
of the theory of linear representations for small finite groups such as the dihedral
groups.

Author: Karin Gatermann.

15.52 TAYLOR: Manipulation of Taylor series

This package carries out the Taylor expansion of an expression in one or more
variables and efficient manipulation of the resulting Taylor series. Capabilities
include basic operations (addition, subtraction, multiplication and division) and
also application of certain algebraic and transcendental functions.

Author: Rainer Schöpf.

15.53 TPS: A truncated power series package

This package implements formal Laurent series expansions in one variable using
the domain mechanism of REDUCE. This means that power series objects can be
added, multiplied, differentiated etc., like other first class objects in the system.
A lazy evaluation scheme is used and thus terms of the series are not evaluated
until they are required for printing or for use in calculating terms in other power
series. The series are extendible giving the user the impression that the full infinite
series is being manipulated. The errors that can sometimes occur using series that
are truncated at some fixed depth (for example when a term in the required series
depends on terms of an intermediate series beyond the truncation depth) are thus
avoided.

174 CHAPTER 15. USER CONTRIBUTED PACKAGES

Authors: Alan Barnes and Julian Padget.

15.54 TRI: TeX REDUCE interface

This package provides facilities written in REDUCE-Lisp for typesetting RE-
DUCE formulas using TEX. The TEX-REDUCE-Interface incorporates three levels
of TEXoutput: without line breaking, with line breaking, and with line breaking
plus indentation.

Author: Werner Antweiler.

15.55 TRIGSIMP: Simplification and factorization of trigono-
metric and hyperbolic functions

TRIGSIMP is a useful tool for all kinds of trigonometric and hyperbolic simpli-
fication and factorization. There are three procedures included in TRIGSIMP:
trigsimp, trigfactorize and triggcd. The first is for finding simplifications of
trigonometric or hyperbolic expressions with many options, the second for factoriz-
ing them and the third for finding the greatest common divisor of two trigonometric
or hyperbolic polynomials.

Author: Wolfram Koepf.

15.56 WU: Wu algorithm for polynomial systems

This is a simple implementation of the Wu algorithm implemented in REDUCE
working directly from “A Zero Structure Theorem for Polynomial-Equations-
Solving,” Wu Wen-tsun, Institute of Systems Science, Academia Sinica, Beijing.

Author: Russell Bradford.

15.57 XCOLOR: Color factor in some field theories

This package calculates the color factor in non-abelian gauge field theories using
an algorithm due to Cvitanovich.

Documentation for this package is in plain text.

Author: A. Kryukov.

15.58. XIDEAL: GRÖBNER BASES FOR EXTERIOR ALGEBRA 175

15.58 XIDEAL: Gröbner Bases for exterior algebra

XIDEAL constructs Gröbner bases for solving the left ideal membership problem:
Gröbner left ideal bases or GLIBs. For graded ideals, where each form is homo-
geneous in degree, the distinction between left and right ideals vanishes. Further-
more, if the generating forms are all homogeneous, then the Gröbner bases for the
non-graded and graded ideals are identical. In this case, XIDEAL is able to save
time by truncating the Gröbner basis at some maximum degree if desired.

Author: David Hartley.

15.59 ZEILBERG: A package for indefinite and definite
summation

This package is a careful implementation of the Gosper and Zeilberger algorithms
for indefinite and definite summation of hypergeometric terms, respectively. Ex-
tensions of these algorithms are also included that are valid for ratios of products
of powers, factorials, Γ function terms, binomial coefficients, and shifted factorials
that are rational-linear in their arguments.

Authors: Gregor Stölting and Wolfram Koepf.

15.60 ZTRANS: Z-transform package

This package is an implementation of the Z-transform of a sequence. This is the
discrete analogue of the Laplace Transform.

Authors: Wolfram Koepf and Lisa Temme.

176 CHAPTER 15. USER CONTRIBUTED PACKAGES

Chapter 16

Symbolic Mode

At the system level, REDUCE is based on a version of the programming language
Lisp known as Standard Lisp which is described in J. Marti, Hearn, A. C., Griss,
M. L. and Griss, C., “Standard LISP Report” SIGPLAN Notices, ACM, New York,
14, No 10 (1979) 48-68. We shall assume in this section that the reader is familiar
with the material in that paper. This also assumes implicitly that the reader has
a reasonable knowledge about Lisp in general, say at the level of the LISP 1.5
Programmer’s Manual (McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T.
P. and Levin, M. I., “LISP 1.5 Programmer’s Manual”, M.I.T. Press, 1965) or any
of the books mentioned at the end of this section. Persons unfamiliar with this
material will have some difficulty understanding this section.

Although REDUCE is designed primarily for algebraic calculations, its source lan-
guage is general enough to allow for a full range of Lisp-like symbolic calculations.
To achieve this generality, however, it is necessary to provide the user with two
modes of evaluation, namely an algebraic mode and a symbolic mode. To enter
symbolic mode, the user types symbolic; (or lisp;) and to return to algebraic
mode one types algebraic;. Evaluations proceed differently in each mode so
the user is advised to check what mode he is in if a puzzling error arises. He can
find his mode by typing

eval_mode;

The current mode will then be printed as ALGEBRAIC or SYMBOLIC.

Expression evaluation may proceed in either mode at any level of a calculation,
provided the results are passed from mode to mode in a compatible manner. One
simply prefixes the relevant expression by the appropriate mode. If the mode name
prefixes an expression at the top level, it will then be handled as if the global system
mode had been changed for the scope of that particular calculation.

For example, if the current mode is ALGEBRAIC, then the commands

177

178 CHAPTER 16. SYMBOLIC MODE

symbolic car ’(a);
x+y;

will cause the first expression to be evaluated and printed in symbolic mode and
the second in algebraic mode. Only the second evaluation will thus affect the
expression workspace. On the other hand, the statement

x + symbolic car ’(12);

will result in the algebraic value X+12.

The use of SYMBOLIC (and equivalently ALGEBRAIC) in this manner is the same
as any operator. That means that parentheses could be omitted in the above ex-
amples since the meaning is obvious. In other cases, parentheses must be used, as
in

symbolic(x := ’a);

Omitting the parentheses, as in

symbolic x := a;

would be wrong, since it would parse as

symbolic(x) := a;

For convenience, it is assumed that any operator whose first argument is quoted is
being evaluated in symbolic mode, regardless of the mode in effect at that time.
Thus, the first example above could be equally well written:

car ’(a);

Except where explicit limitations have been made, most REDUCE algebraic con-
structions carry over into symbolic mode. However, there are some differences.
First, expression evaluation now becomes Lisp evaluation. Secondly, assignment
statements are handled differently, as we shall discuss shortly. Thirdly, local vari-
ables and array elements are initialized to NIL rather than 0. (In fact, any variables
not explicitly declared INTEGER are also initialized to NIL in algebraic mode, but
the algebraic evaluator recognizes NIL as 0.) Finally, function definitions follow
the conventions of Standard Lisp.

To begin with, we mention a few extensions to our basic syntax which are designed
primarily if not exclusively for symbolic mode.

16.1. SYMBOLIC INFIX OPERATORS 179

16.1 Symbolic Infix Operators

There are three binary infix operators in REDUCE intended for use in symbolic
mode, namely . (CONS), EQ and MEMQ. The precedence of these operators
was given in another section.

16.2 Symbolic Expressions

These consist of scalar variables and operators and follow the normal rules of the
Lisp meta language.

Examples:

x
car u . reverse v
simp (u+vˆ2)

16.3 Quoted Expressions

Because symbolic evaluation requires that each variable or expression has a value,
it is necessary to add to REDUCE the concept of a quoted expression by analogy
with the Lisp QUOTE function. This is provided by the single quote mark ’. For
example,

’a represents the Lisp S-expression (quote a)
’(a b c) represents the Lisp S-expression (quote (a b c))

Note, however, that strings are constants and therefore evaluate to themselves in
symbolic mode. Thus, to print the string "A String", one would write

prin2 "A String";

Within a quoted expression, identifier syntax rules are those of REDUCE. Thus
(A !. B) is the list consisting of the three elements A, ., and B, whereas (A
. B) is the dotted pair of A and B.

16.4 Lambda Expressions

LAMBDA expressions provide the means for constructing Lisp LAMBDA expres-
sions in symbolic mode. They may not be used in algebraic mode.

180 CHAPTER 16. SYMBOLIC MODE

Syntax:

<LAMBDA expression> ::=
LAMBDA <varlist><terminator><statement>

where

<varlist> ::= (<variable>,...,<variable>)

e.g.,

lambda (x,y); car x . cdr y;

is equivalent to the Lisp LAMBDA expression

(lambda (x y) (cons (car x) (cdr y)))

The parentheses may be omitted in specifying the variable list if desired.

