
GROEBNER: A Package for Calculating Gröbner

Bases, Version 3.0

H. Melenk & W. Neun

Konrad–Zuse–Zentrum
für Informationstechnik Berlin

Takustrasse 7
D–14195 Berlin–Dahlem

Germany

Email: melenk@zib.de

and

H.M. Möller

FB Mathematik
Vogelpothsweg 87

Universität Dortmund
D–44221 Dortmund

Germany

Email: moeller@math.uni–dortmund.de

Gröbner bases are a valuable tool for solving problems in connection with
multivariate polynomials, such as solving systems of algebraic equations and
analyzing polynomial ideals. For a definition of Gröbner bases, a survey of
possible applications and further references, see [?]. Examples are given in
[?], in [?] and also in the test file for this package.

The groebner package calculates Gröbner bases using the Buchberger algo-
rithm. It can be used over a variety of different coefficient domains, and for
different variable and term orderings.

The current version of the package uses parts of a previous version, written
by R. Gebauer, A.C. Hearn, H. Kredel and H. M. Möller. The algorithms
implemented in the current version are documented in [?], [?], [?] and [?].

1



1 BACKGROUND 2

The operator saturation has been implemented in July 2000 (Herbert Me-
lenk).

1 Background

1.1 Variables, Domains and Polynomials

The various functions of the groebner package manipulate equations and/or
polynomials; equations are internally transformed into polynomials by form-
ing the difference of left-hand side and right-hand side, if equations are given.

All manipulations take place in a ring of polynomials in some variables
x1, . . . , xn over a coefficient domain d:

d[x1, . . . , xn],

where d is a field or at least a ring without zero divisors. The set of variables
x1, . . . , xn can be given explicitly by the user or it is extracted automatically
from the input expressions.

All REDUCE kernels can play the role of “variables” in this context; exam-
ples are

x y z22 sin(alpha) cos(alpha) c(1,2,3) c(1,3,2) farina4711

The domain d is the current REDUCE domain with those kernels adjoined
that are not members of the list of variables. So the elements of d may be
complicated polynomials themselves over kernels not in the list of variables;
if, however, the variables are extracted automatically from the input expres-
sions, d is identical with the current REDUCE domain. It is useful to regard
kernels not being members of the list of variables as “parameters”, e.g.

a ∗ x + (a− b) ∗ y ∗ ∗2 with “variables” {x, y}
and “parameters” a and b .

The current version of the Buchberger algorithm has two internal modes, a
field mode and a ring mode. In the starting phase the algorithm analyzes
the domain type; if it recognizes d as being a ring it uses the ring mode,
otherwise the field mode is needed. Normally field calculations occur only
if all coefficients are numbers and if the current REDUCE domain is a field
(e.g. rational numbers, modular numbers modulo a prime). In general, the



1 BACKGROUND 3

ring mode is faster. When no specific REDUCE domain is selected, the ring
mode is used, even if the input formulas contain fractional coefficients: they
are multiplied by their common denominators so that they become integer
polynomials. Zeroes of the denominators are included in the result list.

1.2 Term Ordering

In the theory of Gröbner bases, the terms of polynomials are considered as
ordered. Several order modes are available in the current package, including
the basic modes:

lex, gradlex, revgradlex

All orderings are based on an ordering among the variables. For each pair of
variables (a, b) an order relation must be defined, e.g. “a � b”. The greater
sign � does not represent a numerical relation among the variables; it can
be interpreted only in terms of formula representation: “a” will be placed
in front of “b” or “a” is more complicated than “b”.

The sequence of variables constitutes this order base. So the notion of

{x1, x2, x3}

as a list of variables at the same time means

x1 � x2 � x3

with respect to the term order.

If terms (products of powers of variables) are compared with lex, that term
is chosen which has a greater variable or a higher degree if the greatest
variable is the first in both. With gradlex the sum of all exponents (the
total degree) is compared first, and if that does not lead to a decision, the
lex method is taken for the final decision. The revgradlex method also
compares the total degree first, but afterward it uses the lex method in the
reverse direction; this is the method originally used by Buchberger.



1 BACKGROUND 4

Example 1 with {x, y, z}:

lex:
x ∗ y ∗ ∗3 � y ∗ ∗48 (heavier variable)

x ∗ ∗4 ∗ y ∗ ∗2 � x ∗ ∗3 ∗ y ∗ ∗10 (higher degree in 1st variable)

gradlex:
y ∗ ∗3 ∗ z ∗ ∗4 � x ∗ ∗3 ∗ y ∗ ∗3 (higher total degree)

x ∗ z � y ∗ ∗2 (equal total degree)

revgradlex:
y ∗ ∗3 ∗ z ∗ ∗4 � x ∗ ∗3 ∗ y ∗ ∗3 (higher total degree)

x ∗ z � y ∗ ∗2 (equal total degree,
so reverse order of lex)

The formal description of the term order modes is similar to [?]; this de-
scription regards only the exponents of a term, which are written as vectors
of integers with 0 for exponents of a variable which does not occur:

(e) = (e1, . . . , en) representing x1 ∗ ∗e1 x2 ∗ ∗e2 · · ·xn ∗ ∗en.
deg(e) is the sum over all elements of (e)
(e) � (l) ⇐⇒ (e)− (l) � (0) = (0, . . . , 0)

lex:
(e) > lex > (0) =⇒ ek > 0 and ej = 0 for j = 1, . . . , k − 1

gradlex:
(e) > gl > (0) =⇒ deg(e) > 0 or (e) > lex > (0)

revgradlex:
(e) > rgl > (0) =⇒ deg(e) > 0 or (e) < lex < (0)

Note that the lex ordering is identical to the standard REDUCE kernel
ordering, when korder is set explicitly to the sequence of variables.

lex is the default term order mode in the groebner package.

It is beyond the scope of this manual to discuss the functionality of the term
order modes. See [?].

The list of variables is declared as an optional parameter of the torder
statement (see below). If this declaration is missing or if the empty list has
been used, the variables are extracted from the expressions automatically



2 LOADING OF THE PACKAGE 5

and the REDUCE system order defines their sequence; this can be influenced
by setting an explicit order via the korder statement.

