ZETA INDEX

ZETA _ _ _ _ _ _ _ _ _ _ _ _ operator

The Zeta operator returns Riemann's Zeta function,

Zeta (z) := sum(1/(k**z),k,1,infinity)

syntax:

Zeta(<expression>)

examples:


Zeta(2); 

    2
  pi  / 6 


on rounded; 

Zeta 1.01; 

  100.577943338

Numerical computation for the Zeta function for arguments close to 1 are tedious, because the series is converging very slowly. In this case a formula (e.g. found in Bender/Orzag: Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill) is used.

No numerical approximation for complex arguments is done.

Bernoulli Euler Zeta INDEX

Bernoulli Euler Zeta

  • BERNOULLI operator

  • BERNOULLIP operator

  • EULER operator

  • EULERP operator

  • ZETA operator

  • BESSELJ INDEX

    BESSELJ _ _ _ _ _ _ _ _ _ _ _ _ operator

    The BesselJ operator returns the Bessel function of the first kind.

    syntax:

    BesselJ(<order>,<argument>)

    examples:

    
    BesselJ(1/2,pi); 
    
      0 
    
    
    on rounded; 
    
    BesselJ(0,1); 
    
      0.765197686558  
    
    

    BESSELY INDEX

    BESSELY _ _ _ _ _ _ _ _ _ _ _ _ operator

    The BesselY operator returns the Bessel function of the second kind.

    syntax:

    BesselY(<order>,<argument>)

    examples:

    
    BesselY (1/2,pi); 
    
      - sqrt(2) / pi 
    
    
    on rounded; 
    
    BesselY (1,3); 
    
      0.324674424792
    
    

    The operator BesselY is also called Weber's function.

    HANKEL1 INDEX

    HANKEL1 _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Hankel1 operator returns the Hankel function of the first kind.

    syntax:

    Hankel1(<order>,<argument>)

    examples:

    
    on complex; 
    
    Hankel1 (1/2,pi); 
    
      - i * sqrt(2) / pi 
    
    
    Hankel1 (1,pi); 
    
      besselj(1,pi) + i*bessely(1,pi)
    
    

    The operator Hankel1 is also called Bessel function of th e third kind. There is currently no numeric evaluation of Hankel functions.

    HANKEL2 INDEX

    HANKEL2 _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Hankel2 operator returns the Hankel function of the second kind.

    syntax:

    Hankel2(<order>,<argument>)

    examples:

    
    on complex; 
    
    Hankel2 (1/2,pi); 
    
      - i * sqrt(2) / pi 
    
    
    Hankel2 (1,pi); 
    
      besselj(1,pi) - i*bessely(1,pi)
    
    

    The operator Hankel2 is also called Bessel function of th e third kind. There is currently no numeric evaluation of Hankel functions.

    BESSELI INDEX

    BESSELI _ _ _ _ _ _ _ _ _ _ _ _ operator

    The BesselI operator returns the modified Bessel function I.

    syntax:

    BesselI(<order>,<argument>)

    examples:

    
    on rounded; 
    
    Besseli (1,1); 
    
      0.565159103992
    
    

    The knowledge about the operator BesselI is currently fai rly limited.

    BESSELK INDEX

    BESSELK _ _ _ _ _ _ _ _ _ _ _ _ operator

    The BesselK operator returns the modified Bessel function K.

    syntax:

    BesselK(<order>,<argument>)

    examples:

    
    df(besselk(0,x),x); 
    
      - besselk(1,x)
    
    

    There is currently no numeric support for the operator BesselK .