LAMBDA expressions may be used in symbolic mode in place of prefix operators,
or as an argument of the reserved word FUNCTION.

In those cases where a LAMBDA expression is used to introduce local variables
to avoid recomputation, a WHERE statement can also be used. For example, the
expression

(lambda (x,y); list(car x,cdr x,car y,cdr y))
(reverse u,reverse v)

can also be written

{car x,cdr x,car y,cdr y} where x=reverse u,y=reverse v

Where possible, WHERE syntax is preferred to LAMBDA syntax, since it is more
natural.

16.5 Symbolic Assignment Statements

In symbolic mode, if the left side of an assignment statement is a variable, a SETQ
of the right-hand side to that variable occurs. If the left-hand side is an expression,
it must be of the form of an array element, otherwise an error will result. For exam-
ple, x:=y translates into (SETQ X Y) whereas a(3) := 3 will be valid if A
has been previously declared a single dimensioned array of at least four elements.

16.6. FOR EACH STATEMENT 181

16.6 FOR EACH Statement

The FOR EACH form of the FOR statement, designed for iteration down a list, is
more general in symbolic mode. Its syntax is:

FOR EACH ID:identifier {IN|ON} LST:list
{DO|COLLECT|JOIN|PRODUCT|SUM} EXPRN:S-expr

As in algebraic mode, if the keyword IN is used, iteration is on each element of the
list. With ON, iteration is on the whole list remaining at each point in the iteration.
As a result, we have the following equivalence between each form of FOR EACH
and the various mapping functions in Lisp:

DO COLLECT JOIN
IN MAPC MAPCAR MAPCAN
ON MAP MAPLIST MAPCON

Example: To list each element of the list (a b c):

for each x in ’(a b c) collect list x;

16.7 Symbolic Procedures

All the functions described in the Standard Lisp Report are available to users in
symbolic mode. Additional functions may also be defined as symbolic procedures.
For example, to define the Lisp function ASSOC, the following could be used:

symbolic procedure assoc(u,v);
if null v then nil
else if u = caar v then car v
else assoc(u, cdr v);

If the default mode were symbolic, then SYMBOLIC could be omitted in the above
definition. MACROs may be defined by prefixing the keyword PROCEDURE by the
word MACRO. (In fact, ordinary functions may be defined with the keyword EXPR
prefixing PROCEDURE as was used in the Standard Lisp Report.) For example, we
could define a MACRO CONSCONS by

symbolic macro procedure conscons l;
expand(cdr l,’cons);

182 CHAPTER 16. SYMBOLIC MODE

Another form of macro, the SMACRO is also available. These are described in the
Standard Lisp Report. The Report also defines a function type FEXPR. However,
its use is discouraged since it is hard to implement efficiently, and most uses can be
replaced by macros. At the present time, there are no FEXPRs in the core REDUCE
system.

16.8 Standard Lisp Equivalent of Reduce Input

A user can obtain the Standard Lisp equivalent of his REDUCE input by turning
on the switch DEFN (for definition). The system then prints the Lisp translation
of his input but does not evaluate it. Normal operation is resumed when DEFN is
turned off.

16.9 Communicating with Algebraic Mode

One of the principal motivations for a user of the algebraic facilities of REDUCE to
learn about symbolic mode is that it gives one access to a wider range of techniques
than is possible in algebraic mode alone. For example, if a user wishes to use parts
of the system defined in the basic system source code, or refine their algebraic
code definitions to make them more efficient, then it is necessary to understand the
source language in fairly complete detail. Moreover, it is also necessary to know a
little more about the way REDUCE operates internally. Basically, REDUCE con-
siders expressions in two forms: prefix form, which follow the normal Lisp rules
of function composition, and so-called canonical form, which uses a completely
different syntax.

Once these details are understood, the most critical problem faced by a user is how
to make expressions and procedures communicate between symbolic and algebraic
mode. The purpose of this section is to teach a user the basic principles for this.

If one wants to evaluate an expression in algebraic mode, and then use that ex-
pression in symbolic mode calculations, or vice versa, the easiest way to do this
is to assign a variable to that expression whose value is easily obtainable in both
modes. To facilitate this, a declaration SHARE is available. SHARE takes a list of
identifiers as argument, and marks these variables as having recognizable values in
both modes. The declaration may be used in either mode.

E.g.,

share x,y;

says that X and Y will receive values to be used in both modes.

16.9. COMMUNICATING WITH ALGEBRAIC MODE 183

If a SHARE declaration is made for a variable with a previously assigned algebraic
value, that value is also made available in symbolic mode.

16.9.1 Passing Algebraic Mode Values to Symbolic Mode

If one wishes to work with parts of an algebraic mode expression in symbolic
mode, one simply makes an assignment of a shared variable to the relevant expres-
sion in algebraic mode. For example, if one wishes to work with (a+b)ˆ2, one
would say, in algebraic mode:

x := (a+b)ˆ2;

assuming that Xwas declared shared as above. If we now change to symbolic mode
and say

x;

its value will be printed as a prefix form with the syntax:

(*SQ <standard quotient> T)

This particular format reflects the fact that the algebraic mode processor currently
likes to transfer prefix forms from command to command, but doesn’t like to re-
convert standard forms (which represent polynomials) and standard quotients back
to a true Lisp prefix form for the expression (which would result in excessive com-
putation). So *SQ is used to tell the algebraic processor that it is dealing with a
prefix form which is really a standard quotient and the second argument (T or NIL)
tells it whether it needs further processing (essentially, an already simplified flag).

So to get the true standard quotient form in symbolic mode, one needs CADR of the
variable. E.g.,

z := cadr x;

would store in Z the standard quotient form for (a+b)ˆ2.

Once you have this expression, you can now manipulate it as you wish. To facilitate
this, a standard set of selectors and constructors are available for getting at parts of
the form. Those presently defined are as follows:

184 CHAPTER 16. SYMBOLIC MODE

REDUCE Selectors

DENR denominator of standard quotient

LC leading coefficient of polynomial

LDEG leading degree of polynomial

LPOW leading power of polynomial

LT leading term of polynomial

MVAR main variable of polynomial

NUMR numerator (of standard quotient)

PDEG degree of a power

RED reductum of polynomial

TC coefficient of a term

TDEG degree of a term

TPOW power of a term

REDUCE Constructors

.+ add a term to a polynomial

./ divide (two polynomials to get quotient)

.* multiply power by coefficient to produce term

.ˆ raise a variable to a power

For example, to find the numerator of the standard quotient above, one could say:

numr z;

or to find the leading term of the numerator:

lt numr z;

Conversion between various data structures is facilitated by the use of a set of
functions defined for this purpose. Those currently implemented include:

16.9. COMMUNICATING WITH ALGEBRAIC MODE 185

!*A2F convert an algebraic expression to a standard form. If result is
rational, an error results;

!*A2K converts an algebraic expression to a kernel. If this is not possible,
an error results;

!*F2A converts a standard form to an algebraic expression;

!*F2Q convert a standard form to a standard quotient;

!*K2F convert a kernel to a standard form;

!*K2Q convert a kernel to a standard quotient;

!*P2F convert a standard power to a standard form;

!*P2Q convert a standard power to a standard quotient;

!*Q2F convert a standard quotient to a standard form. If the quotient de-
nominator is not 1, an error results;

!*Q2K convert a standard quotient to a kernel. If this is not possible, an
error results;

!*T2F convert a standard term to a standard form

!*T2Q convert a standard term to a standard quotient.

16.9.2 Passing Symbolic Mode Values to Algebraic Mode

In order to pass the value of a shared variable from symbolic mode to algebraic
mode, the only thing to do is make sure that the value in symbolic mode is a
prefix expression. E.g., one uses (expt (plus a b) 2) for (a+b)ˆ2, or
the format (*sq <standard quotient> t) as described above. However, if
you have been working with parts of a standard form they will probably not be in
this form. In that case, you can do the following:

1. If it is a standard quotient, call PREPSQ on it. This takes a standard quo-
tient as argument, and returns a prefix expression. Alternatively, you can
call MK!*SQ on it, which returns a prefix form like (*SQ <standard
quotient> T) and avoids translation of the expression into a true prefix
form.

2. If it is a standard form, call PREPF on it. This takes a standard form as
argument, and returns the equivalent prefix expression. Alternatively, you
can convert it to a standard quotient and then call MK!*SQ.

3. If it is a part of a standard form, you must usually first build up a standard
form out of it, and then go to step 2. The conversion functions described

186 CHAPTER 16. SYMBOLIC MODE

earlier may be used for this purpose. For example,

(a) If Z is an expression which is a term, !*T2F Z is a standard form.

(b) If Z is a standard power, !*P2F Z is a standard form.