The result of a Gröbner calculation is algebraically correct only with respect
to the term order mode and the variable sequence which was in effect during
the calculation. This is important if several calls to the groebner package
are done with the result of the first being the input of the second call.
Therefore we recommend that you declare the variable list and the order
mode explicitly. Once declared it remains valid until you enter a new torder
statement. The operator gvars helps you extract the variables from a given
set of polynomials, if an automatic reordering has been selected.

1.3 The Buchberger Algorithm

The Buchberger algorithm of the package is based on Gebauer/Möller
[?]. Extensions are documented in [?] and [?].

2 Loading of the Package

The following command loads the package into REDUCE(this syntax may
vary according to the implementation):

load package groebner;

The package contains various operators, and switches for control over the
reduction process. These are discussed in the following.

3 The Basic Operators

3.1 Term Ordering Mode

torder (vl,m,[p1, p2, . . .]);

where vl is a variable list (or the empty list if no variables are de-
clared explicitly), m is the name of a term ordering mode lex, gradlex,
revgradlex (or another implemented mode) and [p1, p2, . . .] are addi-
tional parameters for the term ordering mode (not needed for the basic
modes).



3 THE BASIC OPERATORS 6

torder sets variable set and the term ordering mode. The default mode
is lex. The previous description is returned as a list with corresponding
elements. Such a list can alternatively be passed as sole argument to
torder.

If the variable list is empty or if the torder declaration is omitted, the
automatic variable extraction is activated.

gvars ({exp1, exp2, . . ., expn});
where {exp1, exp2, . . . , expn} is a list of expressions or equations.

gvars extracts from the expressions {exp1, exp2, . . . , expn} the ker-
nels, which can play the role of variables for a Gröbner calculation.
This can be used e.g. in a torder declaration.

3.2 groebner: Calculation of a Gröbner Basis

groebner {exp1, exp2, . . . , expm};
where {exp1, exp2, . . . , expm} is a list of expressions or equations.

groebner calculates the Gröbner basis of the given set of expressions
with respect to the current torder setting.

The Gröbner basis {1} means that the ideal generated by the input
polynomials is the whole polynomial ring, or equivalently, that the
input polynomials have no zeroes in common.

As a side effect, the sequence of variables is stored as a REDUCE list
in the shared variable

gvarslast.

This is important if the variables are reordered because of optimiza-
tion: you must set them afterwards explicitly as the current variable
sequence if you want to use the Gröbner basis in the sequel, e.g. for a
preduce call. A basis has the property “Gröbner” only with respect to
the variable sequences which had been active during its computation.

Example 2

torder({},lex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };



3 THE BASIC OPERATORS 7

2
{8*x - 2*y + 5*y + 3,

3 2
2*y - 3*y - 16*y + 21}

This example used the default system variable ordering, which was {x, y}.
With the other variable ordering, a different basis results:

torder({y,x},lex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

2
{2*y + 2*x - 3*x - 6,

3 2
2*x - 5*x - 5*x}

Another basis yet again results with a different term ordering:

torder({x,y},revgradlex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

2
{2*y - 5*y - 8*x - 3,

y*x - y + x + 3,

2
2*x + 2*y - 3*x - 6}

The operation of groebner can be controlled by the following switches:

groebopt – If set on, the sequence of variables is optimized with respect to
execution speed; the algorithm involved is described in [?]; note that
the final list of variables is available in gvarslast.



3 THE BASIC OPERATORS 8

An explicitly declared dependency supersedes the variable optimiza-
tion. For example

depend a, x, y;

guarantees that a will be placed in front of x and y. So groebopt can
be used even in cases where elimination of variables is desired.

By default groebopt is off , conserving the original variable sequence.

groebfullreduction – If set off , the reduction steps during the
groebner operation are limited to the pure head term reduction; sub-
sequent terms are reduced otherwise.

By default groebfullreduction is on.

gltbasis – If set on, the leading terms of the result basis are extracted. They
are collected in a basis of monomials, which is available as value of the
global variable with the name gltb.

glterms – If {exp1, . . . , expm} contain parameters (symbols which are not
member of the variable list), the share variable glterms contains a
list of expression which during the calculation were assumed to be
nonzero. A Gröbner basis is valid only under the assumption that all
these expressions do not vanish.

The following switches control the print output of groebner; by default all
these switches are set off and nothing is printed.

groebstat – A summary of the computation is printed including the comput-
ing time, the number of intermediate h–polynomials and the counters
for the hits of the criteria.

trgroeb – Includes groebstat and the printing of the intermediate h-polynomials.

trgroebs – Includes trgroeb and the printing of intermediate s–polynomials.

trgroeb1 – The internal pairlist is printed when modified.

3.3 Gzerodim?: Test of dim = 0

gzerodim!? bas
where bas is a Gröbner basis in the current setting. The result is nil, if
bas is the basis of an ideal of polynomials with more than finitely many
common zeros. If the ideal is zero dimensional, i. e. the polynomials
of the ideal have only finitely many zeros in common, the result is an



3 THE BASIC OPERATORS 9

integer k which is the number of these common zeros (counted with
multiplicities).

3.4 gdimension, gindependent sets: compute dimension and in-
dependent variables

The following operators can be used to compute the dimension and the
independent variable sets of an ideal which has the Gröbner basis bas with
arbitrary term order:

gdimension bas

gindependent sets bas gindependent sets computes the maximal left inde-
pendent variable sets of the ideal, that are the variable sets which play
the role of free parameters in the current ideal basis. Each set is a
list which is a subset of the variable list. The result is a list of these
sets. For an ideal with dimension zero the list is empty. gdimension
computes the dimension of the ideal, which is the maximum length of
the independent sets.

The switch groebopt plays no role in the algorithms gdimension and gindependent sets.
It is set off during the processing even if it is set on before. Its state is
saved during the processing.

The “Kredel-Weispfenning” algorithm is used (see [?], extended to general
ordering in [?].