    StruveH INDEX

    STRUVEH _ _ _ _ _ _ _ _ _ _ _ _ operator

    The StruveH operator returns Struve's H function.

    syntax:

    StruveH(<order>,<argument>)

    examples:

    
    struveh(-3/2,x); 
    
      - besselj(3/2,x) / i
    
    

    StruveL INDEX

    STRUVEL _ _ _ _ _ _ _ _ _ _ _ _ operator

    The StruveL operator returns the modified Struve L function .

    syntax:

    StruveL(<order>,<argument>)

    examples:

    
    struvel(-3/2,x); 
    
      besseli(3/2,x)
    
    

    KummerM INDEX

    KUMMERM _ _ _ _ _ _ _ _ _ _ _ _ operator

    The KummerM operator returns Kummer's M function.

    syntax:

    KummerM(<parameter>,<parameter>,<argument>)

    examples:

    
    kummerm(1,1,x); 
    
       x
      e  
    
    
    on rounded; 
    
    kummerm(1,3,1.3); 
    
      1.62046942914
    
    

    Kummer's M function is one of the Confluent Hypergeometric functio ns. For reference see the hypergeometric operator.

    KummerU INDEX

    KUMMERU _ _ _ _ _ _ _ _ _ _ _ _ operator

    The KummerU operator returns Kummer's U function.

    syntax:

    KummerU(<parameter>,<parameter>,<argument>)

    examples:

    
    df(kummeru(1,1,x),x) 
    
      - kummeru(2,2,x)
    
    

    Kummer's U function is one of the Confluent Hypergeometric functio ns. For reference see the hypergeometric operator.

    WhittakerW INDEX

    WHITTAKERW _ _ _ _ _ _ _ _ _ _ _ _ operator

    The WhittakerW operator returns Whittaker's W function.

    syntax:

    WhittakerW(<parameter>,<parameter>,<argument>)

    examples:

    
    WhittakerW(2,2,2); 
    
                        1
      4*sqrt(2)*kummeru(-,5,2)
                        2
      -------------------------
                 e
    
    

    Whittaker's W function is one of the Confluent Hypergeometric func tions. For reference see the hypergeometric operator.

    Bessel Functions INDEX

    Bessel Functions

  • BESSELJ operator

  • BESSELY operator

  • HANKEL1 operator

  • HANKEL2 operator

  • BESSELI operator

  • BESSELK operator

  • StruveH operator

  • StruveL operator

  • KummerM operator

  • KummerU operator

  • WhittakerW operator

  • Airy_Ai INDEX

    AIRY_AI _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Airy_Ai operator returns the Airy Ai function for a given argument.

    syntax:

    Airy_Ai(<argument>)

    examples:

    
    on complex;
    on rounded;
    Airy_Ai(0); 
    
    
      0.355028053888          
    
    
    Airy_Ai(3.45 + 17.97i); 
    
      - 5.5561528511e+9 - 8.80397899932e+9*i  
    
    

    Airy_Bi INDEX

    AIRY_BI _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Airy_Bi operator returns the Airy Bi function for a given argument.

    syntax:

    Airy_Bi(<argument>)

    examples:

    
    Airy_Bi(0); 
    
      0.614926627446          
    
    
    Airy_Bi(3.45 + 17.97i); 
    
      8.80397899932e+9 - 5.5561528511e+9*i   
    
    

    Airy_Aiprime INDEX

    AIRY_AIPRIME _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Airy_Aiprime operator returns the Airy Aiprime function for a given argument.

    syntax:

    Airy_Aiprime(<argument>)

    examples:

    
    Airy_Aiprime(0); 
    
      - 0.258819403793           
    
    
    Airy_Aiprime(3.45+17.97i);
    
      - 3.83386421824e+19 + 2.16608828136e+19*i 
    
    

    Airy_Biprime INDEX

    AIRY_BIPRIME _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Airy_Biprime operator returns the Airy Biprime function for a given argument.

    syntax:

    Airy_Biprime(<argument>)

    examples:

    
    Airy_Biprime(0); 
    
    
    Airy_Biprime(3.45 + 17.97i); 
    
      3.84251916792e+19 - 2.18006297399e+19*i
    
    