(c) If Z is a variable, you can pass it direct to algebraic mode.

For example, to pass the leading term of (a+b)ˆ2 back to algebraic mode, one
could say:

y:= mk!*sq !*t2q lt numr z;

where Y has been declared shared as above. If you now go back to algebraic mode,
you can work with Y in the usual way.

16.9.3 Complete Example

The following is the complete code for doing the above steps. The end result will
be that the square of the leading term of (a+ b)2 is calculated.

share x,y; % declare X and Y as shared
x := (a+b)ˆ2; % store (a+b)ˆ2 in X
symbolic; % transfer to symbolic mode
z := cadr x; % store a true standard quotient in Z
lt numr z; % print the leading term of the

% numerator of Z
y := mk!*sq !*t2q lt numr z; % store the prefix form of this

% leading term in Y
algebraic; % return to algebraic mode
yˆ2; % evaluate square of the leading term

% of (a+b)ˆ2

16.9.4 Defining Procedures for Intermode Communication

If one wishes to define a procedure in symbolic mode for use as an operator in alge-
braic mode, it is necessary to declare this fact to the system by using the declaration
OPERATOR in symbolic mode. Thus

symbolic operator leadterm;

would declare the procedure LEADTERM as an algebraic operator. This declaration
must be made in symbolic mode as the effect in algebraic mode is different. The
value of such a procedure must be a prefix form.

16.9. COMMUNICATING WITH ALGEBRAIC MODE 187

The algebraic processor will pass arguments to such procedures in prefix form.
Therefore if you want to work with the arguments as standard quotients you must
first convert them to that form by using the function SIMP!*. This function takes
a prefix form as argument and returns the evaluated standard quotient.

For example, if you want to define a procedure LEADTERMwhich gives the leading
term of an algebraic expression, one could do this as follows:

symbolic operator leadterm; % Declare LEADTERM as a symbolic
% mode procedure to be used in
% algebraic mode.

symbolic procedure leadterm u; % Define LEADTERM.
mk!*sq !*t2q lt numr simp!* u;

Note that this operator has a different effect than the operator LTERM . In the latter
case, the calculation is done with respect to the second argument of the operator. In
the example here, we simply extract the leading term with respect to the system’s
choice of main variable.

Finally, if you wish to use the algebraic evaluator on an argument in a symbolic
mode definition, the function REVAL can be used. The one argument of REVAL
must be the prefix form of an expression. REVAL returns the evaluated expression
as a true Lisp prefix form.

188 CHAPTER 16. SYMBOLIC MODE

16.10 Rlisp ’88

Rlisp ’88 is a superset of the Rlisp that has been traditionally used for the support
of REDUCE. It is fully documented in the book Marti, J.B., “RLISP ’88: An Evo-
lutionary Approach to Program Design and Reuse”, World Scientific, Singapore
(1993). Rlisp ’88 adds to the traditional Rlisp the following facilities:

1. more general versions of the looping constructs for, repeat and while;

2. support for a backquote construct;

3. support for active comments;

4. support for vectors of the form name[index];

5. support for simple structures;

6. support for records.

In addition, “–” is a letter in Rlisp ’88. In other words, A-B is an identifier, not
the difference of the identifiers A and B. If the latter construct is required, it is
necessary to put spaces around the - character. For compatibility between the two
versions of Rlisp, we recommend this convention be used in all symbolic mode
programs.

To use Rlisp ’88, type on rlisp88;. This switches to symbolic mode with the
Rlisp ’88 syntax and extensions. While in this environment, it is impossible to
switch to algebraic mode, or prefix expressions by “algebraic”. However, symb-
olic mode programs written in Rlisp ’88 may be run in algebraic mode provided the
rlisp88 package has been loaded. We also expect that many of the extensions de-
fined in Rlisp ’88 will migrate to the basic Rlisp over time. To return to traditional
Rlisp or to switch to algebraic mode, say “off rlisp88”.

16.11. REFERENCES 189

16.11 References

There are a number of useful books which can give you further information about
LISP. Here is a selection:

Allen, J.R., “The Anatomy of LISP”, McGraw Hill, New York, 1978.

McCarthy J., P.W. Abrahams, J. Edwards, T.P. Hart and M.I. Levin, “LISP 1.5
Programmer’s Manual”, M.I.T. Press, 1965.

Touretzky, D.S, “LISP: A Gentle Introduction to Symbolic Computation”, Harper
& Row, New York, 1984.

Winston, P.H. and Horn, B.K.P., “LISP”, Addison-Wesley, 1981.

190 CHAPTER 16. SYMBOLIC MODE

Chapter 17

Calculations in High Energy
Physics

A set of REDUCE commands is provided for users interested in symbolic calcula-
tions in high energy physics. Several extensions to our basic syntax are necessary,
however, to allow for the different data structures encountered.

17.1 High Energy Physics Operators

We begin by introducing three new operators required in these calculations.

17.1.1 . (Cons) Operator

Syntax:

(EXPRN1:vector_expression)
. (EXPRN2:vector_expression):algebraic.

The binary . operator, which is normally used to denote the addition of an element
to the front of a list, can also be used in algebraic mode to denote the scalar product
of two Lorentz four-vectors. For this to happen, the second argument must be
recognizable as a vector expression at the time of evaluation. With this meaning,
this operator is often referred to as the dot operator. In the present system, the index
handling routines all assume that Lorentz four-vectors are used, but these routines
could be rewritten to handle other cases.

Components of vectors can be represented by including representations of unit vec-
tors in the system. Thus if EO represents the unit vector (1,0,0,0), (p.eo)
represents the zeroth component of the four-vector P. Our metric and notation fol-

191

192 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

lows Bjorken and Drell “Relativistic Quantum Mechanics” (McGraw-Hill, New
York, 1965). Similarly, an arbitrary component P may be represented by (p.u).
If contraction over components of vectors is required, then the declaration INDEX
must be used. Thus

index u;

declares U as an index, and the simplification of

p.u * q.u

would result in

P.Q

The metric tensor gµν may be represented by (u.v). If contraction over U and V
is required, then they should be declared as indices.

Errors occur if indices are not properly matched in expressions.

If a user later wishes to remove the index property from specific vectors, he can
do it with the declaration REMIND. Thus remind v1...vn; removes the index
flags from the variables V1 through Vn. However, these variables remain vectors
in the system.

17.1.2 G Operator for Gamma Matrices

Syntax:

G(ID:identifier[,EXPRN:vector_expression])
:gamma_matrix_expression.

G is an n-ary operator used to denote a product of γ matrices contracted with
Lorentz four-vectors. Gamma matrices are associated with fermion lines in a Feyn-
man diagram. If more than one such line occurs, then a different set of γ matrices
(operating in independent spin spaces) is required to represent each line. To facil-
itate this, the first argument of G is a line identification identifier (not a number)
used to distinguish different lines.

Thus

g(l1,p) * g(l2,q)

denotes the product of γ.p associated with a fermion line identified as L1, and
γ.q associated with another line identified as L2 and where p and q are Lorentz

17.2. VECTOR VARIABLES 193

four-vectors. A product of γ matrices associated with the same line may be written
in a contracted form.

Thus

g(l1,p1,p2,...,p3) = g(l1,p1)*g(l1,p2)*...*g(l1,p3) .

The vector A is reserved in arguments of G to denote the special γ matrix γ5. Thus

g(l,a) = γ5 associated with the line L

g(l,p,a) = γ.p ×γ5 associated with the line L.

γµ (associated with the line L) may be written as g(l,u), with U flagged as an
index if contraction over U is required.

The notation of Bjorken and Drell is assumed in all operations involving γ matri-
ces.

17.1.3 EPS Operator

Syntax:

EPS(EXPRN1:vector_expression,...,EXPRN4:vector_exp)
:vector_exp.

The operator EPS has four arguments, and is used only to denote the completely
antisymmetric tensor of order 4 and its contraction with Lorentz four-vectors. Thus

εijkl =

+1 if i, j, k, l is an even permutation of 0,1,2,3
−1 if an odd permutation
0 otherwise

A contraction of the form εijµνpµqν may be written as eps(i,j,p,q), with I
and J flagged as indices, and so on.

17.2 Vector Variables

Apart from the line identification identifier in the G operator, all other arguments
of the operators in this section are vectors. Variables used as such must be declared
so by the type declaration VECTOR, for example:

vector p1,p2;

194 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

declares P1 and P2 to be vectors. Variables declared as indices or given a mass are
automatically declared vector by these declarations.