3.5 Conversion of a Gröbner Basis

3.5.1 glexconvert: Conversion of an Arbitrary Gröbner Basis of a
Zero Dimensional Ideal into a Lexical One

glexconvert ({exp, . . . , expm} [, {var1 . . . , varn}] [,maxdeg = mx]
[, newvars = {nv1, . . . , nvk}])
where {exp1, . . . , expm} is a Gröbner basis with {var1, . . . , varn} as
variables in the current term order mode, mx is an integer, and {nv1, . . . , nvk}
is a subset of the basis variables. For this operator the source and tar-
get variable sets must be specified explicitly.

glexconvert converts a basis of a zero-dimensional ideal (finite number of
isolated solutions) from arbitrary ordering into a basis under lex ordering.



3 THE BASIC OPERATORS 10

During the call of glexconvert the original ordering of the input basis must
be still active!

newvars defines the new variable sequence. If omitted, the original variable
sequence is used. If only a subset of variables is specified here, the partial
ideal basis is evaluated. For the calculation of a univariate polynomial,
newvars should be a list with one element.

maxdeg is an upper limit for the degrees. The algorithm stops with an error
message, if this limit is reached.

A warning occurs if the ideal is not zero dimensional.

glexconvert is an implementation of the FLGM algorithm by
Faugère, Gianni, Lazard and Mora [?]. Often, the calculation of a
Gröbner basis with a graded ordering and subsequent conversion to lex is
faster than a direct lex calculation. Additionally, glexconvert can be used
to transform a lex basis into one with different variable sequence, and it
supports the calculation of a univariate polynomial. If the latter exists,
the algorithm is even applicable in the non zero-dimensional case, if such a
polynomial exists. If the polynomial does not exist, the algorithm computes
until maxdeg has been reached.

torder({{w,p,z,t,s,b},gradlex)

g := groebner { f1 := 45*p + 35*s -165*b -36,
35*p + 40*z + 25*t - 27*s, 15*w + 25*p*s +30*z -18*t
-165*b**2, -9*w + 15*p*t + 20*z*s,
w*p + 2*z*t - 11*b**3, 99*w - 11*s*b +3*b**2,
b**2 + 33/50*b + 2673/10000};

g := {60000*w + 9500*b + 3969,

1800*p - 3100*b - 1377,

18000*z + 24500*b + 10287,

750*t - 1850*b + 81,

200*s - 500*b - 9,
2



3 THE BASIC OPERATORS 11

10000*b + 6600*b + 2673}

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={w});

2
100000000*w + 2780000*w + 416421

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={p});

2
6000*p - 2360*p + 3051

3.5.2 groebner walk: Conversion of a (General) Total Degree Ba-
sis into a Lex One

The algorithm groebner walk convertes from an arbitrary polynomial sys-
tem a graduated basis of the given variable sequence to a lex one of the
same sequence. The job is done by computing a sequence of Gröbner
bases of correspondig monomial ideals, lifting the original system each time.
The algorithm has been described (more generally) by [?],[?],[?] and [?].
groebner walk should be only called, if the direct calculation of a lex Gröbner
base does not work. The computation of groebner walk includes some over-
head (e. g. the computation divides polynomials). Normally torder must
be called before to define the variables and the variable sorting. The re-
ordering of variables makes no sense with groebner walk; so do not call
groebner walk with groebopt on!

groebner walk g
where g is a polynomial ideal basis computed under gradlex or under
weighted with a one–element, non zero weight vector with only one
element, repeated for each variable. The result is a corresponding lex
basis (if that is computable), independet of the degree of the ideal
(even for non zero degree ideals). The variabe gvarslast is not set.



3 THE BASIC OPERATORS 12

3.6 groebnerf : Factorizing Gröbner Bases

3.6.1 Background

If Gröbner bases are computed in order to solve systems of equations or to
find the common roots of systems of polynomials, the factorizing version
of the Buchberger algorithm can be used. The theoretical background is
simple: if a polynomial p can be represented as a product of two (or more)
polynomials, e.g. h = f ∗ g, then h vanishes if and only if one of the factors
vanishes. So if during the calculation of a Gröbner basis h of the above
form is detected, the whole problem can be split into two (or more) disjoint
branches. Each of the branches is simpler than the complete problem; this
saves computing time and space. The result of this type of computation is
a list of (partial) Gröbner bases; the solution set of the original problem is
the union of the solutions of the partial problems, ignoring the multiplicity
of an individual solution. If a branch results in a basis {1}, then there
is no common zero, i.e. no additional solution for the original problem,
contributed by this branch.

3.6.2 groebnerf Call

The syntax of groebnerf is the same as for groebner.

groebnerf({exp1, exp2, . . . , expm}[, {}, {nz1, . . . nzk});
where {exp1, exp2, . . . , expm} is a given list of expressions or equations, and
{nz1, . . . nzk} is an optional list of polynomials known to be non-zero.

groebnerf tries to separate polynomials into individual factors and to branch
the computation in a recursive manner (factorization tree). The result is a
list of partial Gröbner bases. If no factorization can be found or if all
branches but one lead to the trivial basis {1}, the result has only one basis;
nevertheless it is a list of lists of polynomials. If no solution is found, the
result will be {{1}}. Multiplicities (one factor with a higher power, the same
partial basis twice) are deleted as early as possible in order to speed up the
calculation. The factorizing is controlled by some switches.

As a side effect, the sequence of variables is stored as a REDUCE list in the
shared variable

gvarslast .



3 THE BASIC OPERATORS 13

If gltbasis is on, a corresponding list of leading term bases is also produced
and is available in the variable gltb.

The third parameter of groebnerf allows one to declare some polynomials
nonzero. If any of these is found in a branch of the calculation the branch
is cancelled. This can be used to save a substantial amount of computing
time. The second parameter must be included as an empty list if the third
parameter is to be used.

torder({x,y},lex)$
groebnerf { 3*x**2*y + 2*x*y + y + 9*x**2 + 5*x = 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x = -3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 \};

{{y - 3,x},

2
{2*y + 2*x - 1,2*x - 5*x - 5}}

It is obvious here that the solutions of the equations can be read off imme-
diately.

All switches from groebner are valid for groebnerf as well:

groebopt
gltbasis
groebfullreduction
groebstat
trgroeb
trgroebs
rgroeb1

Additional switches for groebnerf :

trgroebr – All intermediate partial basis are printed when detected.

By default trgroebr is off.

groebmonfac groebresmax groebrestriction
These variables are described in the following paragraphs.