    Airy Functions INDEX

    Airy Functions

  • Airy_Ai operator

  • Airy_Bi operator

  • Airy_Aiprime operator

  • Airy_Biprime operator

  • JacobiSN INDEX

    JACOBISN _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobisn operator returns the Jacobi Elliptic function sn.

    syntax:

    Jacobisn(<expression>,<integer>)

    examples:

    
    Jacobisn(0.672, 0.36) 
    
      0.609519691792 
    
    
    Jacobisn(1,0.9) 
    
      0.770085724907881 
    
    

    JacobiCN INDEX

    JACOBICN _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobicn operator returns the Jacobi Elliptic function cn.

    syntax:

    Jacobicn(<expression>,<integer>)

    examples:

    
    Jacobicn(7.2, 0.6) 
    
      0.837288298482018  
    
    
    Jacobicn(0.11, 19) 
    
      0.994403862690043 - 1.6219006985556e-16*i  
    
    

    JacobiDN INDEX

    JACOBIDN _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobidn operator returns the Jacobi Elliptic function dn.

    syntax:

    Jacobidn(<expression>,<integer>)

    examples:

    
    Jacobidn(15, 0.683) 
    
      0.640574162024592 
    
    
    Jacobidn(0,0) 
    
      1 
    
    

    JacobiCD INDEX

    JACOBICD _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobicd operator returns the Jacobi Elliptic function cd.

    syntax:

    Jacobicd(<expression>,<integer>)

    examples:

    
    Jacobicd(1, 0.34) 
    
      0.657683337805273 
    
    
    Jacobicd(0.8,0.8) 
    
      0.925587311582301 
    
    

    JacobiSD INDEX

    JACOBISD _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobisd operator returns the Jacobi Elliptic function sd.

    syntax:

    Jacobisd(<expression>,<integer>)

    examples:

    
    Jacobisd(12, 0.4) 
    
      0.357189729437272    
    
    
    Jacobisd(0.35,1) 
    
      - 1.17713873203043  
    
    

    JacobiND INDEX

    JACOBIND _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobind operator returns the Jacobi Elliptic function nd.

    syntax:

    Jacobind(<expression>,<integer>)

    examples:

    
    Jacobind(0.2, 17) 
    
      1.46553203037507 + 0.0000000000334032759313703*i 
    
    
    Jacobind(30, 0.001) 
    
      1.00048958438  
    
    

    JacobiDC INDEX

    JACOBIDC _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobidc operator returns the Jacobi Elliptic function dc.

    syntax:

    Jacobidc(<expression>,<integer>)

    examples:

    
    Jacobidc(0.003,1) 
    
      1 
    
    
    Jacobidc(2, 0.75) 
    
      6.43472885111  
    
    

    JacobiNC INDEX

    JACOBINC _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobinc operator returns the Jacobi Elliptic function nc.

    syntax:

    Jacobinc(<expression>,<integer>)

    examples:

    
    Jacobinc(1,0) 
    
      1.85081571768093 
    
    
    Jacobinc(56, 0.4387) 
    
      39.304842663512  
    
    

    JacobiSC INDEX

    JACOBISC _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobisc operator returns the Jacobi Elliptic function sc.

    syntax:

    Jacobisc(<expression>,<integer>)

    examples:

    
    Jacobisc(9, 0.88) 
    
      - 1.16417697982095  
    
    
    Jacobisc(0.34, 7) 
    
      0.305851938390775 - 9.8768100944891e-12*i 
    
    

    JacobiNS INDEX

    JACOBINS _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobins operator returns the Jacobi Elliptic function ns.

    syntax:

    Jacobins(<expression>,<integer>)

    examples:

    
    Jacobins(3, 0.9) 
    
      1.00945801599785 
    
    
    Jacobins(0.887, 15) 
    
      0.683578280513975 - 0.85023411082469*i 
    
    