17.3 Additional Expression Types

Two additional expression types are necessary for high energy calculations, namely

17.3.1 Vector Expressions

These follow the normal rules of vector combination. Thus the product of a scalar
or numerical expression and a vector expression is a vector, as are the sum and
difference of vector expressions. If these rules are not followed, error messages are
printed. Furthermore, if the system finds an undeclared variable where it expects
a vector variable, it will ask the user in interactive mode whether to make that
variable a vector or not. In batch mode, the declaration will be made automatically
and the user informed of this by a message.

Examples:

Assuming P and Q have been declared vectors, the following are vector expressions

p
2*q/3
2*x*y*p - p.q*q/(3*q.q)

whereas p*q and p/q are not.

17.3.2 Dirac Expressions

These denote those expressions which involve γ matrices. A γ matrix is implicitly
a 4 × 4 matrix, and so the product, sum and difference of such expressions, or the
product of a scalar and Dirac expression is again a Dirac expression. There are
no Dirac variables in the system, so whenever a scalar variable appears in a Dirac
expression without an associated γ matrix expression, an implicit unit 4 by 4 matrix
is assumed. For example, g(l,p) + m denotes g(l,p) + m*<unit 4 by
4 matrix>. Multiplication of Dirac expressions, as for matrix expressions, is of
course non-commutative.

17.4. TRACE CALCULATIONS 195

17.4 Trace Calculations

When a Dirac expression is evaluated, the system computes one quarter of the trace
of each γ matrix product in the expansion of the expression. One quarter of each
trace is taken in order to avoid confusion between the trace of the scalar M, say,
and M representing M * <unit 4 by 4 matrix>. Contraction over indices
occurring in such expressions is also performed. If an unmatched index is found in
such an expression, an error occurs.

The algorithms used for trace calculations are the best available at the time this
system was produced. For example, in addition to the algorithm developed by
Chisholm for contracting indices in products of traces, REDUCE uses the elegant
algorithm of Kahane for contracting indices in γ matrix products. These algorithms
are described in Chisholm, J. S. R., Il Nuovo Cimento X, 30, 426 (1963) and
Kahane, J., Journal Math. Phys. 9, 1732 (1968).

It is possible to prevent the trace calculation over any line identifier by the declara-
tion NOSPUR. For example,

nospur l1,l2;

will mean that no traces are taken of γ matrix terms involving the line numbers L1
and L2. However, in some calculations involving more than one line, a catastrophic
error

This NOSPUR option not implemented

can occur (for the reason stated!) If you encounter this error, please let us know!

A trace of a γ matrix expression involving a line identifier which has been declared
NOSPUR may be later taken by making the declaration SPUR.

See also the CVIT package for an alternative mechanism (chapter 15.12).

17.5 Mass Declarations

It is often necessary to put a particle “on the mass shell” in a calculation. This can,
of course, be accomplished with a LET command such as

let p.p= mˆ2;

but an alternative method is provided by two commands MASS and MSHELL. MASS
takes a list of equations of the form:

<vector variable> = <scalar variable>

196 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

for example,

mass p1=m, q1=mu;

The only effect of this command is to associate the relevant scalar variable as a
mass with the corresponding vector. If we now say

mshell <vector variable>,...,<vector variable>;

and a mass has been associated with these arguments, a substitution of the form

<vector variable>.<vector variable> = <mass>ˆ2

is set up. An error results if the variable has no preassigned mass.

17.6 Example

We give here as an example of a simple calculation in high energy physics the
computation of the Compton scattering cross-section as given in Bjorken and Drell
Eqs. (7.72) through (7.74). We wish to compute the trace of

α2

2

(
k′

k

)2 (γ.pf +m

2m

)(
γ.e′γ.eγ.ki

2k.pi
+
γ.eγ.e′γ.kf

2k′.pi

)(
γ.pi +m

2m

)
(
γ.kiγ.eγ.e

′

2k.pi
+
γ.kfγ.e

′γ.e

2k′.pi

)
where ki and kf are the four-momenta of incoming and outgoing photons (with
polarization vectors e and e′ and laboratory energies k and k′ respectively) and pi,
pf are incident and final electron four-momenta.

Omitting therefore an overall factor α2

2m2

(
k′

k

)2
we need to find one quarter of the

trace of

(γ.pf +m)
(
γ.e′γ.eγ.ki

2k.pi
+
γ.eγ.e′γ.kf

2k′.pi

)
(γ.pi +m)(

γ.kiγ.eγ.e
′

2k.pi
+
γ.kfγ.e

′γ.e

2k′.pi

)
A straightforward REDUCE program for this, with appropriate substitutions (using
P1 for pi, PF for pf , KI for ki and KF for kf) is

on div; % this gives output in same form as Bjorken and Drell.
mass ki= 0, kf= 0, p1= m, pf= m; vector e,ep;
% if e is used as a vector, it loses its scalar identity as

17.7. EXTENSIONS TO MORE THAN FOUR DIMENSIONS 197

% the base of natural logarithms.
mshell ki,kf,p1,pf;
let p1.e= 0, p1.ep= 0, p1.pf= mˆ2+ki.kf, p1.ki= m*k,p1.kf=

m*kp, pf.e= -kf.e, pf.ep= ki.ep, pf.ki= m*kp, pf.kf=
m*k, ki.e= 0, ki.kf= m*(k-kp), kf.ep= 0, e.e= -1,
ep.ep=-1;

for all p let gp(p)= g(l,p)+m;
comment this is just to save us a lot of writing;
gp(pf)*(g(l,ep,e,ki)/(2*ki.p1) + g(l,e,ep,kf)/(2*kf.p1))

* gp(p1)*(g(l,ki,e,ep)/(2*ki.p1) + g(l,kf,ep,e)/
(2*kf.p1))$

write "The Compton cxn is",ws;

(We use P1 instead of PI in the above to avoid confusion with the reserved variable
PI).

This program will print the following result

(-1) (-1) 2
The Compton cxn is 1/2*K*KP + 1/2*K *KP + 2*E.EP - 1

17.7 Extensions to More Than Four Dimensions

In our discussion so far, we have assumed that we are working in the normal four
dimensions of QED calculations. However, in most cases, the programs will also
work in an arbitrary number of dimensions. The command

vecdim <expression>;

sets the appropriate dimension. The dimension can be symbolic as well as numer-
ical. Users should note however, that the EPS operator and the γ5 symbol (A) are
not properly defined in other than four dimensions and will lead to an error if used.

198 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

Chapter 18

REDUCE and Rlisp Utilities

REDUCE and its associated support language system Rlisp include a number of
utilities which have proved useful for program development over the years. The
following are supported in most of the implementations of REDUCE currently
available.

18.1 The Standard Lisp Compiler

Many versions of REDUCE include a Standard Lisp compiler that is automatically
loaded on demand. You should check your system specific user guide to make sure
you have such a compiler. To make the compiler active, the switch COMP should be
turned on. Any further definitions input after this will be compiled automatically. If
the compiler used is a derivative version of the original Griss-Hearn compiler, (M.
L. Griss and A. C. Hearn, “A Portable LISP Compiler”, SOFTWARE — Practice
and Experience 11 (1981) 541-605), there are other switches that might also be
used in this regard. However, these additional switches are not supported in all
compilers. They are as follows:

199

200 CHAPTER 18. REDUCE AND RLISP UTILITIES

PLAP If ON, causes the printing of the portable macros produced by the
compiler;

PGWD If ON, causes the printing of the actual assembly language instruc-
tions generated from the macros;

PWRDS If ON, causes a statistic message of the form
<function> COMPILED, <words> WORDS, <words>
LEFT
to be printed. The first number is the number of words of binary
program space the compiled function took, and the second
number the number of words left unused in binary program space.

18.2 Fast Loading Code Generation Program

In most versions of REDUCE, it is possible to take any set of Lisp, Rlisp or RE-
DUCE commands and build a fast loading version of them. In Rlisp or REDUCE,
one does the following:

faslout <filename>;
<commands or IN statements>
faslend;

To load such a file, one uses the command LOAD, e.g. load foo; or load
foo,bah;

This process produces a fast-loading version of the original file. In some imple-
mentations, this means another file is created with the same name but a different
extension. For example, in PSL-based systems, the extension is b (for binary). In
CSL-based systems, however, this process adds the fast-loading code to a single
file in which all such code is stored. Particular functions are provided by CSL for
managing this file, and described in the CSL user documentation.

In doing this build, as with the production of a Standard Lisp form of such state-
ments, it is important to remember that some of the commands must be instantiated
during the building process. For example, macros must be expanded, and some
property list operations must happen. The REDUCE sources should be consulted
for further details on this.

To avoid excessive printout, input statements should be followed by a $ instead of
the semicolon. With LOAD however, the input doesn’t print out regardless of which
terminator is used with the command.