3 THE BASIC OPERATORS 14

3.6.3 Suppression of Monomial Factors

The factorization in groebnerf is controlled by the following switches and
variables. The variable groebmonfac is connected to the handling of “mono-
mial factors”. A monomial factor is a product of variable powers occurring
as a factor, e.g. x ∗ ∗2 ∗ y in x ∗ ∗3 ∗ y− 2 ∗x ∗ ∗2 ∗ y ∗ ∗2. A monomial factor
represents a solution of the type “x = 0 or y = 0” with a certain multiplicity.
With groebnerf the multiplicity of monomial factors is lowered to the value
of the shared variable

groebmonfac

which by default is 1 (= monomial factors remain present, but their multi-
plicity is brought down). With

groebmonfac := 0

the monomial factors are suppressed completely.

3.6.4 Limitation on the Number of Results

The shared variable

groebresmax

controls the number of partial results. Its default value is 300. If groebresmax
partial results are calculated, the calculation is terminated. groebresmax
counts all branches, including those which are terminated (have been com-
puted already), give no contribution to the result (partial basis 1), or which
are unified in the result with other (partial) bases. So the resulting number
may be much smaller. When the limit of groeresmax is reached, a warning

GROEBRESMAX limit reached

is issued; this warning in any case has to be taken as a serious one. For
”normal” calculations the groebresmax limit is not reached. groebresmax
is a shared variable (with an integer value); it can be set in the algebraic
mode to a different (positive integer) value.



3 THE BASIC OPERATORS 15

3.6.5 Restriction of the Solution Space

In some applications only a subset of the complete solution set of a given
set of equations is relevant, e.g. only nonnegative values or positive definite
values for the variables. A significant amount of computing time can be
saved if nonrelevant computation branches can be terminated early.

Positivity: If a polynomial has no (strictly) positive zero, then every system
containing it has no nonnegative or strictly positive solution. Therefore,
the Buchberger algorithm tests the coefficients of the polynomials for equal
sign if requested. For example, in 13 ∗ x + 15 ∗ y ∗ z can be zero with real
nonnegative values for x, y and z only if x = 0 and y = 0 or z = 0; this is a
sort of “factorization by restriction”. A polynomial 13 ∗ x + 15 ∗ y ∗ z + 20
never can vanish with nonnegative real variable values.

Zero point: If any polynomial in an ideal has an absolute term, the ideal
cannot have the origin point as a common solution.

By setting the shared variable

groebrestriction

groebnerf is informed of the type of restriction the user wants to impose on
the solutions:

groebrestiction:=nonnegative;
only nonnegative real solutions are of interest

groebrestriction:=positive;
only nonnegative and nonzero solutions are of interest

groebrestriction:=zeropoint;
only solution sets which contain the point {0, 0, . . . , 0} are or interest.

If groebnerf detects a polynomial which formally conflicts with the restric-
tion, it either splits the calculation into separate branches, or, if a violation
of the restriction is determined, it cancels the actual calculation branch.



3 THE BASIC OPERATORS 16

3.7 greduce, preduce: Reduction of Polynomials

3.7.1 Background

Reduction of a polynomial “p” modulo a given sets of polynomials “b” is
done by the reduction algorithm incorporated in the Buchberger algorithm.
Informally it can be described for polynomials over a field as follows:

loop1: % head term elimination
if there is one polynomial b in B such that the leading

term of p is a multiple of the leading term of P do
p := p− lt(p)/lt(b) ∗ b (the leading term vanishes)

do this loop as long as possible;
loop2: % elimination of subsequent terms

for each term s in p do
if there is one polynomial b in B such that s is a
multiple of the leading term of p do
p := p− s/lt(b) ∗ b (the term s vanishes)

do this loop as long as possible;

If the coefficients are taken from a ring without zero divisors we cannot
divide by each possible number like in the field case. But using that in
the field case, c ∗ p is reduced to c ∗ q, if p is reduced to q, for arbitrary
numbers c, the reduction for the ring case uses the least c which makes the
(field) reduction for c ∗ p integer. The result of this reduction is returned as
(ring) reduction of p eventually after removing the content, i.e. the greatest
common divisor of the coefficients. The result of this type of reduction is
also called a pseudo reduction of p.

3.7.2 Reduction via Gröbner Basis Calculation

greduce(exp, {exp1, exp2, . . . , expm}]);

where exp is an expression, and {exp1, exp2, . . . , expm} is a list of any num-
ber of expressions or equations.

greduce first converts the list of expressions {exp1, . . . , expn} to a Gröbner
basis, and then reduces the given expression modulo that basis. An error
results if the list of expressions is inconsistent. The returned value is an



3 THE BASIC OPERATORS 17

expression representing the reduced polynomial. As a side effect, greduce
sets the variable gvarslast in the same manner as groebner does.

3.7.3 Reduction with Respect to Arbitrary Polynomials

preduce(exp, {exp1, exp2, . . . , expm});
where expm is an expression, and {exp1, exp2, . . . , expm} is a list of any
number of expressions or equations.

preduce reduces the given expression modulo the set {exp1, . . . , expm}. If
this set is a Gröbner basis, the obtained reduced expression is uniquely de-
termined. If not, then it depends on the subsequence of the single reduction
steps (see 3.7.1). preduce does not check whether {exp1, exp2, . . . , expm}
is a Gröbner basis in the actual order. Therefore, if the expressions are a
Gröbner basis calculated earlier with a variable sequence given explicitly or
modified by optimization, the proper variable sequence and term order must
be activated first.

Example 3(preduce called with a Gröbner basis):

torder({x,y},lex);
gb:=groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2}$

preduce (5*y**2 + 2*x**2*y + 5/2*x*y + 3/2*y
+ 8*x**2 + 3/2*x - 9/2, gb);

2
y

3.7.4 greduce orders: Reduction with several term orders

The shortest polynomial with different polynomial term orders is computed
with the operator greduce orders:

greduce orders (exp, {exp1, exp2, . . . , expm} [,{v1,v2 . . . vn}]);
where exp is an expression and {exp1, exp2, . . . , expm} is a list of any
number of expressions or equations. The list of variables v1, v2 . . . vn

may be omitted; if set, the variables must be a list.