    JacobiDS INDEX

    JACOBIDS _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobisn operator returns the Jacobi Elliptic function ds.

    syntax:

    Jacobids(<expression>,<integer>)

    examples:

    
    Jacobids(98,0.223) 
    
      - 1.061253961477 
    
    
    Jacobids(0.36,0.6) 
    
      2.76693172243692 
    
    

    JacobiCS INDEX

    JACOBICS _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobics operator returns the Jacobi Elliptic function cs.

    syntax:

    Jacobics(<expression>,<integer>)

    examples:

    
    Jacobics(0, 0.767) 
    
      infinity   
    
    
    Jacobics(1.43, 0) 
    
      0.141734127352112 
    
    

    JacobiAMPLITUDE INDEX

    JACOBIAMPLITUDE _ _ _ _ _ _ _ _ _ _ _ _ operator

    The JacobiAmplitude operator returns the amplitude of u.

    syntax:

    JacobiAmplitude(<expression>,<integer>)

    examples:

    
    JacobiAmplitude(7.239, 0.427) 
    
      0.0520978301448978 
    
    
    JacobiAmplitude(0,0.1) 
    
      0 
    
    

    Amplitude u = asin(Jacobisn(u,m))

    AGM_FUNCTION INDEX

    AGM_FUNCTION _ _ _ _ _ _ _ _ _ _ _ _ operator

    The AGM_function operator returns a list of (N, AGM, list of aNtoa0, list of bNtob0, list of cNtoc0) where a0, b0 and c0 are the initial values; N is the index number of the last term used to generate the AGM. AGM is the Arithmetic Geometric Mean.

    syntax:

    AGM_function(<integer>,<integer>,<integer>)

    examples:

    
    AGM_function(1,1,1) 
    
      1,1,1,1,1,1,0,1  
    
    
    AGM_function(1, 0.1, 1.3) 
    
      {6,
       2.27985615996629, 
       {2.27985615996629, 2.27985615996629,
        2.2798561599706, 2.2798624278857, 
        2.28742283656583, 2.55, 1},
       {2.27985615996629, 2.27985615996629,
        2.27985615996198, 2.2798498920555, 
        2.27230201920557, 2.02484567313166, 4.1},
       {0, 4.30803136219904e-12, 0.0000062679151007581,
        0.00756040868012758, 0.262577163434171, - 1.55, 5.9}}
    
    

    The other Jacobi functions use this function with initial values a0=1, b0=sqrt(1-m), c0=sqrt(m).

    LANDENTRANS INDEX

    LANDENTRANS _ _ _ _ _ _ _ _ _ _ _ _ operator

    The landentrans operator generates the descending landen transformation of the given imput values, returning a list of these values; initial to final in each case.

    syntax:

    landentrans(<expression>,<integer>)

    examples:

    
    landentrans(0,0.1) 
    
      {{0,0,0,0,0},{0.1,0.0025041751943776, 
    
    
     
    
      0.00000156772498954046,6.1444078 9914461e-13,0}}  
    
    

    The first list ascends in value, and the second descends in value.

    EllipticF INDEX

    ELLIPTICF _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticF operator returns the Elliptic Integral of the First Kind.

    syntax:

    EllitpicF(<expression>,<integer>)

    examples:

    
    EllipticF(0.3, 8.222) 
    
      0.3 
    
    
    EllipticF(7.396, 0.1) 
    
      7.58123216114307 
    
    

    The Complete Elliptic Integral of the First Kind can be found by putting the first argument to pi/2 or by using EllipticK and the second argument.

    EllipticK INDEX

    ELLIPTICK _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticK operator returns the Elliptic value K.

    syntax:

    EllipticK(<integer>)

    examples:

    
    EllipticK(0.2) 
    
      1.65962359861053   
    
    
    EllipticK(4.3) 
    
      0.808442364282734 - 1.05562492399206*i  
    
    
    EllipticK(0.000481) 
    
      1.57098526617635    
    
    

    The EllipticK function is the Complete Elliptic Integral of the First Kind.