18.3. THE STANDARD LISP CROSS REFERENCE PROGRAM 201

If you subsequently change the source files used in producing a fast loading file,
don’t forget to repeat the above process in order to update the fast loading file
correspondingly. Remember also that the text which is read in during the creation
of the fast load file, in the compiling process described above, is not stored in your
REDUCE environment, but only translated and output. If you want to use the file
just created, you must then use LOAD to load the output of the fast-loading file
generation program.

When the file to be loaded contains a complete package for a given application,
LOAD PACKAGE rather than LOAD should be used. The syntax is the same. How-
ever, LOAD PACKAGE does some additional bookkeeping such as recording that
this package has now been loaded, that is required for the correct operation of the
system.

18.3 The Standard Lisp Cross Reference Program

CREF is a Standard Lisp program for processing a set of Standard LISP function
definitions to produce:

1. A “summary” showing:

(a) A list of files processed;

(b) A list of “entry points” (functions which are not called or are only
called by themselves);

(c) A list of undefined functions (functions called but not defined in this
set of functions);

(d) A list of variables that were used non-locally but not declared GLOBAL
or FLUID before their use;

(e) A list of variables that were declared GLOBAL but not used as FLUIDs,
i.e., bound in a function;

(f) A list of FLUID variables that were not bound in a function so that one
might consider declaring them GLOBALs;

(g) A list of all GLOBAL variables present;

(h) A list of all FLUID variables present;

(i) A list of all functions present.

2. A “global variable usage” table, showing for each non-local variable:

(a) Functions in which it is used as a declared FLUID or GLOBAL;

(b) Functions in which it is used but not declared;

(c) Functions in which it is bound;

202 CHAPTER 18. REDUCE AND RLISP UTILITIES

(d) Functions in which it is changed by SETQ.

3. A “function usage” table showing for each function:

(a) Where it is defined;

(b) Functions which call this function;

(c) Functions called by it;

(d) Non-local variables used.

The program will also check that functions are called with the correct number of
arguments, and print a diagnostic message otherwise.

The output is alphabetized on the first seven characters of each function name.

18.3.1 Restrictions

Algebraic procedures in REDUCE are treated as if they were symbolic, so that
algebraic constructs will actually appear as calls to symbolic functions, such as
AEVAL.

18.3.2 Usage

To invoke the cross reference program, the switch CREF is used. on cref causes
the cref program to load and the cross-referencing process to begin. After all the
required definitions are loaded, off cref will cause the cross-reference listing
to be produced. For example, if you wish to cross-reference all functions in the
file tst.red, and produce the cross-reference listing in the file tst.crf, the
following sequence can be used:

out "tst.crf";
on cref;
in "tst.red"$
off cref;
shut "tst.crf";

To process more than one file, more IN statements may be added before the call of
off cref, or the IN statement changed to include a list of files.

18.3.3 Options

Functions with the flag NOLIST will not be examined or output. Initially, all
Standard Lisp functions are so flagged. (In fact, they are kept on a list NOLIST!*,

18.4. PRETTYPRINTING REDUCE EXPRESSIONS 203

so if you wish to see references to all functions, then CREF should be first loaded
with the command load cref, and this variable then set to NIL).

It should also be remembered that any macros with the property list flag EXPAND,
or, if the switch FORCE is on, without the property list flag NOEXPAND, will be
expanded before the definition is seen by the cross-reference program, so this flag
can also be used to select those macros you require expanded and those you do not.

18.4 Prettyprinting Reduce Expressions

REDUCE includes a module for printing REDUCE syntax in a standard format.
This module is activated by the switch PRET, which is normally off.

Since the system converts algebraic input into an equivalent symbolic form, the
printing program tries to interpret this as an algebraic expression before printing
it. In most cases, this can be done successfully. However, there will be occasional
instances where results are printed in symbolic mode form that bears little resem-
blance to the original input, even though it is formally equivalent.

If you want to prettyprint a whole file, say off output,msg; and (hopefully)
only clean output will result. Unlike DEFN, input is also evaluated with PRET on.

18.5 Prettyprinting Standard Lisp S-Expressions

REDUCE includes a module for printing S-expressions in a standard format. The
Standard Lisp function for this purpose is PRETTYPRINT which takes a Lisp ex-
pression and prints the formatted equivalent.

Users can also have their REDUCE input printed in this form by use of the switch
DEFN. This is in fact a convenient way to convert REDUCE (or Rlisp) syntax into
Lisp. off msg; will prevent warning messages from being printed.

NOTE: When DEFN is on, input is not evaluated.

204 CHAPTER 18. REDUCE AND RLISP UTILITIES

Chapter 19

Maintaining REDUCE

REDUCE continues to evolve both in terms of the number of facilities available,
and the power of the individual facilities. Corrections are made as bugs are discov-
ered, and awkward features simplified. In order to provide users with easy access to
such enhancements, a REDUCE network library has been established from which
material can be extracted by anyone with electronic mail access to the Internet
computer network.

In addition to miscellaneous documents, source and utility files, the library in-
cludes a bibliography of papers referencing REDUCE which contains over 800
entries. Instructions on using this library are sent to all registered REDUCE users
who provide a network address. If you would like a more complete list of the con-
tents of the library, send to reduce-netlib@rand.org the single line message send
index or help. The current REDUCE information package can be obtained from the
network library by including on a separate line send info-package and a demonstra-
tion file by including the line send demonstration. If you prefer, hard copies of the
information package and the bibliography are available from the REDUCE secre-
tary at RAND, 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138
(reduce@rand.org). Copies of the network library are also maintained at other ad-
dresses. At the time of writing, reduce-netlib@can.nl and reduce-netlib@pi.cc.u-
tokyo.ac.jp may also be used instead of reduce-netlib@rand.org.

A World Wide Web REDUCE server with URL

http://www.rrz.uni-koeln.de/REDUCE/

is also supported. In addition to general information about REDUCE, this server
has pointers to the network library, the demonstration versions, examples of RE-
DUCE programming, a set of manuals, and the REDUCE online help system.

Finally, there is a REDUCE electronic forum accessible from the same networks.
This enables REDUCE users to raise questions and discuss ideas concerning the

205

206 CHAPTER 19. MAINTAINING REDUCE

use and development of REDUCE with other users. Additions and changes to the
network library and new releases of REDUCE are also announced in this forum.
Any user with appropriate electronic mail access is encouraged to register for mem-
bership in this forum. To do so, send a message requesting inclusion to
reduce-forum-request@rand.org.

Appendix A

Reserved Identifiers

We list here all identifiers that are normally reserved in REDUCE including names
of commands, operators and switches initially in the system. Excluded are words
that are reserved in specific implementations of the system.

Commands ALGEBRAIC ANTISYMMETRIC ARRAY BYE CLEAR
CLEARRULES COMMENT CONT DECOMPOSE DEFINE
DEPEND DISPLAY ED EDITDEF END EVEN FACTOR
FOR FORALL FOREACH GO GOTO IF IN INDEX
INFIX INPUT INTEGER KORDER LET LINEAR LISP
LISTARGP LOAD LOAD PACKAGE MASS MATCH
MATRIX MSHELL NODEPEND NONCOM NONZERO
NOSPUR ODD OFF ON OPERATOR ORDER OUT PAUSE
PRECEDENCE PRINT PRECISION PROCEDURE QUIT
REAL REMFAC REMIND RETRY RETURN SAVEAS
SCALAR SETMOD SHARE SHOWTIME SHUT SPUR
SYMBOLIC SYMMETRIC VECDIM VECTOR WEIGHT
WRITE WTLEVEL

Boolean Operators EVENP FIXP FREEOF NUMBERP ORDP PRIMEP

Infix Operators := = >= > <= < => + * / ˆ ** . WHERE SETQ OR AND
MEMBER MEMQ EQUAL NEQ EQ GEQ GREATERP LEQ
LESSP PLUS DIFFERENCE MINUS TIMES QUOTIENT
EXPT CONS

Numerical Operators ABS ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC
ASECH ASIN ASINH ATAN ATANH ATAN2 COS COSH
COT COTH CSC CSCH EXP FACTORIAL FIX FLOOR
HYPOT LN LOG LOGB LOG10 NEXTPRIME ROUND SEC
SECH SIN SINH SQRT TAN TANH

207

208 APPENDIX A. RESERVED IDENTIFIERS

Prefix Operators APPEND ARGLENGTH CEILING COEFF COEFFN
COFACTOR CONJ DEG DEN DET DF DILOG EI
EPS ERF FACTORIZE FIRST GCD G IMPART INT
INTERPOL LCM LCOF LENGTH LHS LINELENGTH
LTERM MAINVAR MAT MATEIGEN MAX MIN MKID
NULLSPACE NUM PART PF PRECISION RANDOM
RANDOM NEW SEED RANK REDERR REDUCT
REMAINDER REPART REST RESULTANT REVERSE
RHS SECOND SET SHOWRULES SIGN SOLVE
STRUCTR SUB SUM THIRD TP TRACE VARNAME