3 THE BASIC OPERATORS 18

The expression exp is reduced by greduce with the orders in the shared
variable gorders, which must be a list of term orders (if set). By default it
is set to

{revgradlex, gradlex, lex}
The shortest polynomial is the result. The order with the shortest polyno-
mial is set to the shared variable gorder. A Gröbner basis of the system
{exp1, exp2, . . . , expm} is computed for each element of orders. With the
default setting gorder in most cases will be set to revgradlex. If the variable
set is given, these variables are taken; otherwise all variables of the system
{exp1, exp2, . . . , expm} are extracted.

The Gröbner basis computations can take some time; if interrupted, the in-
termediate result of the reduction is set to the shared variable greduce result,
if one is done already. However, this is not nesessarily the minimal form.

If the variable gorders should be set to orders with a parameter, the term
oder has to be replaced by a list; the first element is the term oder selected,
followed by its parameter(s), e.g.

orders := {{gradlexgradlex, 2}, {lexgradlex, 2}}

3.7.5 Reduction Tree

In some case not only are the results produced by greduce and preduce of
interest, but the reduction process is of some value too. If the switch

groebprot

is set on, groebner, greduce and preduce produce as a side effect a trace of
their work as a REDUCE list of equations in the shared variable

groebprotfile.

Its value is a list of equations with a variable “candidate” playing the role
of the object to be reduced. The polynomials are cited as “poly1”, “poly2”,
. . . . If read as assignments, these equations form a program which leads
from the reduction input to its result. Note that, due to the pseudo reduction
with a ring as the coefficient domain, the input coefficients may be changed
by global factors.

Example 4



3 THE BASIC OPERATORS 19

on groebprot $
preduce (5 ∗ y ∗ ∗2 + 2 ∗ x ∗ ∗2 ∗ y + 5/2 ∗ x ∗ y + 3/2 ∗ y + 8 ∗ x ∗ ∗2

+3/2 ∗ x− 9/2, gb);

2
y

groebprotfile;

2 2 2
{candidate=4*x *y + 16*x + 5*x*y + 3*x + 10*y + 3*y - 9,

2
poly1=8*x - 2*y + 5*y + 3,

3 2
poly2=2*y - 3*y - 16*y + 21,
candidate=2*candidate,
candidate= - x*y*poly1 + candidate,
candidate= - 4*x*poly1 + candidate,
candidate=4*candidate,

3
candidate= - y *poly1 + candidate,
candidate=2*candidate,

2
candidate= - 3*y *poly1 + candidate,
candidate=13*y*poly1 + candidate,
candidate=candidate + 6*poly1,

2
candidate= - 2*y *poly2 + candidate,
candidate= - y*poly2 + candidate,
candidate=candidate + 6*poly2}

This means

16(5y2 + 2x2y +
5
2
xy +

3
2
y + 8x2 +

3
2
x− 9

2
) =



3 THE BASIC OPERATORS 20

(−8xy − 32x− 2y3 − 3y2 + 13y + 6)poly1
+(−2y2 − 2y + 6)poly2 + y2.

3.8 Tracing with groebnert and preducet

Given a set of polynomials {f1, . . . , fk} and their Gröbner basis {g1, . . . , gl},
it is well known that there are matrices of polynomials Cij and Dji such
that

fi =
∑

j

Cijgj and gj =
∑

i

Djifi

and these relations are needed explicitly sometimes. In Buchberger [?],
such cases are described in the context of linear polynomial equations. The
standard technique for computing the above formulae is to perform Gröbner
reductions, keeping track of the computation in terms of the input data.
In the current package such calculations are performed with (an internally
hidden) cofactor technique: the user has to assign unique names to the input
expressions and the arithmetic combinations are done with the expressions
and with their names simultaneously. So the result is accompanied by an
expression which relates it algebraically to the input values.

There are two complementary operators with this feature: groebnert and
preducet; functionally they correspond to groebner and preduce. How-
ever, the sets of expressions here must be equations with unique single
identifiers on their left side and the lhs are interpreted as names of the
expressions. Their results are sets of equations (groebnert) or equations
(preducet), where a lhs is the computed value, while the rhs is its equivalent
in terms of the input names.

Example 5

We calculate the Gröbner basis for an ellipse (named “p1” ) and a line
(named “p2” ); p2 is member of the basis immediately and so the corre-
sponding first result element is of a very simple form; the second member is
a combination of p1 and p2 as shown on the rhs of this equation:

gb1:=groebnert {p1=2*x**2+4*y**2-100,p2=2*x-y+1};

gb1 := {2*x - y + 1=p2,
2

9*y - 2*y - 199= - 2*x*p2 - y*p2 + 2*p1 + p2}



3 THE BASIC OPERATORS 21

Example 6

We want to reduce the polynomial x**2 wrt the above Gröbner basis and
need knowledge about the reduction formula. We therefore extract the basis
polynomials from gb1, assign unique names to them (here g1, g2) and call
preducet. The polynomial to be reduced here is introduced with the name Q,
which then appears on the rhs of the result. If the name for the polynomial
is omitted, its formal value is used on the right side too.

gb2 := for k := 1:length gb1 collect
mkid(g,k) = lhs part(gb1,k)$

preducet (q=x**2,gb2);

- 16*y + 208= - 18*x*g1 - 9*y*g1 + 36*q + 9*g1 - g2

This output means

x2 = (
1
2
x +

1
4
y − 1

4
)g1 +

1
36

g2 + (−4
9
y +

52
9

).

Example 7

If we reduce a polynomial which is member of the ideal, we consequently
get a result with lhs zero:

preducet(q=2*x**2+4*y**2-100,gb2);

0= - 2*x*g1 - y*g1 + 2*q + g1 - g2

This means
q = (x +

1
2
y − 1

2
)g1 +

1
2
g2.

With these operators the matrices Cij and Dji are available implicitly, Dji

as side effect of groebnertT, cij by calls of preducet of fi wrt {gj}. The
latter by definition will have the lhs zero and a rhs with linear fi.

If {1} is the Gröbner basis, the groebnert calculation gives a “proof”, show-
ing, how 1 can be computed as combination of the input polynomials.

Remark: Compared to the non-tracing algorithms, these operators are
much more time consuming. So they are applicable only on small sized
problems.