    EllipticKprime INDEX

    ELLIPTICKPRIME _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticK' operator returns the Elliptic value K(m).

    syntax:

    EllipticKprime(<integer>)

    examples:

    
    EllipticKprime(0.2) 
    
      2.25720532682085 
    
    
    EllipticKprime(4.3) 
    
      1.05562492399206 
    
    
    EllipticKprime(0.000481) 
    
      5.206621921966   
    
    

    The EllipticKprime function is the Complete Elliptic Inte gral of the First Kind of (1-m).

    EllipticE INDEX

    ELLIPTICE _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticE operator used with two arguments returns the Elliptic Integral of the Second Kind.

    syntax:

    EllipticE(<expression>,<integer>)

    examples:

    
    EllipticE(1.2,0.22) 
    
      1.15094019180949 
    
    
    EllipticE(0,4.35) 
    
      0                
    
    
    EllipticE(9,0.00719) 
    
      8.98312465929145  
    
    

    The Complete Elliptic Integral of the Second Kind can be obtained by using just the second argument, or by using pi/2 as the first argument.

    The EllipticE operator used with one argument returns the Elliptic value E.

    syntax:

    EllipticE(<integer>)

    examples:

    
    EllipticE(0.22) 
    
      1.48046637439519  
    
    
    EllipticE(pi/2, 0.22) 
    
      1.48046637439519  
    
    

    EllipticTHETA INDEX

    ELLIPTICTHETA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticTheta operator returns one of the four Theta functions. It cannot except any number other than 1,2,3 or 4 as its first argument.

    syntax:

    EllipticTheta(<integer>,<expression>,<integer>)

    examples:

    
    EllipticTheta(1, 1.4, 0.72) 
    
      0.91634775373  
    
    
    EllipticTheta(2, 3.9, 6.1 ) 
    
      -48.0202736969 + 20.9881034377 i 
    
    
    EllipticTheta(3, 0.67, 0.2) 
    
      1.0083077448   
    
    
    EllipticTheta(4, 8, 0.75) 
    
      0.894963369304 
    
    
    EllipticTheta(5, 1, 0.1) 
    
      ***** In EllipticTheta(a,u,m); a = 1,2,3 or 4.   
    
    

    Theta functions are important because every one of the Jacobian Elliptic functions can be expressed as the ratio of two theta functions.

    JacobiZETA INDEX

    JACOBIZETA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The JacobiZeta operator returns the Jacobian function Zeta.

    syntax:

    JacobiZeta(<expression>,<integer>)

    examples:

    
    JacobiZeta(3.2, 0.8) 
    
      - 0.254536403439 
    
    
    JacobiZeta(0.2, 1.6) 
    
      0.171766095970451 - 0.0717028569800147*i  
    
    

    The Jacobian function Zeta is related to the Jacobian function The ta. But it is significantly different from Riemann's Zeta Function Zeta.

    Jacobi's Elliptic Functions and Elliptic Integrals INDEX

    Jacobi's Elliptic Functions and Elliptic Integrals

  • JacobiSN operator

  • JacobiCN operator

  • JacobiDN operator

  • JacobiCD operator

  • JacobiSD operator

  • JacobiND operator

  • JacobiDC operator

  • JacobiNC operator

  • JacobiSC operator

  • JacobiNS operator

  • JacobiDS operator

  • JacobiCS operator

  • JacobiAMPLITUDE operator

  • AGM_FUNCTION operator

  • LANDENTRANS operator

  • EllipticF operator

  • EllipticK operator

  • EllipticKprime operator

  • EllipticE operator

  • EllipticTHETA operator

  • JacobiZETA operator

  • POCHHAMMER INDEX

    POCHHAMMER _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Pochhammer operator implements the Pochhammer notation (shifted factorial).