Reserved Variables CARD NO E EVAL MODE FORT WIDTH
HIGH POW I INFINITY K!* LOW POW NIL
PI ROOT MULTIPLICITY T

Switches ADJPREC ALGINT ALLBRANCH ALLFAC BFSPACE
COMBINEEXPT COMBINELOGS COMP COMPLEX
CRAMER CREF DEFN DEMO DIV ECHO ERRCONT
EVALLHSEQP EXP EXPANDLOGS EZGCD FACTOR
FORT FULLROOTS GCD IFACTOR INT INTSTR
LCM LIST LISTARGS MCD MODULAR MSG
MULTIPLICITIES NAT NERO NOSPLIT OUTPUT
PERIOD PRECISE PRET PRI RAT RATARG
RATIONAL RATIONALIZE RATPRI REVPRI
RLISP88 ROUNDALL ROUNDBF ROUNDED
SAVESTRUCTR SOLVESINGULAR TIME TRA TRFAC
TRIGFORM TRINT

Other Reserved Ids BEGIN DO EXPR FEXPR INPUT LAMBDA LISP MACRO
PRODUCT REPEAT SMACRO SUM UNTIL WHEN WHILE
WS

Index

. (CONS), 34
3j and 6j symbols, 171

ABS, 53
ACOS, 57, 60
ACOSH, 57, 60
ACOT, 57, 60
ACOTH, 57, 60
ACSC, 57, 60
ACSCH, 57, 60
ADJPREC, 116
Airy functions, 171
Airy Ai, 171
Airy Aiprime, 171
Airy Bi, 171
Airy Biprime, 171
ALGEBRAIC, 177
Algebraic mode, 177, 182, 183
ALGINT, 157, 158
ALLBRANCH, 73
ALLFAC, 87, 90
ANTISYMMETRIC, 80
APPEND, 34
APPLYSYM, 158
ARBVARS, 73
ARGLENGTH, 101
ARNUM, 158
ARRAY, 49
ASEC, 57, 60
ASECH, 57, 60
ASIN, 57, 60
ASINH, 57, 60
Assignment, 38, 41, 45, 180, 183
ASSIST, 158
assumptions, 75
Asymptotic command, 121, 133

ATAN, 57, 60, 63
ATAN2, 57, 60
ATANH, 57, 60
AVECTOR, 159

BALANCED MOD, 117
BEGIN ...END, 44–46
Bernoulli, 171
Bernoulli numbers, 171
Bessel functions, 171
BesselI, 171
BesselJ, 171
BesselK, 171
BesselY, 171
Beta, 171
Beta function, 171
Bezout, 109
BFSPACE, 116
Binomial, 171
Binomial coefficients, 171
Block, 44, 46
BOOLEAN, 159
Boolean, 29
BOUNDS, 167
BYE, 51

CALI, 159
Call by value, 150, 153
CAMAL, 159
Canonical form, 83
CARD NO, 93
CEILING, 54
CHANGEVR, 160
Character set, 19
Chebyshev fit, 167
Chebyshev polynomials, 171

209

210 INDEX

ChebyshevT, 171
ChebyshevU, 171
CLEAR, 124, 127
CLEARRULES, 128
Clebsch Gordan coefficients, 171
Clebsch Gordan, 171
COEFF, 99
Coefficient, 115, 117
COEFFN, 100
COFACTOR, 145
COLLECT, 40
COMBINEEXPT, 59
COMBINELOGS, 59
Command, 49
Command terminator, 135
COMMENT, 23
COMP, 199
COMPACT, 160
Compiler, 199
COMPLEX, 118
Complex coefficient, 117
Compound statement, 43, 45
Conditional statement, 39, 40
CONJ, 54
Constructor, 183
CONT, 139
COS, 57, 60
COSH, 57, 60
COT, 57, 60
COTH, 57, 60
CRACK, 160
CRAMER, 68, 143
CREF, 201, 202
Cross reference, 201
CSC, 57, 60
CSCH, 57, 60
CVIT, 161

Declaration, 49
DECOMPOSE, 110
DEFINE, 51, 52
DEFINT, 161
DEFN, 182, 203
DEG, 111

Degree, 112
DEMO, 50
DEN, 103, 112
DEPEND, 82
depend, 76
DESIR, 161
DET, 83, 143
DF, 61, 62
DFPART, 161
Differentiation, 61, 62, 82
Digamma, 171
Digamma function, 171
DILOG, 57, 63
Dilog, 171
Dilogarithm function, 171
Dirac γ matrix, 192
DISPLAY, 138
Display, 83
Displaying structure, 96
DIV, 88, 115
DO, 40–42
Dollar sign, 37
Dot product, 191
DUMMY, 162

E, 22
ECHO, 135
ED, 137, 138
EDITDEF, 139
Ei, 57
EllipticE, 171
EllipticF, 171
EllipticTheta, 171
END, 51
EPS, 193
Equation, 30, 31
ERF, 63
ERRCONT, 137
Euler, 171
Euler numbers, 171
Euler polynomials, 171
EulerP, 171
EVAL MODE, 177
EVALLHSEQP, 31

INDEX 211

EVEN, 78
Even operator, 78
EVENP, 29
EXCALC, 162
Exclamation mark, 19
EXP, 57, 60, 63, 104, 107
EXPAND CASES, 69
EXPANDLOGS, 59
EXPR, 181
Expression, 27
EZGCD, 107

FACTOR, 87, 104, 105
FACTORIAL, 54, 154
Factorization, 104
FACTORIZE, 105
Fast loading of code, 200
FEXPR, 182
FIDE, 162
File handling, 135
FIRST, 34
FIX, 54
FIXP, 29
FLOOR, 55
FOR, 47
FOR ALL, 122, 123
FOR EACH, 41, 42, 181
FORT, 93
FORT WIDTH, 95
FORTRAN, 93, 95
FORTUPPER, 95
FPS, 162
FREEOF, 29
FULLROOTS, 71
Function, 155

G, 192
Gamma, 171
Gamma function, 171
GCD, 107
Gegenbauer polynomials, 171
GegenbauerP, 171
Generalized Hypergeometric functions,

172

GENTRAN, 163
GNUPLOT, 163
GO TO, 45
GROEBNER, 163
Groebner, 68
Group statement, 39, 43

Hankel functions, 171
Hankel1, 171
Hankel2, 171
Hermite polynomials, 171
HermiteP, 171
High energy trace, 195
High energy vector expression, 191, 194
HIGH POW, 100
History, 137
HYPOT, 57, 60

I, 22
IDEALS, 164
Identifier, 21
IF, 39
IFACTOR, 105
IMPART, 54–56
IN, 135
Indefinite integration, 62
INDEX, 192
INEQ, 164
INFINITY, 22
INFIX, 81
Infix operator, 24–26
INPUT, 138
Input, 135
Instant evaluation, 50, 102, 122, 142,

144
INT, 62, 139
INTEGER, 44
Integer, 28
Integration, 62, 79
Interactive use, 137, 139
INTERPOL, 111
Introduction, 15
INTSTR, 84
INVBASE, 164

212 INDEX

Jacobi Elliptic Functions and Integrals,
171

Jacobi’s polynomials, 171
Jacobiamplitude, 171
Jacobicn, 171
Jacobidn, 171
JacobiP, 171
Jacobisn, 171
JacobiZeta, 171
JOIN, 40

Kernel, 83, 87, 99
kernel form, 84
KORDER, 99
Kummer functions, 171
KummerM, 171
KummerU, 171

Label, 45
Laguerre polynomials, 171
LaguerreP, 171
LAMBDA, 179
Lambert’s W, 68
LAPLACE, 164
LCM, 108
LCOF, 112
Leading coefficient, 112
Legendre polynomials, 151, 171
LegendreP, 171
LENGTH, 33, 50, 64, 103, 105, 143
LET, 59, 61, 74, 79, 81, 120, 128, 153,

154
LHS, 31
LIE, 164
LIMITS, 165
LINALG, 165
LINEAR, 78
Linear operator, 78, 79, 82
LINELENGTH, 86
LISP, 177
Lisp, 177
LIST, 88
List, 33
list, 67

List operation, 33, 35
LISTARGP, 35
LISTARGS, 35
LN, 57, 60
LOAD, 200
LOAD PACKAGE, 157, 201
LOG, 57, 60, 63
LOG10, 57, 60
LOGB, 57, 60
Lommel functions, 171
Lommel1, 171
Lommel2, 171
Loop, 40, 41
LOW POW, 100
LPOWER, 113
LTERM, 113, 187