3 THE BASIC OPERATORS 22

3.9 Gröbner Bases for Modules

Given a polynomial ring, e.g. r = z[x1 · · ·xk] and an integer n > 1: the
vectors with n elements of r form a module under vector addition (= com-
ponentwise addition) and multiplication with elements of r. For a submodule
given by a finite basis a Gröbner basis can be computed, and the facilities
of the groebner package can be used except the operators groebnerf and
groesolve.

The vectors are encoded using auxiliary variables which represent the unit
vectors in the module. E.g. using v1, v2, v3 the module element [x2

1, 0, x1−x2]
is represented as x2

1v1+x1v3−x2v3. The use of v1, v2, v3 as unit vectors is set
up by assigning the set of auxiliary variables to the share variable gmodule,
e.g.

gmodule := {v1,v2,v3};

After this declaration all monomials built from these variables are considered
as an algebraically independent basis of a vector space. However, you had
best use them only linearly. Once gmodule has been set, the auxiliary
variables automatically will be added to the end of each variable list (if they
are not yet member there). Example:

torder({x,y,v1,v2,v3},lex)$
gmodule := {v1,v2,v3}$
g:=groebner{x^2*v1 + y*v2,x*y*v1 - v3,2y*v1 + y*v3};

2
g := {x *v1 + y*v2,

2
x*v3 + y *v2,

3
y *v2 - 2*v3,

2*y*v1 + y*v3}

preduce((x+y)^3*v1,g);

1 3 2



3 THE BASIC OPERATORS 23

- x*y*v2 - ---*y *v3 - 3*y *v2 + 3*y*v3
2

In many cases a total degree oriented term order will be adequate for com-
putations in modules, e.g. for all cases where the submodule membership is
investigated. However, arranging the auxiliary variables in an elimination
oriented term order can give interesting results. E.g.

p1:=(x-1)*(x^2-x+3)$ p2:=(x-1)*(x^2+x-5)$
gmodule := {v1,v2,v3};
torder({v1,x,v2,v3},lex)$
gb:=groebner {p1*v1+v2,p2*v1+v3};

gb := {30*v1*x - 30*v1 + x*v2 - x*v3 + 5*v2 - 3*v3,

2 2
x *v2 - x *v3 + x*v2 + x*v3 - 5*v2 - 3*v3}

g:=coeffn(first gb,v1,1);

g := 30*(x - 1)

c1:=coeffn(first gb,v2,1);

c1 := x + 5

c2:=coeffn(first gb,v3,1);

c2 := - x - 3

c1*p1 + c2*p2;

30*(x - 1)

Here two polynomials are entered as vectors [p1, 1, 0] and [p2, 0, 1]. Using
a term ordering such that the first dimension ranges highest and the other
components lowest, a classical cofactor computation is executed just as in
the extended Euclidean algorithm. Consequently the leading polynomial in



3 THE BASIC OPERATORS 24

the resulting basis shows the greatest common divisor of p1 and p2, found as
a coefficient of v1 while the coefficients of v2 and v3 are the cofactors c1 and
c2 of the polynomials p1 and p2 with the relation gcd(p1, p2) = c1p1 + c2p2.

3.10 Additional Orderings

Besides the basic orderings, there are ordering options that are used for
special purposes.

3.10.1 Separating the Variables into Groups

It is often desirable to separate variables and formal parameters in a system
of polynomials. This can be done with a lex Gröbner basis. That however
may be hard to compute as it does more separation than necessary. The
following orderings group the variables into two (or more) sets, where inside
each set a classical ordering acts, while the sets are handled via their total
degrees, which are compared in elimination style. So the Gröbner basis will
eliminate the members of the first set, if algebraically possible. torder here
gets an additional parameter which describe the grouping

torder (vl,gradlexgradlex, n)
torder (vl,gradlexrevgradlex,n)
torder (vl,lexgradlex, n)
torder (vl,lexrevgradlex, n)

Here the integer n is the number of variables in the first group and the
names combine the local ordering for the first and second group, e.g.

lexgradlex, 3 for {x1, x2, x3, x4, x5}:
xi1

1 . . . xi5
5 � xj1

1 . . . xj5
5

if (i1, i2, i3) �lex (j1, j2, j3)
or (i1, i2, i3) = (j1, j2, j3)

and (i4, i5) �gradlex (j4, j5)

Note that in the second place there is no lex ordering available; that would
not make sense.

3.10.2 Weighted Ordering

The statement



3 THE BASIC OPERATORS 25

torder (vl,weighted, {n1, n2, n3 . . .}) ;

establishes a graduated ordering, where the exponents are first multiplied by
the given weights. If there are less weight values than variables, the weight 1
is added automatically. If the weighted degree calculation is not decidable,
a lex comparison follows.

3.10.3 Graded Ordering

The statement

torder (vl,graded, {n1, n2, n3 . . .},order2) ;

establishes a graduated ordering, where the exponents are first multiplied by
the given weights. If there are less weight values than variables, the weight 1
is added automatically. If the weighted degree calculation is not decidable,
the term order order2 specified in the following argument(s) is used. The
ordering graded is designed primarily for use with the operator dd groebner.

3.10.4 Matrix Ordering

The statement

torder (vl,matrix, m) ;

where m is a matrix with integer elements and row length which corresponds
to the variable number. The exponents of each monomial form a vector; two
monomials are compared by multiplying their exponent vectors first with m
and comparing the resulting vector lexicographically. E.g. the unit matrix
establishes the classical lex term order mode, a matrix with a first row
of ones followed by the rows of a unit matrix corresponds to the gradlex
ordering.

The matrix m must have at least as many rows as columns; a non–square
matrix contains redundant rows. The matrix must have full rank, and the
top non–zero element of each column must be positive.

The generality of the matrix based term order has its price: the computing
time spent in the term sorting is significantly higher than with the specialized
term orders. To overcome this problem, you can compile a matrix term order
; the compilation reduces the computing time overhead significantly. If you



4 IDEAL DECOMPOSITION & EQUATION SYSTEM SOLVING 26

set the switch comp on, any new order matrix is compiled when any operator
of the groebner package accesses it for the first time. Alternatively you can
compile a matrix explicitly

torder_compile(<n>,<m>);

where < n > is a name (an identifier) and < m > is a term order matrix.
torder compile transforms the matrix into a LISP program, which is com-
piled by the LISP compiler when comp is on or when you generate a fast
loadable module. Later you can activate the new term order by using the
name < n > in a torder statement as term ordering mode.