    syntax:

    Pochhammer(<expression>,<expression>)

    examples:

    
    pochhammer(17,4); 
    
      116280 
    
    
    
    pochhammer(1/2,z); 
    
        factorial(2*z)
      --------------------
        2*z
      (2   *factorial(z))
    
    

    A number of complex rules for Pochhammer are inactive, be cause they cause a huge system load in algebraic mode. If one wants to use more rules for the simplification of Pochhammer's notation, one can do:

    let special!*pochhammer!*rules;

    GAMMA INDEX

    GAMMA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Gamma operator returns the Gamma function.

    syntax:

    Gamma(<expression>)

    examples:

    
    gamma(10); 
    
      362880    
    
    
    gamma(1/2); 
    
      sqrt(pi)
    
    

    BETA INDEX

    BETA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Beta operator returns the Beta function defined by

    Beta (z,w) := defint(t**(z-1)* (1 - t)**(w-1),t,0,1) .

    syntax:

    Beta(<expression>,<expression>)

    examples:

    
    Beta(2,2); 
    
      1 / 6 
    
    
    Beta(x,y); 
    
      gamma(x)*gamma(y) / gamma(x + y)
    
    

    The operator Beta is simplified towards the GAMMA operator.

    PSI INDEX

    PSI _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Psi operator returns the Psi (or DiGamma) function.

    Psi(x) := df(Gamma(z),z)/ Gamma (z)

    syntax:

    Gamma(<expression>)

    examples:

    
    Psi(3); 
    
      (2*log(2) + psi(1/2) + psi(1) + 3)/2 
    
    
    on rounded; 
    
    - Psi(1); 
    
      0.577215664902
    
    

    Euler's constant can be found as - Psi(1).

    POLYGAMMA INDEX

    POLYGAMMA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Polygamma operator returns the Polygamma function.

    Polygamma(n,x) := df(Psi(z),z,n);

    syntax:

    Polygamma(<integer>,<expression>)

    examples:

    
     Polygamma(1,2); 
    
         2
      (pi   - 6) / 6
    
    
    on rounded; 
    
    Polygamma(1,2.35); 
    
      0.52849689109
    
    

    The Polygamma function is used for simplification of the ZETA function for some arguments.

    Gamma and Related Functions INDEX

    Gamma and Related Functions

  • POCHHAMMER operator

  • GAMMA operator

  • BETA operator

  • PSI operator

  • POLYGAMMA operator

  • DILOG_extended INDEX

    DILOG EXTENDED _ _ _ _ _ _ _ _ _ _ _ _ operator

    The package specfn supplies an extended support for the dilog operator which implements the dilog arithm function.

    dilog(x) := - defint(log(t)/(t - 1),t,1,x);

    syntax:

    Dilog(<order>,<expression>)

    examples:

    
    defint(log(t)/(t - 1),t,1,x); 
    
      - dilog (x) 
    
    
    dilog 2; 
    
          2
      - pi  /12 
    
    
    
    on rounded; 
    
    Dilog 20; 
    
      - 5.92783972438
    
    

    The operator Dilog is sometimes called Spence's Integral for n = 2.

    Lambert_W_function INDEX

    LAMBERT\_W FUNCTION _ _ _ _ _ _ _ _ _ _ _ _ operator

    Lambert's W function is the inverse of the function w * e**w. It is used in the solve package for equations containing exponentials and logarithms.

    syntax:

    Lambert_W(<z>)

    examples:

    
    Lambert_W(-1/e); 
    
      -1 
    
    
    solve(w + log(w),w); 
    
      w=lambert_w(1)
    
    
    on rounded; 
    
    Lambert_W(-0.05); 
    
      - 0.0527059835515
    
    

    The current implementation will compute the principal branch in rounded mode only.

    Miscellaneous Functions INDEX

    Miscellaneous Functions

  • DILOG extended operator

  • Lambert\_W function operator