MACRO, 181
MAINVAR, 113
MAP, 64
map, 67
MASS, 194, 195
MAT, 141, 142
MATCH, 127
MATEIGEN, 144
Mathematical function, 57
MATRIX, 142
Matrix assignment, 147
Matrix calculations, 141
MAX, 55
MCD, 106, 108
Meijer’s G function, 172
MIN, 55
Minimum, 167
MKID, 65
Mode, 50
Mode communication, 182
MODSR, 165
MODULAR, 117
Modular coefficient, 117
MSG, 203
MSHELL, 195
Multiple assignment statement, 38
MULTIPLICITIES, 69

INDEX 213

NAT, 96
NCPOLY, 166
NERO, 93
Newton’s method, 167
NEXTPRIME, 55
NOCONVERT, 116
NODEPEND, 82
Non-commuting operator, 79
NONCOM, 79
NONZERO, 78
NORMFORM, 166
NOSPLIT, 88
NOSPUR, 195
NULLSPACE, 146
NUM, 114
NUM INT, 167
NUM MIN, 167
NUM ODESOLVE, 167
NUM SOLVE, 167
Number, 19, 20
NUMBERP, 29
Numerical operator, 53
Numerical precision, 22

ODD, 78
Odd operator, 78
ODESOLVE, 167
OFF, 50, 51
ON, 50, 51
ONE OF, 69
OPERATOR, 186
Operator, 24, 26
Operator precedence, 25, 26
ORDER, 86, 99
ORDP, 29, 79
Orthogonal polynomials, 171
ORTHOVEC, 168
OUT, 135, 136
OUTPUT, 85
Output, 91, 95
Output declaration, 86

PART, 33, 98, 100
PAUSE, 139

Percent sign, 23
PERIOD, 95
PF, 66
PHYSOP, 168
PI, 22
PLOT, 163
PM, 168
Pochhammer, 171
Pochhammer’s symbol, 171
Polygamma, 171
Polygamma functions, 171
Polynomial, 103
Polynomial equations, 163
PRECEDENCE, 81
PRECISE, 60
PRECISION, 115
Prefix, 53, 80, 81
Prefix operator, 24, 25
PRET, 203
PRETTYPRINT, 203
Prettyprinting, 203
PRI, 86
PRIMEP, 29
PRINT PRECISION, 116
PROCEDURE, 149
Procedure body, 151, 153
Procedure heading, 150
PRODUCT, 40, 41
Program, 23
Program structure, 19
Proper statement, 31, 37
PS, 173
PSEUDO DIVIDE, 109
PSEUDO REMAINDER, 109
Psi, 171
Psi function, 171

Quadrature, 167
QUIT, 51
QUOTE, 179

RANDOM, 56
RANDOM NEW SEED, 56
RANDPOLY, 169

214 INDEX

RANK, 147
RAT, 89
RATARG, 100, 111
RATIONAL, 115
Rational coefficient, 115
Rational function, 103
RATIONALIZE, 118
RATPRI, 90
REACTEQN, 169
REAL, 44
Real, 20, 21
Real coefficient, 115
REDERR, 153
REDUCT, 114
REMAINDER, 108
REMFAC, 87
REMIND, 192
REPART, 54–56
REPEAT, 43–45, 47
requirements, 74
Reserved variable, 22
RESET, 169
RESIDUE, 169
REST, 34
RESULTANT, 109
RETRY, 137
RETURN, 44–46
REVERSE, 35
REVPRI, 90
RHS, 31
RLFI, 169
Rlisp, 199
RLISP88, 188
ROOT OF, 68, 69
ROOTS, 170
ROUND, 57
ROUNDALL, 116
ROUNDBF, 116
ROUNDED, 22, 28, 60, 93, 115
RSOLVE, 170
Rule lists, 127

SAVEAS, 85
SAVESTRUCTR, 98

Saving an expression, 96
SCALAR, 44
Scalar, 27
SCIENTIFIC NOTATION, 20
SCOPE, 170
SEC, 57, 60
SECH, 57, 60
SECOND, 34
SELECT, 67
Selector, 183
Semicolon, 37
SET, 38, 65
SETMOD, 117
SETS, 171
SHARE, 182
SHOWRULES, 132
SHOWTIME, 51
SHUT, 135, 136
Side effect, 31
SIGN, 57
Simplification, 28, 83
SIN, 57, 60
SINH, 57, 60
SixjSymbol, 171
SMACRO, 182
SolidHarmonicY, 171
SOLVE, 68, 69, 73, 163
SOLVESINGULAR, 73
SPDE, 171
SPECFN, 59, 171
SPECFN2, 172
Spherical and Solid Harmonics, 171
SphericalHarmonicY, 171
SPUR, 195
SQRT, 57, 60
Standard form, 183
Standard quotient, 183
Statement, 37
Stirling numbers, 171
Stirling1, 171
Stirling2, 171
String, 23
STRUCTR, 96, 98
Structuring, 83

INDEX 215

Struve functions, 171
StruveH, 171
StruveL, 171
SUB, 31, 119
Substitution, 119
SUCH THAT, 123
SUM, 40, 41, 173
Switch, 50, 51
SYMBOLIC, 177
Symbolic mode, 177, 178, 182, 183
Symbolic procedure, 181
SYMMETRIC, 80
SYMMETRY, 173

T, 22
TAN, 57, 60, 63
TANH, 57, 60
TAYLOR, 173
Terminator, 37
THIRD, 34
ThreejSymbol, 171
TIME, 50
TP, 145
TPS, 173
TRA, 158
TRACE, 145
TRFAC, 106
TRI, 174
TRIGFORM, 71
TRIGSIMP, 58, 174
TRINT, 158

UNTIL, 40
User packages, 157

Variable, 22
Variable elimination, 163
VARNAME, 96
varopt, 76
VECDIM, 197
VECTOR, 193

WEIGHT, 134
WHEN, 128
WHERE, 129

WHILE, 42, 44, 45, 47
Whittaker functions, 171
WhittakerM, 171
WhittakerW, 171
Workspace, 84
WRITE, 91
WS, 17, 138
WTLEVEL, 134
WU, 174

XCOLOR, 174
XIDEAL, 175

ZEILBERG, 175
Zeta, 171
Zeta function (Riemann’s), 171
ZTRANS, 175

	Contents
	Abstract
	1 Introductory Information
	2 Structure of Programs
	2.1 The REDUCE Standard Character Set
	2.2 Numbers
	2.3 Identifiers
	2.4 Variables
	2.5 Strings
	2.6 Comments
	2.7 Operators

	3 Expressions
	3.1 Scalar Expressions
	3.2 Integer Expressions
	3.3 Boolean Expressions
	3.4 Equations
	3.5 Proper Statements as Expressions

	4 Lists
	4.1 Operations on Lists
	4.1.1 LIST
	4.1.2 FIRST
	4.1.3 SECOND
	4.1.4 THIRD
	4.1.5 REST
	4.1.6 . (Cons) Operator
	4.1.7 APPEND
	4.1.8 REVERSE
	4.1.9 List Arguments of Other Operators
	4.1.10 Caveats and Examples

	5 Statements
	5.1 Assignment Statements
	5.1.1 Set Statement

	5.2 Group Statements
	5.3 Conditional Statements
	5.4 FOR Statements
	5.5 WHILE …DO
	5.6 REPEAT …UNTIL
	5.7 Compound Statements
	5.7.1 Compound Statements with GO TO
	5.7.2 Labels and GO TO Statements
	5.7.3 RETURN Statements

	6 Commands and Declarations
	6.1 Array Declarations
	6.2 Mode Handling Declarations
	6.3 END
	6.4 BYE Command
	6.5 SHOWTIME Command
	6.6 DEFINE Command

	7 Built-in Prefix Operators
	7.1 Numerical Operators
	7.1.1 ABS
	7.1.2 CEILING
	7.1.3 CONJ
	7.1.4 FACTORIAL
	7.1.5 FIX
	7.1.6 FLOOR
	7.1.7 IMPART
	7.1.8 MAX/MIN
	7.1.9 NEXTPRIME
	7.1.10 RANDOM
	7.1.11 RANDOM_NEW_SEED
	7.1.12 REPART
	7.1.13 ROUND
	7.1.14 SIGN

	7.2 Mathematical Functions
	7.3 DF Operator
	7.3.1 Adding Differentiation Rules

	7.4 INT Operator
	7.4.1 Options
	7.4.2 Advanced Use
	7.4.3 References

	7.5 LENGTH Operator
	7.6 MAP Operator
	7.7 MKID Operator
	7.8 PF Operator
	7.9 SELECT Operator
	7.10 SOLVE Operator
	7.10.1 Handling of Undetermined Solutions
	7.10.2 Solutions of Equations Involving Cubics and Quartics
	7.10.3 Other Options
	7.10.4 Parameters and Variable Dependency