3.11 Gröbner Bases for Graded Homogeneous Systems

For a homogeneous system of polynomials under a term order graded, gradlex,
revgradlex or weighted a Gröbner Base can be computed with limiting the
grade of the intermediate s–polynomials:

dd groebner (d1,d2,{p1, p2, . . .});
where d1 is a non–negative integer and d2 is an integer > d1 or “infinity”.
A pair of polynomials is considered only if the grade of the lcm of their head
terms is between d1 and d2. See [?] for the mathematical background. For
the term orders graded or weighted the (first) weight vector is used for the
grade computation. Otherwise the total degree of a term is used.

4 Ideal Decomposition & Equation System Solv-
ing

Based on the elementary Gröbner operations, the groebner package offers
additional operators, which allow the decomposition of an ideal or of a sys-
tem of equations down to the individual solutions.



4 IDEAL DECOMPOSITION & EQUATION SYSTEM SOLVING 27

4.1 Solutions Based on Lex Type Gröbner Bases

4.1.1 groesolve: Solution of a Set of Polynomial Equations

The groesolve operator incorporates a macro algorithm; lexical Gröbner
bases are computed by groebnerf and decomposed into simpler ones by ideal
decomposition techniques; if algebraically possible, the problem is reduced to
univariate polynomials which are solved by solve; if rounded is on, numerical
approximations are computed for the roots of the univariate polynomials.

groesolve({exp1, exp2, . . . , expm}[, {var1, var2, . . . , varn}]);

where {exp1, exp2, . . . , expm} is a list of any number of expressions or equa-
tions, {var1, var2, . . . , varn} is an optional list of variables.

The result is a set of subsets. The subsets contain the solutions of the poly-
nomial equations. If there are only finitely many solutions, then each subset
is a set of expressions of triangular type {exp1, exp2, . . . , expn}, where exp1
depends only on var1, exp2 depends only on var1 and var2 etc. until expn
which depends on var1, . . . , varn. This allows a successive determination of
the solution components. If there are infinitely many solutions, some subsets
consist in less than n expressions. By considering some of the variables as
“free parameters”, these subsets are usually again of triangular type.

Example 8(Intersections of a line with a circle):

groesolve({x ∗ ∗2− y ∗ ∗2− a, p ∗ x + q ∗ y + s}, {x, y});

2 2 2 2 2
{{x=(sqrt( - a*p + a*q + s )*q - p*s)/(p - q ),

2 2 2 2 2
y= - (sqrt( - a*p + a*q + s )*p - q*s)/(p - q )},

2 2 2 2 2
{x= - (sqrt( - a*p + a*q + s )*q + p*s)/(p - q ),

2 2 2 2 2
y=(sqrt( - a*p + a*q + s )*p + q*s)/(p - q )}}

If the system is zero–dimensional (has a number of isolated solutions), the
algorithm described in [?] is used, if the decomposition leaves a polynomial
with mixed leading term. Hillebrand has written the article and Möller was
the tutor of this job.



4 IDEAL DECOMPOSITION & EQUATION SYSTEM SOLVING 28

The reordering of the groesolve variables is controlled by the REDUCE
switch varopt. If varopt is on (which is the default of varopt), the variable
sequence is optimized (the variables are reordered). If varopt is off , the
given variable sequence is taken (if no variables are given, the order of the
REDUCE system is taken instead). In general, the reordering of the vari-
ables makes the Gröbner basis computation significantly faster. A variable
dependency, declare by one (or several) depend statements, is regarded (if
varopt is on). The switch groebopt has no meaning for groesolve; it is stored
during its processing.

4.1.2 groepostproc: Postprocessing of a Gröbner Basis

In many cases, it is difficult to do the general Gröbner processing. If a
Gröbner basis with a lex ordering is calculated already (e.g., by very indi-
vidual parameter settings), the solutions can be derived from it by a call
to groepostproc. groesolve is functionally equivalent to a call to groebnerf
and subsequent calls to groepostproc for each partial basis.

groepostproc({exp1, exp2, . . . , expm}[, {var1, var2, . . . , varn}]);

where {exp1, exp2, . . . , expm} is a list of any number of expressions,
{var1, var2, . . . , varn} is an optional list of variables. The expressions must
be a lex Gröbner basis with the given variables; the ordering must be still
active.

The result is the same as with groesolve.

groepostproc({x3**2 + x3 + x2 - 1,
x2*x3 + x1*x3 + x3 + x1*x2 + x1 + 2,
x2**2 + 2*x2 - 1,
x1**2 - 2},{x3,x2,x1});

{{x3= - sqrt(2),

x2=sqrt(2) - 1,

x1=sqrt(2)},

{x3=sqrt(2),



4 IDEAL DECOMPOSITION & EQUATION SYSTEM SOLVING 29

x2= - (sqrt(2) + 1),

x1= - sqrt(2)},

sqrt(4*sqrt(2) + 9) - 1
{x3=-------------------------,

2

x2= - (sqrt(2) + 1),

x1=sqrt(2)},

- (sqrt(4*sqrt(2) + 9) + 1)
{x3=------------------------------,

2

x2= - (sqrt(2) + 1),

x1=sqrt(2)},

sqrt( - 4*sqrt(2) + 9) - 1
{x3=----------------------------,

2

x2=sqrt(2) - 1,

x1= - sqrt(2)},

- (sqrt( - 4*sqrt(2) + 9) + 1)
{x3=---------------------------------,

2

x2=sqrt(2) - 1,

x1= - sqrt(2)}}



4 IDEAL DECOMPOSITION & EQUATION SYSTEM SOLVING 30

4.1.3 Idealquotient: Quotient of an Ideal and an Expression

Let i be an ideal and f be a polynomial in the same variables. Then the
algebraic quotient is defined by

i : f = {p | p ∗ f member of i} .

The ideal quotient i : f contains i and is obviously part of the whole poly-
nomial ring, i.e. contained in {1}. The case i : f = {1} is equivalent to
f being a member of i. The other extremal case, i : f = i, occurs, when
f does not vanish at any general zero of i. The explanation of the notion
“general zero” introduced by van der Waerden, however, is beyond the aim
of this manual. The operation of groesolve/groepostproc is based on nested
ideal quotient calculations.