	7.11 Even and Odd Operators
	7.12 Linear Operators
	7.13 Non-Commuting Operators
	7.14 Symmetric and Antisymmetric Operators
	7.15 Declaring New Prefix Operators
	7.16 Declaring New Infix Operators
	7.17 Creating/Removing Variable Dependency

	8 Display and Structuring of Expressions
	8.1 Kernels
	8.2 The Expression Workspace
	8.3 Output of Expressions
	8.3.1 LINELENGTH Operator
	8.3.2 Output Declarations
	8.3.3 Output Control Switches
	8.3.4 WRITE Command
	8.3.5 Suppression of Zeros
	8.3.6 FORTRAN Style Output Of Expressions
	8.3.7 Saving Expressions for Later Use as Input
	8.3.8 Displaying Expression Structure

	8.4 Changing the Internal Order of Variables
	8.5 Obtaining Parts of Algebraic Expressions
	8.5.1 COEFF Operator
	8.5.2 COEFFN Operator
	8.5.3 PART Operator
	8.5.4 Substituting for Parts of Expressions

	9 Polynomials and Rationals
	9.1 Controlling the Expansion of Expressions
	9.2 Factorization of Polynomials
	9.3 Cancellation of Common Factors
	9.3.1 Determining the GCD of Two Polynomials

	9.4 Working with Least Common Multiples
	9.5 Controlling Use of Common Denominators
	9.6 REMAINDER Operator
	9.7 RESULTANT Operator
	9.8 DECOMPOSE Operator
	9.9 INTERPOL operator
	9.10 Obtaining Parts of Polynomials and Rationals
	9.10.1 DEG Operator
	9.10.2 DEN Operator
	9.10.3 LCOF Operator
	9.10.4 LPOWER Operator
	9.10.5 LTERM Operator
	9.10.6 MAINVAR Operator
	9.10.7 NUM Operator
	9.10.8 REDUCT Operator

	9.11 Polynomial Coefficient Arithmetic
	9.11.1 Rational Coefficients in Polynomials
	9.11.2 Real Coefficients in Polynomials
	9.11.3 Modular Number Coefficients in Polynomials
	9.11.4 Complex Number Coefficients in Polynomials

	10 Substitution Commands
	10.1 SUB Operator
	10.2 LET Rules
	10.2.1 FOR ALL …LET
	10.2.2 FOR ALL …SUCH THAT …LET
	10.2.3 Removing Assignments and Substitution Rules
	10.2.4 Overlapping LET Rules
	10.2.5 Substitutions for General Expressions

	10.3 Rule Lists
	10.4 Asymptotic Commands

	11 File Handling Commands
	11.1 IN Command
	11.2 OUT Command
	11.3 SHUT Command

	12 Commands for Interactive Use
	12.1 Referencing Previous Results
	12.2 Interactive Editing
	12.3 Interactive File Control

	13 Matrix Calculations
	13.1 MAT Operator
	13.2 Matrix Variables
	13.3 Matrix Expressions
	13.4 Operators with Matrix Arguments
	13.4.1 DET Operator
	13.4.2 MATEIGEN Operator
	13.4.3 TP Operator
	13.4.4 Trace Operator
	13.4.5 Matrix Cofactors
	13.4.6 NULLSPACE Operator
	13.4.7 RANK Operator

	13.5 Matrix Assignments
	13.6 Evaluating Matrix Elements

	14 Procedures
	14.1 Procedure Heading
	14.2 Procedure Body
	14.3 Using LET Inside Procedures
	14.4 LET Rules as Procedures

	15 User Contributed Packages
	15.1 ALGINT: Integration of square roots
	15.2 APPLYSYM: Infinitesimal symmetries of differential equations
	15.3 ARNUM: An algebraic number package
	15.4 ASSIST: Useful utilities for various applications
	15.5 AVECTOR: A vector algebra and calculus package
	15.6 BOOLEAN: A package for boolean algebra
	15.7 CALI: A package for computational commutative algebra
	15.8 CAMAL: Calculations in celestial mechanics
	15.9 CHANGEVR: Change of Independent Variable(s) in DEs
	15.10 COMPACT: Package for compacting expressions
	15.11 CRACK: Solving overdetermined systems of PDEs or ODEs
	15.12 CVIT: Fast calculation of Dirac gamma matrix traces
	15.13 DEFINT: A definite integration interface
	15.14 DESIR: Differential linear homogeneous equation solutions in the neighborhood of irregular and regular singular points
	15.15 DFPART: Derivatives of generic functions
	15.16 DUMMY: Canonical form of expressions with dummy variables
	15.17 EXCALC: A differential geometry package
	15.18 FIDE: Finite difference method for partial differential equations
	15.19 FPS: Automatic calculation of formal power series
	15.20 GENTRAN: A code generation package
	15.21 GNUPLOT: Display of functions and surfaces
	15.22 GROEBNER: A Gröbner basis package
	15.23 IDEALS: Arithmetic for polynomial ideals
	15.24 INEQ: Support for solving inequalities
	15.25 INVBASE: A package for computing involutive bases
	15.26 LAPLACE: Laplace transforms
	15.27 LIE: Functions for the classification of real n-dimensional Lie algebras
	15.28 LIMITS: A package for finding limits
	15.29 LINALG: Linear algebra package
	15.30 MODSR: Modular solve and roots
	15.31 NCPOLY: Non--commutative polynomial ideals
	15.32 NORMFORM: Computation of matrix normal forms
	15.33 NUMERIC: Solving numerical problems
	15.34 ODESOLVE: Ordinary differential equations solver
	15.35 ORTHOVEC: Manipulation of scalars and vectors
	15.36 PHYSOP: Operator calculus in quantum theory
	15.37 PM: A REDUCE pattern matcher
	15.38 RANDPOLY: A random polynomial generator
	15.39 REACTEQN: Support for chemical reaction equation systems
	15.40 RESET: Code to reset REDUCE to its initial state
	15.41 RESIDUE: A residue package
	15.42 RLFI: REDUCE LaTeX formula interface
	15.43 ROOTS: A REDUCE root finding package
	15.44 RSOLVE: Rational/integer polynomial solvers
	15.45 SCOPE: REDUCE source code optimization package
	15.46 SETS: A basic set theory package
	15.47 SPDE: Finding symmetry groups of PDE's
	15.48 SPECFN: Package for special functions
	15.49 SPECFN2: Package for special special functions
	15.50 SUM: A package for series summation
	15.51 SYMMETRY: Operations on symmetric matrices
	15.52 TAYLOR: Manipulation of Taylor series
	15.53 TPS: A truncated power series package
	15.54 TRI: TeX REDUCE interface
	15.55 TRIGSIMP: Simplification and factorization of trigonometric and hyperbolic functions
	15.56 WU: Wu algorithm for polynomial systems
	15.57 XCOLOR: Color factor in some field theories
	15.58 XIDEAL: Gröbner Bases for exterior algebra
	15.59 ZEILBERG: A package for indefinite and definite summation
	15.60 ZTRANS: Z-transform package

	16 Symbolic Mode
	16.1 Symbolic Infix Operators
	16.2 Symbolic Expressions
	16.3 Quoted Expressions
	16.4 Lambda Expressions
	16.5 Symbolic Assignment Statements
	16.6 FOR EACH Statement
	16.7 Symbolic Procedures
	16.8 Standard Lisp Equivalent of Reduce Input
	16.9 Communicating with Algebraic Mode
	16.9.1 Passing Algebraic Mode Values to Symbolic Mode
	16.9.2 Passing Symbolic Mode Values to Algebraic Mode
	16.9.3 Complete Example
	16.9.4 Defining Procedures for Intermode Communication

	16.10 Rlisp '88
	16.11 References

	17 Calculations in High Energy Physics
	17.1 High Energy Physics Operators
	17.1.1 . (Cons) Operator
	17.1.2 G Operator for Gamma Matrices
	17.1.3 EPS Operator

	17.2 Vector Variables
	17.3 Additional Expression Types
	17.3.1 Vector Expressions
	17.3.2 Dirac Expressions

	17.4 Trace Calculations
	17.5 Mass Declarations
	17.6 Example
	17.7 Extensions to More Than Four Dimensions

	18 REDUCE and Rlisp Utilities
	18.1 The Standard Lisp Compiler
	18.2 Fast Loading Code Generation Program
	18.3 The Standard Lisp Cross Reference Program
	18.3.1 Restrictions
	18.3.2 Usage
	18.3.3 Options

	18.4 Prettyprinting Reduce Expressions
	18.5 Prettyprinting Standard Lisp S-Expressions

	19 Maintaining REDUCE
	A Reserved Identifiers
	Index