If i is given by a basis and f is given as an expression, the quotient can be
calculated by

idealquotient({exp1, . . . , expm}, exp);

where {exp1, exp2, . . . , expm} is a list of any number of expressions or equa-
tions, exp is a single expression or equation.

idealquotient calculates the algebraic quotient of the ideal i with the ba-
sis {exp1, exp2, . . . , expm} and exp with respect to the variables given or
extracted. {exp1, exp2, . . . , expm} is not necessarily a Gröbner basis. The
result is the Gröbner basis of the quotient.

4.1.4 Saturation: Saturation of an Ideal and an Expression

The saturation computes the quotient on an ideal and an arbitrary power
of an expression exp ∗ ∗n with arbitrary n. The call is

saturation({exp1, . . . , expm}, exp);

where {exp1, exp2, . . . , expm} is a list of any number of expressions or equa-
tions, exp is a single expression or equation.

saturation calls idealquotient several times, until the result is stable, and
returns it.



4 IDEAL DECOMPOSITION & EQUATION SYSTEM SOLVING 31

4.2 Operators for Gröbner Bases in all Term Orderings

In some cases where no Gröbner basis with lexical ordering can be calculated,
a calculation with a total degree ordering is still possible. Then the Hilbert
polynomial gives information about the dimension of the solutions space
and for finite sets of solutions univariate polynomials can be calculated.
The solutions of the equation system then is contained in the cross product
of all solutions of all univariate polynomials.

4.2.1 Hilbertpolynomial: Hilbert Polynomial of an Ideal

This algorithm was contributed by Joachim Hollman, Royal Institute of
Technology, Stockholm (private communication).

hilbertpolynomial({exp1, . . . , expm}) ;

where {exp1, . . . , expm} is a list of any number of expressions or equations.

hilertpolynomial calculates the Hilbert polynomial of the ideal with basis
{exp1, . . . , expm} with respect to the variables given or extracted provided
the given term ordering is compatible with the degree, such as the gradlex-
or revgradlex-ordering. The term ordering of the basis must be active and
{exp1, . . ., expm} should be a Gröbner basis with respect to this ordering.
The Hilbert polynomial gives information about the cardinality of solutions
of the system {exp1, . . . , expm}: if the Hilbert polynomial is an integer, the
system has only a discrete set of solutions and the polynomial is identical
with the number of solutions counted with their multiplicities. Otherwise
the degree of the Hilbert polynomial is the dimension of the solution space.

If the Hilbert polynomial is not a constant, it is constructed with the variable
“x” regardless of whether x is member of {var1, . . . , varn} or not. The value
of this polynomial at sufficiently large numbers “x” is the difference of the
dimension of the linear vector space of all polynomials of degree ≤ x minus
the dimension of the subspace of all polynomials of degree ≤ x which belong
also to the ideal.

Remark: The number of zeros in an ideal and the Hilbert polynomial
depend only on the leading terms of the Gröbner basis. So if a subsequent
Hilbert calculation is planned, the Gröbner calculation should be performed



5 CALCULATIONS “BY HAND” 32

with on gltbasis and the value of gltb (or its elements in a groebnerf context)
should be given to hilbertpolynomial. In this manner, a lot of computing
time can be saved in the case of large bases.

5 Calculations “by Hand”

The following operators support explicit calculations with polynomials in a
distributive representation at the REDUCE top level. So they allow one
to do Gröbner type evaluations stepwise by separate calls. Note that the
normal REDUCE arithmetic can be used for arithmetic combinations of
monomials and polynomials.

5.1 Representing Polynomials in Distributive Form

gsortp;

where p is a polynomial or a list of polynomials.

If p is a single polynomial, the result is a reordered version of p in the
distributive representation according to the variables and the current term
order mode; if p is a list, its members are converted into distributive repre-
sentation and the result is the list sorted by the term ordering of the leading
terms; zero polynomials are eliminated from the result.

torder({alpha,beta,gamma},lex);

dip := gsort(gamma*(alpha-1)**2*(beta+1)**2);

2 2 2
dip := alpha *beta *gamma + 2*alpha *beta*gamma

2 2
+ alpha *gamma - 2*alpha*beta *gamma - 4*alpha*beta*gamma

2
- 2*alpha*gamma + beta *gamma + 2*beta*gamma + gamma



5 CALCULATIONS “BY HAND” 33

5.2 Splitting of a Polynomial into Leading Term and Reduc-
tum

gsplitp;

where p is a polynomial.

gsplit converts the polynomial p into distributive representation and splits it
into leading monomial and reductum. The result is a list with two elements,
the leading monomial and the reductum.

gslit dip;

2 2
{alpha *beta *gamma,

2 2 2
2*alpha *beta*gamma + alpha *gamma - 2*alpha*beta *gamma

2
- 4*alpha*beta*gamma - 2*alpha*gamma + beta *gamma

+ 2*beta*gamma + gamma}

5.3 Calculation of Buchberger’s S-polynomial

gspoly(p1, p2);

where p1 and p2 are polynomials.

gspoly calculates the s-polynomial from p1 and p2;

Example for a complete calculation (taken from Davenport et al. [?]):



5 CALCULATIONS “BY HAND” 34

torder({x,y,z},lex)$
g1 := x**3*y*z - x*z**2;
g2 := x*y**2*z - x*y*z;
g3 := x**2*y**2 - z;$

% first S-polynomial

g4 := gspoly(g2,g3);$

2 2
g4 := x *y*z - z

% next S-polynomial

p := gspoly(g2,g4); $

2 2
p := x *y*z - y*z

% and reducing, here only by g4

g5 := preduce(p,{g4});

2 2
g5 := - y*z + z

% last S-polynomial}

g6 := gspoly(g4,g5);

2 2 3
g6 := x *z - z

% and the final basis sorted descending

gsort{g2,g3,g4,g5,g6};

2 2
{x *y - z,



REFERENCES 35

2 2
x *y*z - z ,

2 2 3
x *z - z ,

2
x*y *z - x*y*z,

2 2
- y*z + z }

References


